mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-25 22:04:51 +02:00

7151532: DCmd for hotspot native memory tracking Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd Reviewed-by: acorn, coleenp, fparain
1602 lines
59 KiB
C++
1602 lines
59 KiB
C++
/*
|
|
* Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
|
|
#include "gc_implementation/parNew/parGCAllocBuffer.hpp"
|
|
#include "gc_implementation/parNew/parNewGeneration.hpp"
|
|
#include "gc_implementation/parNew/parOopClosures.inline.hpp"
|
|
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
|
|
#include "gc_implementation/shared/ageTable.hpp"
|
|
#include "gc_implementation/shared/spaceDecorator.hpp"
|
|
#include "memory/defNewGeneration.inline.hpp"
|
|
#include "memory/genCollectedHeap.hpp"
|
|
#include "memory/genOopClosures.inline.hpp"
|
|
#include "memory/generation.hpp"
|
|
#include "memory/generation.inline.hpp"
|
|
#include "memory/referencePolicy.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "memory/sharedHeap.hpp"
|
|
#include "memory/space.hpp"
|
|
#include "oops/objArrayOop.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "oops/oop.pcgc.inline.hpp"
|
|
#include "runtime/handles.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/thread.hpp"
|
|
#include "utilities/copy.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
#include "utilities/workgroup.hpp"
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning( push )
|
|
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
|
|
#endif
|
|
ParScanThreadState::ParScanThreadState(Space* to_space_,
|
|
ParNewGeneration* gen_,
|
|
Generation* old_gen_,
|
|
int thread_num_,
|
|
ObjToScanQueueSet* work_queue_set_,
|
|
Stack<oop, mtGC>* overflow_stacks_,
|
|
size_t desired_plab_sz_,
|
|
ParallelTaskTerminator& term_) :
|
|
_to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
|
|
_work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
|
|
_overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
|
|
_ageTable(false), // false ==> not the global age table, no perf data.
|
|
_to_space_alloc_buffer(desired_plab_sz_),
|
|
_to_space_closure(gen_, this), _old_gen_closure(gen_, this),
|
|
_to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
|
|
_older_gen_closure(gen_, this),
|
|
_evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
|
|
&_to_space_root_closure, gen_, &_old_gen_root_closure,
|
|
work_queue_set_, &term_),
|
|
_is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
|
|
_keep_alive_closure(&_scan_weak_ref_closure),
|
|
_promotion_failure_size(0),
|
|
_strong_roots_time(0.0), _term_time(0.0)
|
|
{
|
|
#if TASKQUEUE_STATS
|
|
_term_attempts = 0;
|
|
_overflow_refills = 0;
|
|
_overflow_refill_objs = 0;
|
|
#endif // TASKQUEUE_STATS
|
|
|
|
_survivor_chunk_array =
|
|
(ChunkArray*) old_gen()->get_data_recorder(thread_num());
|
|
_hash_seed = 17; // Might want to take time-based random value.
|
|
_start = os::elapsedTime();
|
|
_old_gen_closure.set_generation(old_gen_);
|
|
_old_gen_root_closure.set_generation(old_gen_);
|
|
}
|
|
#ifdef _MSC_VER
|
|
#pragma warning( pop )
|
|
#endif
|
|
|
|
void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
|
|
size_t plab_word_size) {
|
|
ChunkArray* sca = survivor_chunk_array();
|
|
if (sca != NULL) {
|
|
// A non-null SCA implies that we want the PLAB data recorded.
|
|
sca->record_sample(plab_start, plab_word_size);
|
|
}
|
|
}
|
|
|
|
bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
|
|
return new_obj->is_objArray() &&
|
|
arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
|
|
new_obj != old_obj;
|
|
}
|
|
|
|
void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
|
|
assert(old->is_objArray(), "must be obj array");
|
|
assert(old->is_forwarded(), "must be forwarded");
|
|
assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
|
|
assert(!old_gen()->is_in(old), "must be in young generation.");
|
|
|
|
objArrayOop obj = objArrayOop(old->forwardee());
|
|
// Process ParGCArrayScanChunk elements now
|
|
// and push the remainder back onto queue
|
|
int start = arrayOop(old)->length();
|
|
int end = obj->length();
|
|
int remainder = end - start;
|
|
assert(start <= end, "just checking");
|
|
if (remainder > 2 * ParGCArrayScanChunk) {
|
|
// Test above combines last partial chunk with a full chunk
|
|
end = start + ParGCArrayScanChunk;
|
|
arrayOop(old)->set_length(end);
|
|
// Push remainder.
|
|
bool ok = work_queue()->push(old);
|
|
assert(ok, "just popped, push must be okay");
|
|
} else {
|
|
// Restore length so that it can be used if there
|
|
// is a promotion failure and forwarding pointers
|
|
// must be removed.
|
|
arrayOop(old)->set_length(end);
|
|
}
|
|
|
|
// process our set of indices (include header in first chunk)
|
|
// should make sure end is even (aligned to HeapWord in case of compressed oops)
|
|
if ((HeapWord *)obj < young_old_boundary()) {
|
|
// object is in to_space
|
|
obj->oop_iterate_range(&_to_space_closure, start, end);
|
|
} else {
|
|
// object is in old generation
|
|
obj->oop_iterate_range(&_old_gen_closure, start, end);
|
|
}
|
|
}
|
|
|
|
|
|
void ParScanThreadState::trim_queues(int max_size) {
|
|
ObjToScanQueue* queue = work_queue();
|
|
do {
|
|
while (queue->size() > (juint)max_size) {
|
|
oop obj_to_scan;
|
|
if (queue->pop_local(obj_to_scan)) {
|
|
if ((HeapWord *)obj_to_scan < young_old_boundary()) {
|
|
if (obj_to_scan->is_objArray() &&
|
|
obj_to_scan->is_forwarded() &&
|
|
obj_to_scan->forwardee() != obj_to_scan) {
|
|
scan_partial_array_and_push_remainder(obj_to_scan);
|
|
} else {
|
|
// object is in to_space
|
|
obj_to_scan->oop_iterate(&_to_space_closure);
|
|
}
|
|
} else {
|
|
// object is in old generation
|
|
obj_to_scan->oop_iterate(&_old_gen_closure);
|
|
}
|
|
}
|
|
}
|
|
// For the case of compressed oops, we have a private, non-shared
|
|
// overflow stack, so we eagerly drain it so as to more evenly
|
|
// distribute load early. Note: this may be good to do in
|
|
// general rather than delay for the final stealing phase.
|
|
// If applicable, we'll transfer a set of objects over to our
|
|
// work queue, allowing them to be stolen and draining our
|
|
// private overflow stack.
|
|
} while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
|
|
}
|
|
|
|
bool ParScanThreadState::take_from_overflow_stack() {
|
|
assert(ParGCUseLocalOverflow, "Else should not call");
|
|
assert(young_gen()->overflow_list() == NULL, "Error");
|
|
ObjToScanQueue* queue = work_queue();
|
|
Stack<oop, mtGC>* const of_stack = overflow_stack();
|
|
const size_t num_overflow_elems = of_stack->size();
|
|
const size_t space_available = queue->max_elems() - queue->size();
|
|
const size_t num_take_elems = MIN3(space_available / 4,
|
|
ParGCDesiredObjsFromOverflowList,
|
|
num_overflow_elems);
|
|
// Transfer the most recent num_take_elems from the overflow
|
|
// stack to our work queue.
|
|
for (size_t i = 0; i != num_take_elems; i++) {
|
|
oop cur = of_stack->pop();
|
|
oop obj_to_push = cur->forwardee();
|
|
assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
|
|
assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
|
|
assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
|
|
if (should_be_partially_scanned(obj_to_push, cur)) {
|
|
assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
|
|
obj_to_push = cur;
|
|
}
|
|
bool ok = queue->push(obj_to_push);
|
|
assert(ok, "Should have succeeded");
|
|
}
|
|
assert(young_gen()->overflow_list() == NULL, "Error");
|
|
return num_take_elems > 0; // was something transferred?
|
|
}
|
|
|
|
void ParScanThreadState::push_on_overflow_stack(oop p) {
|
|
assert(ParGCUseLocalOverflow, "Else should not call");
|
|
overflow_stack()->push(p);
|
|
assert(young_gen()->overflow_list() == NULL, "Error");
|
|
}
|
|
|
|
HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
|
|
|
|
// Otherwise, if the object is small enough, try to reallocate the
|
|
// buffer.
|
|
HeapWord* obj = NULL;
|
|
if (!_to_space_full) {
|
|
ParGCAllocBuffer* const plab = to_space_alloc_buffer();
|
|
Space* const sp = to_space();
|
|
if (word_sz * 100 <
|
|
ParallelGCBufferWastePct * plab->word_sz()) {
|
|
// Is small enough; abandon this buffer and start a new one.
|
|
plab->retire(false, false);
|
|
size_t buf_size = plab->word_sz();
|
|
HeapWord* buf_space = sp->par_allocate(buf_size);
|
|
if (buf_space == NULL) {
|
|
const size_t min_bytes =
|
|
ParGCAllocBuffer::min_size() << LogHeapWordSize;
|
|
size_t free_bytes = sp->free();
|
|
while(buf_space == NULL && free_bytes >= min_bytes) {
|
|
buf_size = free_bytes >> LogHeapWordSize;
|
|
assert(buf_size == (size_t)align_object_size(buf_size),
|
|
"Invariant");
|
|
buf_space = sp->par_allocate(buf_size);
|
|
free_bytes = sp->free();
|
|
}
|
|
}
|
|
if (buf_space != NULL) {
|
|
plab->set_word_size(buf_size);
|
|
plab->set_buf(buf_space);
|
|
record_survivor_plab(buf_space, buf_size);
|
|
obj = plab->allocate(word_sz);
|
|
// Note that we cannot compare buf_size < word_sz below
|
|
// because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
|
|
assert(obj != NULL || plab->words_remaining() < word_sz,
|
|
"Else should have been able to allocate");
|
|
// It's conceivable that we may be able to use the
|
|
// buffer we just grabbed for subsequent small requests
|
|
// even if not for this one.
|
|
} else {
|
|
// We're used up.
|
|
_to_space_full = true;
|
|
}
|
|
|
|
} else {
|
|
// Too large; allocate the object individually.
|
|
obj = sp->par_allocate(word_sz);
|
|
}
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
|
|
void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
|
|
size_t word_sz) {
|
|
// Is the alloc in the current alloc buffer?
|
|
if (to_space_alloc_buffer()->contains(obj)) {
|
|
assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
|
|
"Should contain whole object.");
|
|
to_space_alloc_buffer()->undo_allocation(obj, word_sz);
|
|
} else {
|
|
CollectedHeap::fill_with_object(obj, word_sz);
|
|
}
|
|
}
|
|
|
|
void ParScanThreadState::print_and_clear_promotion_failure_size() {
|
|
if (_promotion_failure_size != 0) {
|
|
if (PrintPromotionFailure) {
|
|
gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
|
|
_thread_num, _promotion_failure_size);
|
|
}
|
|
_promotion_failure_size = 0;
|
|
}
|
|
}
|
|
|
|
class ParScanThreadStateSet: private ResourceArray {
|
|
public:
|
|
// Initializes states for the specified number of threads;
|
|
ParScanThreadStateSet(int num_threads,
|
|
Space& to_space,
|
|
ParNewGeneration& gen,
|
|
Generation& old_gen,
|
|
ObjToScanQueueSet& queue_set,
|
|
Stack<oop, mtGC>* overflow_stacks_,
|
|
size_t desired_plab_sz,
|
|
ParallelTaskTerminator& term);
|
|
|
|
~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
|
|
|
|
inline ParScanThreadState& thread_state(int i);
|
|
|
|
void reset(int active_workers, bool promotion_failed);
|
|
void flush();
|
|
|
|
#if TASKQUEUE_STATS
|
|
static void
|
|
print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
|
|
void print_termination_stats(outputStream* const st = gclog_or_tty);
|
|
static void
|
|
print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
|
|
void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
|
|
void reset_stats();
|
|
#endif // TASKQUEUE_STATS
|
|
|
|
private:
|
|
ParallelTaskTerminator& _term;
|
|
ParNewGeneration& _gen;
|
|
Generation& _next_gen;
|
|
public:
|
|
bool is_valid(int id) const { return id < length(); }
|
|
ParallelTaskTerminator* terminator() { return &_term; }
|
|
};
|
|
|
|
|
|
ParScanThreadStateSet::ParScanThreadStateSet(
|
|
int num_threads, Space& to_space, ParNewGeneration& gen,
|
|
Generation& old_gen, ObjToScanQueueSet& queue_set,
|
|
Stack<oop, mtGC>* overflow_stacks,
|
|
size_t desired_plab_sz, ParallelTaskTerminator& term)
|
|
: ResourceArray(sizeof(ParScanThreadState), num_threads),
|
|
_gen(gen), _next_gen(old_gen), _term(term)
|
|
{
|
|
assert(num_threads > 0, "sanity check!");
|
|
assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
|
|
"overflow_stack allocation mismatch");
|
|
// Initialize states.
|
|
for (int i = 0; i < num_threads; ++i) {
|
|
new ((ParScanThreadState*)_data + i)
|
|
ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
|
|
overflow_stacks, desired_plab_sz, term);
|
|
}
|
|
}
|
|
|
|
inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
|
|
{
|
|
assert(i >= 0 && i < length(), "sanity check!");
|
|
return ((ParScanThreadState*)_data)[i];
|
|
}
|
|
|
|
|
|
void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
|
|
{
|
|
_term.reset_for_reuse(active_threads);
|
|
if (promotion_failed) {
|
|
for (int i = 0; i < length(); ++i) {
|
|
thread_state(i).print_and_clear_promotion_failure_size();
|
|
}
|
|
}
|
|
}
|
|
|
|
#if TASKQUEUE_STATS
|
|
void
|
|
ParScanThreadState::reset_stats()
|
|
{
|
|
taskqueue_stats().reset();
|
|
_term_attempts = 0;
|
|
_overflow_refills = 0;
|
|
_overflow_refill_objs = 0;
|
|
}
|
|
|
|
void ParScanThreadStateSet::reset_stats()
|
|
{
|
|
for (int i = 0; i < length(); ++i) {
|
|
thread_state(i).reset_stats();
|
|
}
|
|
}
|
|
|
|
void
|
|
ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
|
|
{
|
|
st->print_raw_cr("GC Termination Stats");
|
|
st->print_raw_cr(" elapsed --strong roots-- "
|
|
"-------termination-------");
|
|
st->print_raw_cr("thr ms ms % "
|
|
" ms % attempts");
|
|
st->print_raw_cr("--- --------- --------- ------ "
|
|
"--------- ------ --------");
|
|
}
|
|
|
|
void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
|
|
{
|
|
print_termination_stats_hdr(st);
|
|
|
|
for (int i = 0; i < length(); ++i) {
|
|
const ParScanThreadState & pss = thread_state(i);
|
|
const double elapsed_ms = pss.elapsed_time() * 1000.0;
|
|
const double s_roots_ms = pss.strong_roots_time() * 1000.0;
|
|
const double term_ms = pss.term_time() * 1000.0;
|
|
st->print_cr("%3d %9.2f %9.2f %6.2f "
|
|
"%9.2f %6.2f " SIZE_FORMAT_W(8),
|
|
i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
|
|
term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
|
|
}
|
|
}
|
|
|
|
// Print stats related to work queue activity.
|
|
void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
|
|
{
|
|
st->print_raw_cr("GC Task Stats");
|
|
st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
|
|
st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
|
|
}
|
|
|
|
void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
|
|
{
|
|
print_taskqueue_stats_hdr(st);
|
|
|
|
TaskQueueStats totals;
|
|
for (int i = 0; i < length(); ++i) {
|
|
const ParScanThreadState & pss = thread_state(i);
|
|
const TaskQueueStats & stats = pss.taskqueue_stats();
|
|
st->print("%3d ", i); stats.print(st); st->cr();
|
|
totals += stats;
|
|
|
|
if (pss.overflow_refills() > 0) {
|
|
st->print_cr(" " SIZE_FORMAT_W(10) " overflow refills "
|
|
SIZE_FORMAT_W(10) " overflow objects",
|
|
pss.overflow_refills(), pss.overflow_refill_objs());
|
|
}
|
|
}
|
|
st->print("tot "); totals.print(st); st->cr();
|
|
|
|
DEBUG_ONLY(totals.verify());
|
|
}
|
|
#endif // TASKQUEUE_STATS
|
|
|
|
void ParScanThreadStateSet::flush()
|
|
{
|
|
// Work in this loop should be kept as lightweight as
|
|
// possible since this might otherwise become a bottleneck
|
|
// to scaling. Should we add heavy-weight work into this
|
|
// loop, consider parallelizing the loop into the worker threads.
|
|
for (int i = 0; i < length(); ++i) {
|
|
ParScanThreadState& par_scan_state = thread_state(i);
|
|
|
|
// Flush stats related to To-space PLAB activity and
|
|
// retire the last buffer.
|
|
par_scan_state.to_space_alloc_buffer()->
|
|
flush_stats_and_retire(_gen.plab_stats(),
|
|
false /* !retain */);
|
|
|
|
// Every thread has its own age table. We need to merge
|
|
// them all into one.
|
|
ageTable *local_table = par_scan_state.age_table();
|
|
_gen.age_table()->merge(local_table);
|
|
|
|
// Inform old gen that we're done.
|
|
_next_gen.par_promote_alloc_done(i);
|
|
_next_gen.par_oop_since_save_marks_iterate_done(i);
|
|
}
|
|
|
|
if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
|
|
// We need to call this even when ResizeOldPLAB is disabled
|
|
// so as to avoid breaking some asserts. While we may be able
|
|
// to avoid this by reorganizing the code a bit, I am loathe
|
|
// to do that unless we find cases where ergo leads to bad
|
|
// performance.
|
|
CFLS_LAB::compute_desired_plab_size();
|
|
}
|
|
}
|
|
|
|
ParScanClosure::ParScanClosure(ParNewGeneration* g,
|
|
ParScanThreadState* par_scan_state) :
|
|
OopsInGenClosure(g), _par_scan_state(par_scan_state), _g(g)
|
|
{
|
|
assert(_g->level() == 0, "Optimized for youngest generation");
|
|
_boundary = _g->reserved().end();
|
|
}
|
|
|
|
void ParScanWithBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, false); }
|
|
void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
|
|
|
|
void ParScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, false); }
|
|
void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
|
|
|
|
void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, true); }
|
|
void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
|
|
|
|
void ParRootScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, true); }
|
|
void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
|
|
|
|
ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
|
|
ParScanThreadState* par_scan_state)
|
|
: ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
|
|
{}
|
|
|
|
void ParScanWeakRefClosure::do_oop(oop* p) { ParScanWeakRefClosure::do_oop_work(p); }
|
|
void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
|
|
|
|
#ifdef WIN32
|
|
#pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
|
|
#endif
|
|
|
|
ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
|
|
ParScanThreadState* par_scan_state_,
|
|
ParScanWithoutBarrierClosure* to_space_closure_,
|
|
ParScanWithBarrierClosure* old_gen_closure_,
|
|
ParRootScanWithoutBarrierClosure* to_space_root_closure_,
|
|
ParNewGeneration* par_gen_,
|
|
ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
|
|
ObjToScanQueueSet* task_queues_,
|
|
ParallelTaskTerminator* terminator_) :
|
|
|
|
_par_scan_state(par_scan_state_),
|
|
_to_space_closure(to_space_closure_),
|
|
_old_gen_closure(old_gen_closure_),
|
|
_to_space_root_closure(to_space_root_closure_),
|
|
_old_gen_root_closure(old_gen_root_closure_),
|
|
_par_gen(par_gen_),
|
|
_task_queues(task_queues_),
|
|
_terminator(terminator_)
|
|
{}
|
|
|
|
void ParEvacuateFollowersClosure::do_void() {
|
|
ObjToScanQueue* work_q = par_scan_state()->work_queue();
|
|
|
|
while (true) {
|
|
|
|
// Scan to-space and old-gen objs until we run out of both.
|
|
oop obj_to_scan;
|
|
par_scan_state()->trim_queues(0);
|
|
|
|
// We have no local work, attempt to steal from other threads.
|
|
|
|
// attempt to steal work from promoted.
|
|
if (task_queues()->steal(par_scan_state()->thread_num(),
|
|
par_scan_state()->hash_seed(),
|
|
obj_to_scan)) {
|
|
bool res = work_q->push(obj_to_scan);
|
|
assert(res, "Empty queue should have room for a push.");
|
|
|
|
// if successful, goto Start.
|
|
continue;
|
|
|
|
// try global overflow list.
|
|
} else if (par_gen()->take_from_overflow_list(par_scan_state())) {
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, offer termination.
|
|
par_scan_state()->start_term_time();
|
|
if (terminator()->offer_termination()) break;
|
|
par_scan_state()->end_term_time();
|
|
}
|
|
assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
|
|
"Broken overflow list?");
|
|
// Finish the last termination pause.
|
|
par_scan_state()->end_term_time();
|
|
}
|
|
|
|
ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
|
|
HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
|
|
AbstractGangTask("ParNewGeneration collection"),
|
|
_gen(gen), _next_gen(next_gen),
|
|
_young_old_boundary(young_old_boundary),
|
|
_state_set(state_set)
|
|
{}
|
|
|
|
// Reset the terminator for the given number of
|
|
// active threads.
|
|
void ParNewGenTask::set_for_termination(int active_workers) {
|
|
_state_set->reset(active_workers, _gen->promotion_failed());
|
|
// Should the heap be passed in? There's only 1 for now so
|
|
// grab it instead.
|
|
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
gch->set_n_termination(active_workers);
|
|
}
|
|
|
|
// The "i" passed to this method is the part of the work for
|
|
// this thread. It is not the worker ID. The "i" is derived
|
|
// from _started_workers which is incremented in internal_note_start()
|
|
// called in GangWorker loop() and which is called under the
|
|
// which is called under the protection of the gang monitor and is
|
|
// called after a task is started. So "i" is based on
|
|
// first-come-first-served.
|
|
|
|
void ParNewGenTask::work(uint worker_id) {
|
|
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
// Since this is being done in a separate thread, need new resource
|
|
// and handle marks.
|
|
ResourceMark rm;
|
|
HandleMark hm;
|
|
// We would need multiple old-gen queues otherwise.
|
|
assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
|
|
|
|
Generation* old_gen = gch->next_gen(_gen);
|
|
|
|
ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
|
|
assert(_state_set->is_valid(worker_id), "Should not have been called");
|
|
|
|
par_scan_state.set_young_old_boundary(_young_old_boundary);
|
|
|
|
par_scan_state.start_strong_roots();
|
|
gch->gen_process_strong_roots(_gen->level(),
|
|
true, // Process younger gens, if any,
|
|
// as strong roots.
|
|
false, // no scope; this is parallel code
|
|
false, // not collecting perm generation.
|
|
SharedHeap::SO_AllClasses,
|
|
&par_scan_state.to_space_root_closure(),
|
|
true, // walk *all* scavengable nmethods
|
|
&par_scan_state.older_gen_closure());
|
|
par_scan_state.end_strong_roots();
|
|
|
|
// "evacuate followers".
|
|
par_scan_state.evacuate_followers_closure().do_void();
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning( push )
|
|
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
|
|
#endif
|
|
ParNewGeneration::
|
|
ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
|
|
: DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
|
|
_overflow_list(NULL),
|
|
_is_alive_closure(this),
|
|
_plab_stats(YoungPLABSize, PLABWeight)
|
|
{
|
|
NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
|
|
NOT_PRODUCT(_num_par_pushes = 0;)
|
|
_task_queues = new ObjToScanQueueSet(ParallelGCThreads);
|
|
guarantee(_task_queues != NULL, "task_queues allocation failure.");
|
|
|
|
for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
|
|
ObjToScanQueue *q = new ObjToScanQueue();
|
|
guarantee(q != NULL, "work_queue Allocation failure.");
|
|
_task_queues->register_queue(i1, q);
|
|
}
|
|
|
|
for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
|
|
_task_queues->queue(i2)->initialize();
|
|
|
|
_overflow_stacks = NULL;
|
|
if (ParGCUseLocalOverflow) {
|
|
|
|
// typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
|
|
// with ','
|
|
typedef Stack<oop, mtGC> GCOopStack;
|
|
|
|
_overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
|
|
for (size_t i = 0; i < ParallelGCThreads; ++i) {
|
|
new (_overflow_stacks + i) Stack<oop, mtGC>();
|
|
}
|
|
}
|
|
|
|
if (UsePerfData) {
|
|
EXCEPTION_MARK;
|
|
ResourceMark rm;
|
|
|
|
const char* cname =
|
|
PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
|
|
PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
|
|
ParallelGCThreads, CHECK);
|
|
}
|
|
}
|
|
#ifdef _MSC_VER
|
|
#pragma warning( pop )
|
|
#endif
|
|
|
|
// ParNewGeneration::
|
|
ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
|
|
DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
|
|
|
|
template <class T>
|
|
void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
|
|
#ifdef ASSERT
|
|
{
|
|
assert(!oopDesc::is_null(*p), "expected non-null ref");
|
|
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
|
|
// We never expect to see a null reference being processed
|
|
// as a weak reference.
|
|
assert(obj->is_oop(), "expected an oop while scanning weak refs");
|
|
}
|
|
#endif // ASSERT
|
|
|
|
_par_cl->do_oop_nv(p);
|
|
|
|
if (Universe::heap()->is_in_reserved(p)) {
|
|
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
|
|
_rs->write_ref_field_gc_par(p, obj);
|
|
}
|
|
}
|
|
|
|
void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p) { ParKeepAliveClosure::do_oop_work(p); }
|
|
void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
|
|
|
|
// ParNewGeneration::
|
|
KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
|
|
DefNewGeneration::KeepAliveClosure(cl) {}
|
|
|
|
template <class T>
|
|
void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
|
|
#ifdef ASSERT
|
|
{
|
|
assert(!oopDesc::is_null(*p), "expected non-null ref");
|
|
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
|
|
// We never expect to see a null reference being processed
|
|
// as a weak reference.
|
|
assert(obj->is_oop(), "expected an oop while scanning weak refs");
|
|
}
|
|
#endif // ASSERT
|
|
|
|
_cl->do_oop_nv(p);
|
|
|
|
if (Universe::heap()->is_in_reserved(p)) {
|
|
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
|
|
_rs->write_ref_field_gc_par(p, obj);
|
|
}
|
|
}
|
|
|
|
void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p) { KeepAliveClosure::do_oop_work(p); }
|
|
void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
|
|
|
|
template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
|
|
T heap_oop = oopDesc::load_heap_oop(p);
|
|
if (!oopDesc::is_null(heap_oop)) {
|
|
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
|
|
if ((HeapWord*)obj < _boundary) {
|
|
assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
|
|
oop new_obj = obj->is_forwarded()
|
|
? obj->forwardee()
|
|
: _g->DefNewGeneration::copy_to_survivor_space(obj);
|
|
oopDesc::encode_store_heap_oop_not_null(p, new_obj);
|
|
}
|
|
if (_gc_barrier) {
|
|
// If p points to a younger generation, mark the card.
|
|
if ((HeapWord*)obj < _gen_boundary) {
|
|
_rs->write_ref_field_gc_par(p, obj);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ScanClosureWithParBarrier::do_oop(oop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
|
|
void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
|
|
|
|
class ParNewRefProcTaskProxy: public AbstractGangTask {
|
|
typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
|
|
public:
|
|
ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
|
|
Generation& next_gen,
|
|
HeapWord* young_old_boundary,
|
|
ParScanThreadStateSet& state_set);
|
|
|
|
private:
|
|
virtual void work(uint worker_id);
|
|
virtual void set_for_termination(int active_workers) {
|
|
_state_set.terminator()->reset_for_reuse(active_workers);
|
|
}
|
|
private:
|
|
ParNewGeneration& _gen;
|
|
ProcessTask& _task;
|
|
Generation& _next_gen;
|
|
HeapWord* _young_old_boundary;
|
|
ParScanThreadStateSet& _state_set;
|
|
};
|
|
|
|
ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
|
|
ProcessTask& task, ParNewGeneration& gen,
|
|
Generation& next_gen,
|
|
HeapWord* young_old_boundary,
|
|
ParScanThreadStateSet& state_set)
|
|
: AbstractGangTask("ParNewGeneration parallel reference processing"),
|
|
_gen(gen),
|
|
_task(task),
|
|
_next_gen(next_gen),
|
|
_young_old_boundary(young_old_boundary),
|
|
_state_set(state_set)
|
|
{
|
|
}
|
|
|
|
void ParNewRefProcTaskProxy::work(uint worker_id)
|
|
{
|
|
ResourceMark rm;
|
|
HandleMark hm;
|
|
ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
|
|
par_scan_state.set_young_old_boundary(_young_old_boundary);
|
|
_task.work(worker_id, par_scan_state.is_alive_closure(),
|
|
par_scan_state.keep_alive_closure(),
|
|
par_scan_state.evacuate_followers_closure());
|
|
}
|
|
|
|
class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
|
|
typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
|
|
EnqueueTask& _task;
|
|
|
|
public:
|
|
ParNewRefEnqueueTaskProxy(EnqueueTask& task)
|
|
: AbstractGangTask("ParNewGeneration parallel reference enqueue"),
|
|
_task(task)
|
|
{ }
|
|
|
|
virtual void work(uint worker_id)
|
|
{
|
|
_task.work(worker_id);
|
|
}
|
|
};
|
|
|
|
|
|
void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
|
|
{
|
|
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
|
|
"not a generational heap");
|
|
FlexibleWorkGang* workers = gch->workers();
|
|
assert(workers != NULL, "Need parallel worker threads.");
|
|
_state_set.reset(workers->active_workers(), _generation.promotion_failed());
|
|
ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
|
|
_generation.reserved().end(), _state_set);
|
|
workers->run_task(&rp_task);
|
|
_state_set.reset(0 /* bad value in debug if not reset */,
|
|
_generation.promotion_failed());
|
|
}
|
|
|
|
void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
|
|
{
|
|
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
FlexibleWorkGang* workers = gch->workers();
|
|
assert(workers != NULL, "Need parallel worker threads.");
|
|
ParNewRefEnqueueTaskProxy enq_task(task);
|
|
workers->run_task(&enq_task);
|
|
}
|
|
|
|
void ParNewRefProcTaskExecutor::set_single_threaded_mode()
|
|
{
|
|
_state_set.flush();
|
|
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
gch->set_par_threads(0); // 0 ==> non-parallel.
|
|
gch->save_marks();
|
|
}
|
|
|
|
ScanClosureWithParBarrier::
|
|
ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
|
|
ScanClosure(g, gc_barrier) {}
|
|
|
|
EvacuateFollowersClosureGeneral::
|
|
EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
|
|
OopsInGenClosure* cur,
|
|
OopsInGenClosure* older) :
|
|
_gch(gch), _level(level),
|
|
_scan_cur_or_nonheap(cur), _scan_older(older)
|
|
{}
|
|
|
|
void EvacuateFollowersClosureGeneral::do_void() {
|
|
do {
|
|
// Beware: this call will lead to closure applications via virtual
|
|
// calls.
|
|
_gch->oop_since_save_marks_iterate(_level,
|
|
_scan_cur_or_nonheap,
|
|
_scan_older);
|
|
} while (!_gch->no_allocs_since_save_marks(_level));
|
|
}
|
|
|
|
|
|
bool ParNewGeneration::_avoid_promotion_undo = false;
|
|
|
|
void ParNewGeneration::adjust_desired_tenuring_threshold() {
|
|
// Set the desired survivor size to half the real survivor space
|
|
_tenuring_threshold =
|
|
age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
|
|
}
|
|
|
|
// A Generation that does parallel young-gen collection.
|
|
|
|
void ParNewGeneration::collect(bool full,
|
|
bool clear_all_soft_refs,
|
|
size_t size,
|
|
bool is_tlab) {
|
|
assert(full || size > 0, "otherwise we don't want to collect");
|
|
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
|
|
"not a CMS generational heap");
|
|
AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
|
|
FlexibleWorkGang* workers = gch->workers();
|
|
assert(workers != NULL, "Need workgang for parallel work");
|
|
int active_workers =
|
|
AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
|
|
workers->active_workers(),
|
|
Threads::number_of_non_daemon_threads());
|
|
workers->set_active_workers(active_workers);
|
|
_next_gen = gch->next_gen(this);
|
|
assert(_next_gen != NULL,
|
|
"This must be the youngest gen, and not the only gen");
|
|
assert(gch->n_gens() == 2,
|
|
"Par collection currently only works with single older gen.");
|
|
// Do we have to avoid promotion_undo?
|
|
if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
|
|
set_avoid_promotion_undo(true);
|
|
}
|
|
|
|
// If the next generation is too full to accomodate worst-case promotion
|
|
// from this generation, pass on collection; let the next generation
|
|
// do it.
|
|
if (!collection_attempt_is_safe()) {
|
|
gch->set_incremental_collection_failed(); // slight lie, in that we did not even attempt one
|
|
return;
|
|
}
|
|
assert(to()->is_empty(), "Else not collection_attempt_is_safe");
|
|
|
|
init_assuming_no_promotion_failure();
|
|
|
|
if (UseAdaptiveSizePolicy) {
|
|
set_survivor_overflow(false);
|
|
size_policy->minor_collection_begin();
|
|
}
|
|
|
|
TraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, gclog_or_tty);
|
|
// Capture heap used before collection (for printing).
|
|
size_t gch_prev_used = gch->used();
|
|
|
|
SpecializationStats::clear();
|
|
|
|
age_table()->clear();
|
|
to()->clear(SpaceDecorator::Mangle);
|
|
|
|
gch->save_marks();
|
|
assert(workers != NULL, "Need parallel worker threads.");
|
|
int n_workers = active_workers;
|
|
|
|
// Set the correct parallelism (number of queues) in the reference processor
|
|
ref_processor()->set_active_mt_degree(n_workers);
|
|
|
|
// Always set the terminator for the active number of workers
|
|
// because only those workers go through the termination protocol.
|
|
ParallelTaskTerminator _term(n_workers, task_queues());
|
|
ParScanThreadStateSet thread_state_set(workers->active_workers(),
|
|
*to(), *this, *_next_gen, *task_queues(),
|
|
_overflow_stacks, desired_plab_sz(), _term);
|
|
|
|
ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
|
|
gch->set_par_threads(n_workers);
|
|
gch->rem_set()->prepare_for_younger_refs_iterate(true);
|
|
// It turns out that even when we're using 1 thread, doing the work in a
|
|
// separate thread causes wide variance in run times. We can't help this
|
|
// in the multi-threaded case, but we special-case n=1 here to get
|
|
// repeatable measurements of the 1-thread overhead of the parallel code.
|
|
if (n_workers > 1) {
|
|
GenCollectedHeap::StrongRootsScope srs(gch);
|
|
workers->run_task(&tsk);
|
|
} else {
|
|
GenCollectedHeap::StrongRootsScope srs(gch);
|
|
tsk.work(0);
|
|
}
|
|
thread_state_set.reset(0 /* Bad value in debug if not reset */,
|
|
promotion_failed());
|
|
|
|
// Process (weak) reference objects found during scavenge.
|
|
ReferenceProcessor* rp = ref_processor();
|
|
IsAliveClosure is_alive(this);
|
|
ScanWeakRefClosure scan_weak_ref(this);
|
|
KeepAliveClosure keep_alive(&scan_weak_ref);
|
|
ScanClosure scan_without_gc_barrier(this, false);
|
|
ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
|
|
set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
|
|
EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
|
|
&scan_without_gc_barrier, &scan_with_gc_barrier);
|
|
rp->setup_policy(clear_all_soft_refs);
|
|
// Can the mt_degree be set later (at run_task() time would be best)?
|
|
rp->set_active_mt_degree(active_workers);
|
|
if (rp->processing_is_mt()) {
|
|
ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
|
|
rp->process_discovered_references(&is_alive, &keep_alive,
|
|
&evacuate_followers, &task_executor);
|
|
} else {
|
|
thread_state_set.flush();
|
|
gch->set_par_threads(0); // 0 ==> non-parallel.
|
|
gch->save_marks();
|
|
rp->process_discovered_references(&is_alive, &keep_alive,
|
|
&evacuate_followers, NULL);
|
|
}
|
|
if (!promotion_failed()) {
|
|
// Swap the survivor spaces.
|
|
eden()->clear(SpaceDecorator::Mangle);
|
|
from()->clear(SpaceDecorator::Mangle);
|
|
if (ZapUnusedHeapArea) {
|
|
// This is now done here because of the piece-meal mangling which
|
|
// can check for valid mangling at intermediate points in the
|
|
// collection(s). When a minor collection fails to collect
|
|
// sufficient space resizing of the young generation can occur
|
|
// an redistribute the spaces in the young generation. Mangle
|
|
// here so that unzapped regions don't get distributed to
|
|
// other spaces.
|
|
to()->mangle_unused_area();
|
|
}
|
|
swap_spaces();
|
|
|
|
// A successful scavenge should restart the GC time limit count which is
|
|
// for full GC's.
|
|
size_policy->reset_gc_overhead_limit_count();
|
|
|
|
assert(to()->is_empty(), "to space should be empty now");
|
|
} else {
|
|
assert(_promo_failure_scan_stack.is_empty(), "post condition");
|
|
_promo_failure_scan_stack.clear(true); // Clear cached segments.
|
|
|
|
remove_forwarding_pointers();
|
|
if (PrintGCDetails) {
|
|
gclog_or_tty->print(" (promotion failed)");
|
|
}
|
|
// All the spaces are in play for mark-sweep.
|
|
swap_spaces(); // Make life simpler for CMS || rescan; see 6483690.
|
|
from()->set_next_compaction_space(to());
|
|
gch->set_incremental_collection_failed();
|
|
// Inform the next generation that a promotion failure occurred.
|
|
_next_gen->promotion_failure_occurred();
|
|
|
|
// Reset the PromotionFailureALot counters.
|
|
NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
|
|
}
|
|
// set new iteration safe limit for the survivor spaces
|
|
from()->set_concurrent_iteration_safe_limit(from()->top());
|
|
to()->set_concurrent_iteration_safe_limit(to()->top());
|
|
|
|
adjust_desired_tenuring_threshold();
|
|
if (ResizePLAB) {
|
|
plab_stats()->adjust_desired_plab_sz();
|
|
}
|
|
|
|
if (PrintGC && !PrintGCDetails) {
|
|
gch->print_heap_change(gch_prev_used);
|
|
}
|
|
|
|
if (PrintGCDetails && ParallelGCVerbose) {
|
|
TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
|
|
TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
|
|
}
|
|
|
|
if (UseAdaptiveSizePolicy) {
|
|
size_policy->minor_collection_end(gch->gc_cause());
|
|
size_policy->avg_survived()->sample(from()->used());
|
|
}
|
|
|
|
// We need to use a monotonically non-deccreasing time in ms
|
|
// or we will see time-warp warnings and os::javaTimeMillis()
|
|
// does not guarantee monotonicity.
|
|
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
|
|
update_time_of_last_gc(now);
|
|
|
|
SpecializationStats::print();
|
|
|
|
rp->set_enqueuing_is_done(true);
|
|
if (rp->processing_is_mt()) {
|
|
ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
|
|
rp->enqueue_discovered_references(&task_executor);
|
|
} else {
|
|
rp->enqueue_discovered_references(NULL);
|
|
}
|
|
rp->verify_no_references_recorded();
|
|
}
|
|
|
|
static int sum;
|
|
void ParNewGeneration::waste_some_time() {
|
|
for (int i = 0; i < 100; i++) {
|
|
sum += i;
|
|
}
|
|
}
|
|
|
|
static const oop ClaimedForwardPtr = oop(0x4);
|
|
|
|
// Because of concurrency, there are times where an object for which
|
|
// "is_forwarded()" is true contains an "interim" forwarding pointer
|
|
// value. Such a value will soon be overwritten with a real value.
|
|
// This method requires "obj" to have a forwarding pointer, and waits, if
|
|
// necessary for a real one to be inserted, and returns it.
|
|
|
|
oop ParNewGeneration::real_forwardee(oop obj) {
|
|
oop forward_ptr = obj->forwardee();
|
|
if (forward_ptr != ClaimedForwardPtr) {
|
|
return forward_ptr;
|
|
} else {
|
|
return real_forwardee_slow(obj);
|
|
}
|
|
}
|
|
|
|
oop ParNewGeneration::real_forwardee_slow(oop obj) {
|
|
// Spin-read if it is claimed but not yet written by another thread.
|
|
oop forward_ptr = obj->forwardee();
|
|
while (forward_ptr == ClaimedForwardPtr) {
|
|
waste_some_time();
|
|
assert(obj->is_forwarded(), "precondition");
|
|
forward_ptr = obj->forwardee();
|
|
}
|
|
return forward_ptr;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
bool ParNewGeneration::is_legal_forward_ptr(oop p) {
|
|
return
|
|
(_avoid_promotion_undo && p == ClaimedForwardPtr)
|
|
|| Universe::heap()->is_in_reserved(p);
|
|
}
|
|
#endif
|
|
|
|
void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
|
|
if (m->must_be_preserved_for_promotion_failure(obj)) {
|
|
// We should really have separate per-worker stacks, rather
|
|
// than use locking of a common pair of stacks.
|
|
MutexLocker ml(ParGCRareEvent_lock);
|
|
preserve_mark(obj, m);
|
|
}
|
|
}
|
|
|
|
// Multiple GC threads may try to promote an object. If the object
|
|
// is successfully promoted, a forwarding pointer will be installed in
|
|
// the object in the young generation. This method claims the right
|
|
// to install the forwarding pointer before it copies the object,
|
|
// thus avoiding the need to undo the copy as in
|
|
// copy_to_survivor_space_avoiding_with_undo.
|
|
|
|
oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
|
|
ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
|
|
// In the sequential version, this assert also says that the object is
|
|
// not forwarded. That might not be the case here. It is the case that
|
|
// the caller observed it to be not forwarded at some time in the past.
|
|
assert(is_in_reserved(old), "shouldn't be scavenging this oop");
|
|
|
|
// The sequential code read "old->age()" below. That doesn't work here,
|
|
// since the age is in the mark word, and that might be overwritten with
|
|
// a forwarding pointer by a parallel thread. So we must save the mark
|
|
// word in a local and then analyze it.
|
|
oopDesc dummyOld;
|
|
dummyOld.set_mark(m);
|
|
assert(!dummyOld.is_forwarded(),
|
|
"should not be called with forwarding pointer mark word.");
|
|
|
|
oop new_obj = NULL;
|
|
oop forward_ptr;
|
|
|
|
// Try allocating obj in to-space (unless too old)
|
|
if (dummyOld.age() < tenuring_threshold()) {
|
|
new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
|
|
if (new_obj == NULL) {
|
|
set_survivor_overflow(true);
|
|
}
|
|
}
|
|
|
|
if (new_obj == NULL) {
|
|
// Either to-space is full or we decided to promote
|
|
// try allocating obj tenured
|
|
|
|
// Attempt to install a null forwarding pointer (atomically),
|
|
// to claim the right to install the real forwarding pointer.
|
|
forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
|
|
if (forward_ptr != NULL) {
|
|
// someone else beat us to it.
|
|
return real_forwardee(old);
|
|
}
|
|
|
|
new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
|
|
old, m, sz);
|
|
|
|
if (new_obj == NULL) {
|
|
// promotion failed, forward to self
|
|
_promotion_failed = true;
|
|
new_obj = old;
|
|
|
|
preserve_mark_if_necessary(old, m);
|
|
// Log the size of the maiden promotion failure
|
|
par_scan_state->log_promotion_failure(sz);
|
|
}
|
|
|
|
old->forward_to(new_obj);
|
|
forward_ptr = NULL;
|
|
} else {
|
|
// Is in to-space; do copying ourselves.
|
|
Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
|
|
forward_ptr = old->forward_to_atomic(new_obj);
|
|
// Restore the mark word copied above.
|
|
new_obj->set_mark(m);
|
|
// Increment age if obj still in new generation
|
|
new_obj->incr_age();
|
|
par_scan_state->age_table()->add(new_obj, sz);
|
|
}
|
|
assert(new_obj != NULL, "just checking");
|
|
|
|
if (forward_ptr == NULL) {
|
|
oop obj_to_push = new_obj;
|
|
if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
|
|
// Length field used as index of next element to be scanned.
|
|
// Real length can be obtained from real_forwardee()
|
|
arrayOop(old)->set_length(0);
|
|
obj_to_push = old;
|
|
assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
|
|
"push forwarded object");
|
|
}
|
|
// Push it on one of the queues of to-be-scanned objects.
|
|
bool simulate_overflow = false;
|
|
NOT_PRODUCT(
|
|
if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
|
|
// simulate a stack overflow
|
|
simulate_overflow = true;
|
|
}
|
|
)
|
|
if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
|
|
// Add stats for overflow pushes.
|
|
if (Verbose && PrintGCDetails) {
|
|
gclog_or_tty->print("queue overflow!\n");
|
|
}
|
|
push_on_overflow_list(old, par_scan_state);
|
|
TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
|
|
}
|
|
|
|
return new_obj;
|
|
}
|
|
|
|
// Oops. Someone beat us to it. Undo the allocation. Where did we
|
|
// allocate it?
|
|
if (is_in_reserved(new_obj)) {
|
|
// Must be in to_space.
|
|
assert(to()->is_in_reserved(new_obj), "Checking");
|
|
if (forward_ptr == ClaimedForwardPtr) {
|
|
// Wait to get the real forwarding pointer value.
|
|
forward_ptr = real_forwardee(old);
|
|
}
|
|
par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
|
|
}
|
|
|
|
return forward_ptr;
|
|
}
|
|
|
|
|
|
// Multiple GC threads may try to promote the same object. If two
|
|
// or more GC threads copy the object, only one wins the race to install
|
|
// the forwarding pointer. The other threads have to undo their copy.
|
|
|
|
oop ParNewGeneration::copy_to_survivor_space_with_undo(
|
|
ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
|
|
|
|
// In the sequential version, this assert also says that the object is
|
|
// not forwarded. That might not be the case here. It is the case that
|
|
// the caller observed it to be not forwarded at some time in the past.
|
|
assert(is_in_reserved(old), "shouldn't be scavenging this oop");
|
|
|
|
// The sequential code read "old->age()" below. That doesn't work here,
|
|
// since the age is in the mark word, and that might be overwritten with
|
|
// a forwarding pointer by a parallel thread. So we must save the mark
|
|
// word here, install it in a local oopDesc, and then analyze it.
|
|
oopDesc dummyOld;
|
|
dummyOld.set_mark(m);
|
|
assert(!dummyOld.is_forwarded(),
|
|
"should not be called with forwarding pointer mark word.");
|
|
|
|
bool failed_to_promote = false;
|
|
oop new_obj = NULL;
|
|
oop forward_ptr;
|
|
|
|
// Try allocating obj in to-space (unless too old)
|
|
if (dummyOld.age() < tenuring_threshold()) {
|
|
new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
|
|
if (new_obj == NULL) {
|
|
set_survivor_overflow(true);
|
|
}
|
|
}
|
|
|
|
if (new_obj == NULL) {
|
|
// Either to-space is full or we decided to promote
|
|
// try allocating obj tenured
|
|
new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
|
|
old, m, sz);
|
|
|
|
if (new_obj == NULL) {
|
|
// promotion failed, forward to self
|
|
forward_ptr = old->forward_to_atomic(old);
|
|
new_obj = old;
|
|
|
|
if (forward_ptr != NULL) {
|
|
return forward_ptr; // someone else succeeded
|
|
}
|
|
|
|
_promotion_failed = true;
|
|
failed_to_promote = true;
|
|
|
|
preserve_mark_if_necessary(old, m);
|
|
// Log the size of the maiden promotion failure
|
|
par_scan_state->log_promotion_failure(sz);
|
|
}
|
|
} else {
|
|
// Is in to-space; do copying ourselves.
|
|
Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
|
|
// Restore the mark word copied above.
|
|
new_obj->set_mark(m);
|
|
// Increment age if new_obj still in new generation
|
|
new_obj->incr_age();
|
|
par_scan_state->age_table()->add(new_obj, sz);
|
|
}
|
|
assert(new_obj != NULL, "just checking");
|
|
|
|
// Now attempt to install the forwarding pointer (atomically).
|
|
// We have to copy the mark word before overwriting with forwarding
|
|
// ptr, so we can restore it below in the copy.
|
|
if (!failed_to_promote) {
|
|
forward_ptr = old->forward_to_atomic(new_obj);
|
|
}
|
|
|
|
if (forward_ptr == NULL) {
|
|
oop obj_to_push = new_obj;
|
|
if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
|
|
// Length field used as index of next element to be scanned.
|
|
// Real length can be obtained from real_forwardee()
|
|
arrayOop(old)->set_length(0);
|
|
obj_to_push = old;
|
|
assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
|
|
"push forwarded object");
|
|
}
|
|
// Push it on one of the queues of to-be-scanned objects.
|
|
bool simulate_overflow = false;
|
|
NOT_PRODUCT(
|
|
if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
|
|
// simulate a stack overflow
|
|
simulate_overflow = true;
|
|
}
|
|
)
|
|
if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
|
|
// Add stats for overflow pushes.
|
|
push_on_overflow_list(old, par_scan_state);
|
|
TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
|
|
}
|
|
|
|
return new_obj;
|
|
}
|
|
|
|
// Oops. Someone beat us to it. Undo the allocation. Where did we
|
|
// allocate it?
|
|
if (is_in_reserved(new_obj)) {
|
|
// Must be in to_space.
|
|
assert(to()->is_in_reserved(new_obj), "Checking");
|
|
par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
|
|
} else {
|
|
assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
|
|
_next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
|
|
(HeapWord*)new_obj, sz);
|
|
}
|
|
|
|
return forward_ptr;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// It's OK to call this multi-threaded; the worst thing
|
|
// that can happen is that we'll get a bunch of closely
|
|
// spaced simulated oveflows, but that's OK, in fact
|
|
// probably good as it would exercise the overflow code
|
|
// under contention.
|
|
bool ParNewGeneration::should_simulate_overflow() {
|
|
if (_overflow_counter-- <= 0) { // just being defensive
|
|
_overflow_counter = ParGCWorkQueueOverflowInterval;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// In case we are using compressed oops, we need to be careful.
|
|
// If the object being pushed is an object array, then its length
|
|
// field keeps track of the "grey boundary" at which the next
|
|
// incremental scan will be done (see ParGCArrayScanChunk).
|
|
// When using compressed oops, this length field is kept in the
|
|
// lower 32 bits of the erstwhile klass word and cannot be used
|
|
// for the overflow chaining pointer (OCP below). As such the OCP
|
|
// would itself need to be compressed into the top 32-bits in this
|
|
// case. Unfortunately, see below, in the event that we have a
|
|
// promotion failure, the node to be pushed on the list can be
|
|
// outside of the Java heap, so the heap-based pointer compression
|
|
// would not work (we would have potential aliasing between C-heap
|
|
// and Java-heap pointers). For this reason, when using compressed
|
|
// oops, we simply use a worker-thread-local, non-shared overflow
|
|
// list in the form of a growable array, with a slightly different
|
|
// overflow stack draining strategy. If/when we start using fat
|
|
// stacks here, we can go back to using (fat) pointer chains
|
|
// (although some performance comparisons would be useful since
|
|
// single global lists have their own performance disadvantages
|
|
// as we were made painfully aware not long ago, see 6786503).
|
|
#define BUSY (oop(0x1aff1aff))
|
|
void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
|
|
assert(is_in_reserved(from_space_obj), "Should be from this generation");
|
|
if (ParGCUseLocalOverflow) {
|
|
// In the case of compressed oops, we use a private, not-shared
|
|
// overflow stack.
|
|
par_scan_state->push_on_overflow_stack(from_space_obj);
|
|
} else {
|
|
assert(!UseCompressedOops, "Error");
|
|
// if the object has been forwarded to itself, then we cannot
|
|
// use the klass pointer for the linked list. Instead we have
|
|
// to allocate an oopDesc in the C-Heap and use that for the linked list.
|
|
// XXX This is horribly inefficient when a promotion failure occurs
|
|
// and should be fixed. XXX FIX ME !!!
|
|
#ifndef PRODUCT
|
|
Atomic::inc_ptr(&_num_par_pushes);
|
|
assert(_num_par_pushes > 0, "Tautology");
|
|
#endif
|
|
if (from_space_obj->forwardee() == from_space_obj) {
|
|
oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
|
|
listhead->forward_to(from_space_obj);
|
|
from_space_obj = listhead;
|
|
}
|
|
oop observed_overflow_list = _overflow_list;
|
|
oop cur_overflow_list;
|
|
do {
|
|
cur_overflow_list = observed_overflow_list;
|
|
if (cur_overflow_list != BUSY) {
|
|
from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
|
|
} else {
|
|
from_space_obj->set_klass_to_list_ptr(NULL);
|
|
}
|
|
observed_overflow_list =
|
|
(oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
|
|
} while (cur_overflow_list != observed_overflow_list);
|
|
}
|
|
}
|
|
|
|
bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
|
|
bool res;
|
|
|
|
if (ParGCUseLocalOverflow) {
|
|
res = par_scan_state->take_from_overflow_stack();
|
|
} else {
|
|
assert(!UseCompressedOops, "Error");
|
|
res = take_from_overflow_list_work(par_scan_state);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
// *NOTE*: The overflow list manipulation code here and
|
|
// in CMSCollector:: are very similar in shape,
|
|
// except that in the CMS case we thread the objects
|
|
// directly into the list via their mark word, and do
|
|
// not need to deal with special cases below related
|
|
// to chunking of object arrays and promotion failure
|
|
// handling.
|
|
// CR 6797058 has been filed to attempt consolidation of
|
|
// the common code.
|
|
// Because of the common code, if you make any changes in
|
|
// the code below, please check the CMS version to see if
|
|
// similar changes might be needed.
|
|
// See CMSCollector::par_take_from_overflow_list() for
|
|
// more extensive documentation comments.
|
|
bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
|
|
ObjToScanQueue* work_q = par_scan_state->work_queue();
|
|
// How many to take?
|
|
size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
|
|
(size_t)ParGCDesiredObjsFromOverflowList);
|
|
|
|
assert(!UseCompressedOops, "Error");
|
|
assert(par_scan_state->overflow_stack() == NULL, "Error");
|
|
if (_overflow_list == NULL) return false;
|
|
|
|
// Otherwise, there was something there; try claiming the list.
|
|
oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
|
|
// Trim off a prefix of at most objsFromOverflow items
|
|
Thread* tid = Thread::current();
|
|
size_t spin_count = (size_t)ParallelGCThreads;
|
|
size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
|
|
for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
|
|
// someone grabbed it before we did ...
|
|
// ... we spin for a short while...
|
|
os::sleep(tid, sleep_time_millis, false);
|
|
if (_overflow_list == NULL) {
|
|
// nothing left to take
|
|
return false;
|
|
} else if (_overflow_list != BUSY) {
|
|
// try and grab the prefix
|
|
prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
|
|
}
|
|
}
|
|
if (prefix == NULL || prefix == BUSY) {
|
|
// Nothing to take or waited long enough
|
|
if (prefix == NULL) {
|
|
// Write back the NULL in case we overwrote it with BUSY above
|
|
// and it is still the same value.
|
|
(void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
|
|
}
|
|
return false;
|
|
}
|
|
assert(prefix != NULL && prefix != BUSY, "Error");
|
|
size_t i = 1;
|
|
oop cur = prefix;
|
|
while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
|
|
i++; cur = oop(cur->klass());
|
|
}
|
|
|
|
// Reattach remaining (suffix) to overflow list
|
|
if (cur->klass_or_null() == NULL) {
|
|
// Write back the NULL in lieu of the BUSY we wrote
|
|
// above and it is still the same value.
|
|
if (_overflow_list == BUSY) {
|
|
(void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
|
|
}
|
|
} else {
|
|
assert(cur->klass_or_null() != BUSY, "Error");
|
|
oop suffix = oop(cur->klass()); // suffix will be put back on global list
|
|
cur->set_klass_to_list_ptr(NULL); // break off suffix
|
|
// It's possible that the list is still in the empty(busy) state
|
|
// we left it in a short while ago; in that case we may be
|
|
// able to place back the suffix.
|
|
oop observed_overflow_list = _overflow_list;
|
|
oop cur_overflow_list = observed_overflow_list;
|
|
bool attached = false;
|
|
while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
|
|
observed_overflow_list =
|
|
(oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
|
|
if (cur_overflow_list == observed_overflow_list) {
|
|
attached = true;
|
|
break;
|
|
} else cur_overflow_list = observed_overflow_list;
|
|
}
|
|
if (!attached) {
|
|
// Too bad, someone else got in in between; we'll need to do a splice.
|
|
// Find the last item of suffix list
|
|
oop last = suffix;
|
|
while (last->klass_or_null() != NULL) {
|
|
last = oop(last->klass());
|
|
}
|
|
// Atomically prepend suffix to current overflow list
|
|
observed_overflow_list = _overflow_list;
|
|
do {
|
|
cur_overflow_list = observed_overflow_list;
|
|
if (cur_overflow_list != BUSY) {
|
|
// Do the splice ...
|
|
last->set_klass_to_list_ptr(cur_overflow_list);
|
|
} else { // cur_overflow_list == BUSY
|
|
last->set_klass_to_list_ptr(NULL);
|
|
}
|
|
observed_overflow_list =
|
|
(oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
|
|
} while (cur_overflow_list != observed_overflow_list);
|
|
}
|
|
}
|
|
|
|
// Push objects on prefix list onto this thread's work queue
|
|
assert(prefix != NULL && prefix != BUSY, "program logic");
|
|
cur = prefix;
|
|
ssize_t n = 0;
|
|
while (cur != NULL) {
|
|
oop obj_to_push = cur->forwardee();
|
|
oop next = oop(cur->klass_or_null());
|
|
cur->set_klass(obj_to_push->klass());
|
|
// This may be an array object that is self-forwarded. In that case, the list pointer
|
|
// space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
|
|
if (!is_in_reserved(cur)) {
|
|
// This can become a scaling bottleneck when there is work queue overflow coincident
|
|
// with promotion failure.
|
|
oopDesc* f = cur;
|
|
FREE_C_HEAP_ARRAY(oopDesc, f, mtGC);
|
|
} else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
|
|
assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
|
|
obj_to_push = cur;
|
|
}
|
|
bool ok = work_q->push(obj_to_push);
|
|
assert(ok, "Should have succeeded");
|
|
cur = next;
|
|
n++;
|
|
}
|
|
TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
|
|
#ifndef PRODUCT
|
|
assert(_num_par_pushes >= n, "Too many pops?");
|
|
Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
|
|
#endif
|
|
return true;
|
|
}
|
|
#undef BUSY
|
|
|
|
void ParNewGeneration::ref_processor_init()
|
|
{
|
|
if (_ref_processor == NULL) {
|
|
// Allocate and initialize a reference processor
|
|
_ref_processor =
|
|
new ReferenceProcessor(_reserved, // span
|
|
ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
|
|
(int) ParallelGCThreads, // mt processing degree
|
|
refs_discovery_is_mt(), // mt discovery
|
|
(int) ParallelGCThreads, // mt discovery degree
|
|
refs_discovery_is_atomic(), // atomic_discovery
|
|
NULL, // is_alive_non_header
|
|
false); // write barrier for next field updates
|
|
}
|
|
}
|
|
|
|
const char* ParNewGeneration::name() const {
|
|
return "par new generation";
|
|
}
|
|
|
|
bool ParNewGeneration::in_use() {
|
|
return UseParNewGC && ParallelGCThreads > 0;
|
|
}
|