mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-26 22:34:27 +02:00

Instead of the region size being hard-coded, allow the user to set it. Reviewed-by: jmasa, johnc, apetrusenko
938 lines
32 KiB
C++
938 lines
32 KiB
C++
/*
|
|
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SERIALGC
|
|
|
|
// A HeapRegion is the smallest piece of a G1CollectedHeap that
|
|
// can be collected independently.
|
|
|
|
// NOTE: Although a HeapRegion is a Space, its
|
|
// Space::initDirtyCardClosure method must not be called.
|
|
// The problem is that the existence of this method breaks
|
|
// the independence of barrier sets from remembered sets.
|
|
// The solution is to remove this method from the definition
|
|
// of a Space.
|
|
|
|
class CompactibleSpace;
|
|
class ContiguousSpace;
|
|
class HeapRegionRemSet;
|
|
class HeapRegionRemSetIterator;
|
|
class HeapRegion;
|
|
|
|
// A dirty card to oop closure for heap regions. It
|
|
// knows how to get the G1 heap and how to use the bitmap
|
|
// in the concurrent marker used by G1 to filter remembered
|
|
// sets.
|
|
|
|
class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
|
|
public:
|
|
// Specification of possible DirtyCardToOopClosure filtering.
|
|
enum FilterKind {
|
|
NoFilterKind,
|
|
IntoCSFilterKind,
|
|
OutOfRegionFilterKind
|
|
};
|
|
|
|
protected:
|
|
HeapRegion* _hr;
|
|
FilterKind _fk;
|
|
G1CollectedHeap* _g1;
|
|
|
|
void walk_mem_region_with_cl(MemRegion mr,
|
|
HeapWord* bottom, HeapWord* top,
|
|
OopClosure* cl);
|
|
|
|
// We don't specialize this for FilteringClosure; filtering is handled by
|
|
// the "FilterKind" mechanism. But we provide this to avoid a compiler
|
|
// warning.
|
|
void walk_mem_region_with_cl(MemRegion mr,
|
|
HeapWord* bottom, HeapWord* top,
|
|
FilteringClosure* cl) {
|
|
HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
|
|
(OopClosure*)cl);
|
|
}
|
|
|
|
// Get the actual top of the area on which the closure will
|
|
// operate, given where the top is assumed to be (the end of the
|
|
// memory region passed to do_MemRegion) and where the object
|
|
// at the top is assumed to start. For example, an object may
|
|
// start at the top but actually extend past the assumed top,
|
|
// in which case the top becomes the end of the object.
|
|
HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
|
|
return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
|
|
}
|
|
|
|
// Walk the given memory region from bottom to (actual) top
|
|
// looking for objects and applying the oop closure (_cl) to
|
|
// them. The base implementation of this treats the area as
|
|
// blocks, where a block may or may not be an object. Sub-
|
|
// classes should override this to provide more accurate
|
|
// or possibly more efficient walking.
|
|
void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
|
|
Filtering_DCTOC::walk_mem_region(mr, bottom, top);
|
|
}
|
|
|
|
public:
|
|
HeapRegionDCTOC(G1CollectedHeap* g1,
|
|
HeapRegion* hr, OopClosure* cl,
|
|
CardTableModRefBS::PrecisionStyle precision,
|
|
FilterKind fk);
|
|
};
|
|
|
|
|
|
// The complicating factor is that BlockOffsetTable diverged
|
|
// significantly, and we need functionality that is only in the G1 version.
|
|
// So I copied that code, which led to an alternate G1 version of
|
|
// OffsetTableContigSpace. If the two versions of BlockOffsetTable could
|
|
// be reconciled, then G1OffsetTableContigSpace could go away.
|
|
|
|
// The idea behind time stamps is the following. Doing a save_marks on
|
|
// all regions at every GC pause is time consuming (if I remember
|
|
// well, 10ms or so). So, we would like to do that only for regions
|
|
// that are GC alloc regions. To achieve this, we use time
|
|
// stamps. For every evacuation pause, G1CollectedHeap generates a
|
|
// unique time stamp (essentially a counter that gets
|
|
// incremented). Every time we want to call save_marks on a region,
|
|
// we set the saved_mark_word to top and also copy the current GC
|
|
// time stamp to the time stamp field of the space. Reading the
|
|
// saved_mark_word involves checking the time stamp of the
|
|
// region. If it is the same as the current GC time stamp, then we
|
|
// can safely read the saved_mark_word field, as it is valid. If the
|
|
// time stamp of the region is not the same as the current GC time
|
|
// stamp, then we instead read top, as the saved_mark_word field is
|
|
// invalid. Time stamps (on the regions and also on the
|
|
// G1CollectedHeap) are reset at every cleanup (we iterate over
|
|
// the regions anyway) and at the end of a Full GC. The current scheme
|
|
// that uses sequential unsigned ints will fail only if we have 4b
|
|
// evacuation pauses between two cleanups, which is _highly_ unlikely.
|
|
|
|
class G1OffsetTableContigSpace: public ContiguousSpace {
|
|
friend class VMStructs;
|
|
protected:
|
|
G1BlockOffsetArrayContigSpace _offsets;
|
|
Mutex _par_alloc_lock;
|
|
volatile unsigned _gc_time_stamp;
|
|
|
|
public:
|
|
// Constructor. If "is_zeroed" is true, the MemRegion "mr" may be
|
|
// assumed to contain zeros.
|
|
G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
|
|
MemRegion mr, bool is_zeroed = false);
|
|
|
|
void set_bottom(HeapWord* value);
|
|
void set_end(HeapWord* value);
|
|
|
|
virtual HeapWord* saved_mark_word() const;
|
|
virtual void set_saved_mark();
|
|
void reset_gc_time_stamp() { _gc_time_stamp = 0; }
|
|
|
|
virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
|
|
virtual void clear(bool mangle_space);
|
|
|
|
HeapWord* block_start(const void* p);
|
|
HeapWord* block_start_const(const void* p) const;
|
|
|
|
// Add offset table update.
|
|
virtual HeapWord* allocate(size_t word_size);
|
|
HeapWord* par_allocate(size_t word_size);
|
|
|
|
// MarkSweep support phase3
|
|
virtual HeapWord* initialize_threshold();
|
|
virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
|
|
|
|
virtual void print() const;
|
|
};
|
|
|
|
class HeapRegion: public G1OffsetTableContigSpace {
|
|
friend class VMStructs;
|
|
private:
|
|
|
|
enum HumongousType {
|
|
NotHumongous = 0,
|
|
StartsHumongous,
|
|
ContinuesHumongous
|
|
};
|
|
|
|
// The next filter kind that should be used for a "new_dcto_cl" call with
|
|
// the "traditional" signature.
|
|
HeapRegionDCTOC::FilterKind _next_fk;
|
|
|
|
// Requires that the region "mr" be dense with objects, and begin and end
|
|
// with an object.
|
|
void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
|
|
|
|
// The remembered set for this region.
|
|
// (Might want to make this "inline" later, to avoid some alloc failure
|
|
// issues.)
|
|
HeapRegionRemSet* _rem_set;
|
|
|
|
G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
|
|
|
|
protected:
|
|
// If this region is a member of a HeapRegionSeq, the index in that
|
|
// sequence, otherwise -1.
|
|
int _hrs_index;
|
|
|
|
HumongousType _humongous_type;
|
|
// For a humongous region, region in which it starts.
|
|
HeapRegion* _humongous_start_region;
|
|
// For the start region of a humongous sequence, it's original end().
|
|
HeapWord* _orig_end;
|
|
|
|
// True iff the region is in current collection_set.
|
|
bool _in_collection_set;
|
|
|
|
// True iff the region is on the unclean list, waiting to be zero filled.
|
|
bool _is_on_unclean_list;
|
|
|
|
// True iff the region is on the free list, ready for allocation.
|
|
bool _is_on_free_list;
|
|
|
|
// Is this or has it been an allocation region in the current collection
|
|
// pause.
|
|
bool _is_gc_alloc_region;
|
|
|
|
// True iff an attempt to evacuate an object in the region failed.
|
|
bool _evacuation_failed;
|
|
|
|
// A heap region may be a member one of a number of special subsets, each
|
|
// represented as linked lists through the field below. Currently, these
|
|
// sets include:
|
|
// The collection set.
|
|
// The set of allocation regions used in a collection pause.
|
|
// Spaces that may contain gray objects.
|
|
HeapRegion* _next_in_special_set;
|
|
|
|
// next region in the young "generation" region set
|
|
HeapRegion* _next_young_region;
|
|
|
|
// Next region whose cards need cleaning
|
|
HeapRegion* _next_dirty_cards_region;
|
|
|
|
// For parallel heapRegion traversal.
|
|
jint _claimed;
|
|
|
|
// We use concurrent marking to determine the amount of live data
|
|
// in each heap region.
|
|
size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
|
|
size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
|
|
|
|
// See "sort_index" method. -1 means is not in the array.
|
|
int _sort_index;
|
|
|
|
// <PREDICTION>
|
|
double _gc_efficiency;
|
|
// </PREDICTION>
|
|
|
|
enum YoungType {
|
|
NotYoung, // a region is not young
|
|
ScanOnly, // a region is young and scan-only
|
|
Young, // a region is young
|
|
Survivor // a region is young and it contains
|
|
// survivor
|
|
};
|
|
|
|
YoungType _young_type;
|
|
int _young_index_in_cset;
|
|
SurvRateGroup* _surv_rate_group;
|
|
int _age_index;
|
|
|
|
// The start of the unmarked area. The unmarked area extends from this
|
|
// word until the top and/or end of the region, and is the part
|
|
// of the region for which no marking was done, i.e. objects may
|
|
// have been allocated in this part since the last mark phase.
|
|
// "prev" is the top at the start of the last completed marking.
|
|
// "next" is the top at the start of the in-progress marking (if any.)
|
|
HeapWord* _prev_top_at_mark_start;
|
|
HeapWord* _next_top_at_mark_start;
|
|
// If a collection pause is in progress, this is the top at the start
|
|
// of that pause.
|
|
|
|
// We've counted the marked bytes of objects below here.
|
|
HeapWord* _top_at_conc_mark_count;
|
|
|
|
void init_top_at_mark_start() {
|
|
assert(_prev_marked_bytes == 0 &&
|
|
_next_marked_bytes == 0,
|
|
"Must be called after zero_marked_bytes.");
|
|
HeapWord* bot = bottom();
|
|
_prev_top_at_mark_start = bot;
|
|
_next_top_at_mark_start = bot;
|
|
_top_at_conc_mark_count = bot;
|
|
}
|
|
|
|
jint _zfs; // A member of ZeroFillState. Protected by ZF_lock.
|
|
Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
|
|
// made it so.
|
|
|
|
void set_young_type(YoungType new_type) {
|
|
//assert(_young_type != new_type, "setting the same type" );
|
|
// TODO: add more assertions here
|
|
_young_type = new_type;
|
|
}
|
|
|
|
public:
|
|
// If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
|
|
HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
|
|
MemRegion mr, bool is_zeroed);
|
|
|
|
static int LogOfHRGrainBytes;
|
|
static int LogOfHRGrainWords;
|
|
// The normal type of these should be size_t. However, they used to
|
|
// be members of an enum before and they are assumed by the
|
|
// compilers to be ints. To avoid going and fixing all their uses,
|
|
// I'm declaring them as ints. I'm not anticipating heap region
|
|
// sizes to reach anywhere near 2g, so using an int here is safe.
|
|
static int GrainBytes;
|
|
static int GrainWords;
|
|
static int CardsPerRegion;
|
|
|
|
// It sets up the heap region size (GrainBytes / GrainWords), as
|
|
// well as other related fields that are based on the heap region
|
|
// size (LogOfHRGrainBytes / LogOfHRGrainWords /
|
|
// CardsPerRegion). All those fields are considered constant
|
|
// throughout the JVM's execution, therefore they should only be set
|
|
// up once during initialization time.
|
|
static void setup_heap_region_size(uintx min_heap_size);
|
|
|
|
enum ClaimValues {
|
|
InitialClaimValue = 0,
|
|
FinalCountClaimValue = 1,
|
|
NoteEndClaimValue = 2,
|
|
ScrubRemSetClaimValue = 3,
|
|
ParVerifyClaimValue = 4,
|
|
RebuildRSClaimValue = 5
|
|
};
|
|
|
|
// Concurrent refinement requires contiguous heap regions (in which TLABs
|
|
// might be allocated) to be zero-filled. Each region therefore has a
|
|
// zero-fill-state.
|
|
enum ZeroFillState {
|
|
NotZeroFilled,
|
|
ZeroFilling,
|
|
ZeroFilled,
|
|
Allocated
|
|
};
|
|
|
|
// If this region is a member of a HeapRegionSeq, the index in that
|
|
// sequence, otherwise -1.
|
|
int hrs_index() const { return _hrs_index; }
|
|
void set_hrs_index(int index) { _hrs_index = index; }
|
|
|
|
// The number of bytes marked live in the region in the last marking phase.
|
|
size_t marked_bytes() { return _prev_marked_bytes; }
|
|
// The number of bytes counted in the next marking.
|
|
size_t next_marked_bytes() { return _next_marked_bytes; }
|
|
// The number of bytes live wrt the next marking.
|
|
size_t next_live_bytes() {
|
|
return (top() - next_top_at_mark_start())
|
|
* HeapWordSize
|
|
+ next_marked_bytes();
|
|
}
|
|
|
|
// A lower bound on the amount of garbage bytes in the region.
|
|
size_t garbage_bytes() {
|
|
size_t used_at_mark_start_bytes =
|
|
(prev_top_at_mark_start() - bottom()) * HeapWordSize;
|
|
assert(used_at_mark_start_bytes >= marked_bytes(),
|
|
"Can't mark more than we have.");
|
|
return used_at_mark_start_bytes - marked_bytes();
|
|
}
|
|
|
|
// An upper bound on the number of live bytes in the region.
|
|
size_t max_live_bytes() { return used() - garbage_bytes(); }
|
|
|
|
void add_to_marked_bytes(size_t incr_bytes) {
|
|
_next_marked_bytes = _next_marked_bytes + incr_bytes;
|
|
guarantee( _next_marked_bytes <= used(), "invariant" );
|
|
}
|
|
|
|
void zero_marked_bytes() {
|
|
_prev_marked_bytes = _next_marked_bytes = 0;
|
|
}
|
|
|
|
bool isHumongous() const { return _humongous_type != NotHumongous; }
|
|
bool startsHumongous() const { return _humongous_type == StartsHumongous; }
|
|
bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
|
|
// For a humongous region, region in which it starts.
|
|
HeapRegion* humongous_start_region() const {
|
|
return _humongous_start_region;
|
|
}
|
|
|
|
// Causes the current region to represent a humongous object spanning "n"
|
|
// regions.
|
|
virtual void set_startsHumongous();
|
|
|
|
// The regions that continue a humongous sequence should be added using
|
|
// this method, in increasing address order.
|
|
void set_continuesHumongous(HeapRegion* start);
|
|
|
|
void add_continuingHumongousRegion(HeapRegion* cont);
|
|
|
|
// If the region has a remembered set, return a pointer to it.
|
|
HeapRegionRemSet* rem_set() const {
|
|
return _rem_set;
|
|
}
|
|
|
|
// True iff the region is in current collection_set.
|
|
bool in_collection_set() const {
|
|
return _in_collection_set;
|
|
}
|
|
void set_in_collection_set(bool b) {
|
|
_in_collection_set = b;
|
|
}
|
|
HeapRegion* next_in_collection_set() {
|
|
assert(in_collection_set(), "should only invoke on member of CS.");
|
|
assert(_next_in_special_set == NULL ||
|
|
_next_in_special_set->in_collection_set(),
|
|
"Malformed CS.");
|
|
return _next_in_special_set;
|
|
}
|
|
void set_next_in_collection_set(HeapRegion* r) {
|
|
assert(in_collection_set(), "should only invoke on member of CS.");
|
|
assert(r == NULL || r->in_collection_set(), "Malformed CS.");
|
|
_next_in_special_set = r;
|
|
}
|
|
|
|
// True iff it is or has been an allocation region in the current
|
|
// collection pause.
|
|
bool is_gc_alloc_region() const {
|
|
return _is_gc_alloc_region;
|
|
}
|
|
void set_is_gc_alloc_region(bool b) {
|
|
_is_gc_alloc_region = b;
|
|
}
|
|
HeapRegion* next_gc_alloc_region() {
|
|
assert(is_gc_alloc_region(), "should only invoke on member of CS.");
|
|
assert(_next_in_special_set == NULL ||
|
|
_next_in_special_set->is_gc_alloc_region(),
|
|
"Malformed CS.");
|
|
return _next_in_special_set;
|
|
}
|
|
void set_next_gc_alloc_region(HeapRegion* r) {
|
|
assert(is_gc_alloc_region(), "should only invoke on member of CS.");
|
|
assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
|
|
_next_in_special_set = r;
|
|
}
|
|
|
|
bool is_on_free_list() {
|
|
return _is_on_free_list;
|
|
}
|
|
|
|
void set_on_free_list(bool b) {
|
|
_is_on_free_list = b;
|
|
}
|
|
|
|
HeapRegion* next_from_free_list() {
|
|
assert(is_on_free_list(),
|
|
"Should only invoke on free space.");
|
|
assert(_next_in_special_set == NULL ||
|
|
_next_in_special_set->is_on_free_list(),
|
|
"Malformed Free List.");
|
|
return _next_in_special_set;
|
|
}
|
|
|
|
void set_next_on_free_list(HeapRegion* r) {
|
|
assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
|
|
_next_in_special_set = r;
|
|
}
|
|
|
|
bool is_on_unclean_list() {
|
|
return _is_on_unclean_list;
|
|
}
|
|
|
|
void set_on_unclean_list(bool b);
|
|
|
|
HeapRegion* next_from_unclean_list() {
|
|
assert(is_on_unclean_list(),
|
|
"Should only invoke on unclean space.");
|
|
assert(_next_in_special_set == NULL ||
|
|
_next_in_special_set->is_on_unclean_list(),
|
|
"Malformed unclean List.");
|
|
return _next_in_special_set;
|
|
}
|
|
|
|
void set_next_on_unclean_list(HeapRegion* r);
|
|
|
|
HeapRegion* get_next_young_region() { return _next_young_region; }
|
|
void set_next_young_region(HeapRegion* hr) {
|
|
_next_young_region = hr;
|
|
}
|
|
|
|
HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
|
|
HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
|
|
void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
|
|
bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
|
|
|
|
// Allows logical separation between objects allocated before and after.
|
|
void save_marks();
|
|
|
|
// Reset HR stuff to default values.
|
|
void hr_clear(bool par, bool clear_space);
|
|
|
|
void initialize(MemRegion mr, bool clear_space, bool mangle_space);
|
|
|
|
// Ensure that "this" is zero-filled.
|
|
void ensure_zero_filled();
|
|
// This one requires that the calling thread holds ZF_mon.
|
|
void ensure_zero_filled_locked();
|
|
|
|
// Get the start of the unmarked area in this region.
|
|
HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
|
|
HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
|
|
|
|
// Apply "cl->do_oop" to (the addresses of) all reference fields in objects
|
|
// allocated in the current region before the last call to "save_mark".
|
|
void oop_before_save_marks_iterate(OopClosure* cl);
|
|
|
|
// This call determines the "filter kind" argument that will be used for
|
|
// the next call to "new_dcto_cl" on this region with the "traditional"
|
|
// signature (i.e., the call below.) The default, in the absence of a
|
|
// preceding call to this method, is "NoFilterKind", and a call to this
|
|
// method is necessary for each such call, or else it reverts to the
|
|
// default.
|
|
// (This is really ugly, but all other methods I could think of changed a
|
|
// lot of main-line code for G1.)
|
|
void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
|
|
_next_fk = nfk;
|
|
}
|
|
|
|
DirtyCardToOopClosure*
|
|
new_dcto_closure(OopClosure* cl,
|
|
CardTableModRefBS::PrecisionStyle precision,
|
|
HeapRegionDCTOC::FilterKind fk);
|
|
|
|
#if WHASSUP
|
|
DirtyCardToOopClosure*
|
|
new_dcto_closure(OopClosure* cl,
|
|
CardTableModRefBS::PrecisionStyle precision,
|
|
HeapWord* boundary) {
|
|
assert(boundary == NULL, "This arg doesn't make sense here.");
|
|
DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
|
|
_next_fk = HeapRegionDCTOC::NoFilterKind;
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// Note the start or end of marking. This tells the heap region
|
|
// that the collector is about to start or has finished (concurrently)
|
|
// marking the heap.
|
|
//
|
|
|
|
// Note the start of a marking phase. Record the
|
|
// start of the unmarked area of the region here.
|
|
void note_start_of_marking(bool during_initial_mark) {
|
|
init_top_at_conc_mark_count();
|
|
_next_marked_bytes = 0;
|
|
if (during_initial_mark && is_young() && !is_survivor())
|
|
_next_top_at_mark_start = bottom();
|
|
else
|
|
_next_top_at_mark_start = top();
|
|
}
|
|
|
|
// Note the end of a marking phase. Install the start of
|
|
// the unmarked area that was captured at start of marking.
|
|
void note_end_of_marking() {
|
|
_prev_top_at_mark_start = _next_top_at_mark_start;
|
|
_prev_marked_bytes = _next_marked_bytes;
|
|
_next_marked_bytes = 0;
|
|
|
|
guarantee(_prev_marked_bytes <=
|
|
(size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
|
|
"invariant");
|
|
}
|
|
|
|
// After an evacuation, we need to update _next_top_at_mark_start
|
|
// to be the current top. Note this is only valid if we have only
|
|
// ever evacuated into this region. If we evacuate, allocate, and
|
|
// then evacuate we are in deep doodoo.
|
|
void note_end_of_copying() {
|
|
assert(top() >= _next_top_at_mark_start,
|
|
"Increase only");
|
|
// Survivor regions will be scanned on the start of concurrent
|
|
// marking.
|
|
if (!is_survivor()) {
|
|
_next_top_at_mark_start = top();
|
|
}
|
|
}
|
|
|
|
// Returns "false" iff no object in the region was allocated when the
|
|
// last mark phase ended.
|
|
bool is_marked() { return _prev_top_at_mark_start != bottom(); }
|
|
|
|
// If "is_marked()" is true, then this is the index of the region in
|
|
// an array constructed at the end of marking of the regions in a
|
|
// "desirability" order.
|
|
int sort_index() {
|
|
return _sort_index;
|
|
}
|
|
void set_sort_index(int i) {
|
|
_sort_index = i;
|
|
}
|
|
|
|
void init_top_at_conc_mark_count() {
|
|
_top_at_conc_mark_count = bottom();
|
|
}
|
|
|
|
void set_top_at_conc_mark_count(HeapWord *cur) {
|
|
assert(bottom() <= cur && cur <= end(), "Sanity.");
|
|
_top_at_conc_mark_count = cur;
|
|
}
|
|
|
|
HeapWord* top_at_conc_mark_count() {
|
|
return _top_at_conc_mark_count;
|
|
}
|
|
|
|
void reset_during_compaction() {
|
|
guarantee( isHumongous() && startsHumongous(),
|
|
"should only be called for humongous regions");
|
|
|
|
zero_marked_bytes();
|
|
init_top_at_mark_start();
|
|
}
|
|
|
|
// <PREDICTION>
|
|
void calc_gc_efficiency(void);
|
|
double gc_efficiency() { return _gc_efficiency;}
|
|
// </PREDICTION>
|
|
|
|
bool is_young() const { return _young_type != NotYoung; }
|
|
bool is_scan_only() const { return _young_type == ScanOnly; }
|
|
bool is_survivor() const { return _young_type == Survivor; }
|
|
|
|
int young_index_in_cset() const { return _young_index_in_cset; }
|
|
void set_young_index_in_cset(int index) {
|
|
assert( (index == -1) || is_young(), "pre-condition" );
|
|
_young_index_in_cset = index;
|
|
}
|
|
|
|
int age_in_surv_rate_group() {
|
|
assert( _surv_rate_group != NULL, "pre-condition" );
|
|
assert( _age_index > -1, "pre-condition" );
|
|
return _surv_rate_group->age_in_group(_age_index);
|
|
}
|
|
|
|
void recalculate_age_in_surv_rate_group() {
|
|
assert( _surv_rate_group != NULL, "pre-condition" );
|
|
assert( _age_index > -1, "pre-condition" );
|
|
_age_index = _surv_rate_group->recalculate_age_index(_age_index);
|
|
}
|
|
|
|
void record_surv_words_in_group(size_t words_survived) {
|
|
assert( _surv_rate_group != NULL, "pre-condition" );
|
|
assert( _age_index > -1, "pre-condition" );
|
|
int age_in_group = age_in_surv_rate_group();
|
|
_surv_rate_group->record_surviving_words(age_in_group, words_survived);
|
|
}
|
|
|
|
int age_in_surv_rate_group_cond() {
|
|
if (_surv_rate_group != NULL)
|
|
return age_in_surv_rate_group();
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
SurvRateGroup* surv_rate_group() {
|
|
return _surv_rate_group;
|
|
}
|
|
|
|
void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
|
|
assert( surv_rate_group != NULL, "pre-condition" );
|
|
assert( _surv_rate_group == NULL, "pre-condition" );
|
|
assert( is_young(), "pre-condition" );
|
|
|
|
_surv_rate_group = surv_rate_group;
|
|
_age_index = surv_rate_group->next_age_index();
|
|
}
|
|
|
|
void uninstall_surv_rate_group() {
|
|
if (_surv_rate_group != NULL) {
|
|
assert( _age_index > -1, "pre-condition" );
|
|
assert( is_young(), "pre-condition" );
|
|
|
|
_surv_rate_group = NULL;
|
|
_age_index = -1;
|
|
} else {
|
|
assert( _age_index == -1, "pre-condition" );
|
|
}
|
|
}
|
|
|
|
void set_young() { set_young_type(Young); }
|
|
|
|
void set_scan_only() { set_young_type(ScanOnly); }
|
|
|
|
void set_survivor() { set_young_type(Survivor); }
|
|
|
|
void set_not_young() { set_young_type(NotYoung); }
|
|
|
|
// Determine if an object has been allocated since the last
|
|
// mark performed by the collector. This returns true iff the object
|
|
// is within the unmarked area of the region.
|
|
bool obj_allocated_since_prev_marking(oop obj) const {
|
|
return (HeapWord *) obj >= prev_top_at_mark_start();
|
|
}
|
|
bool obj_allocated_since_next_marking(oop obj) const {
|
|
return (HeapWord *) obj >= next_top_at_mark_start();
|
|
}
|
|
|
|
// For parallel heapRegion traversal.
|
|
bool claimHeapRegion(int claimValue);
|
|
jint claim_value() { return _claimed; }
|
|
// Use this carefully: only when you're sure no one is claiming...
|
|
void set_claim_value(int claimValue) { _claimed = claimValue; }
|
|
|
|
// Returns the "evacuation_failed" property of the region.
|
|
bool evacuation_failed() { return _evacuation_failed; }
|
|
|
|
// Sets the "evacuation_failed" property of the region.
|
|
void set_evacuation_failed(bool b) {
|
|
_evacuation_failed = b;
|
|
|
|
if (b) {
|
|
init_top_at_conc_mark_count();
|
|
_next_marked_bytes = 0;
|
|
}
|
|
}
|
|
|
|
// Requires that "mr" be entirely within the region.
|
|
// Apply "cl->do_object" to all objects that intersect with "mr".
|
|
// If the iteration encounters an unparseable portion of the region,
|
|
// or if "cl->abort()" is true after a closure application,
|
|
// terminate the iteration and return the address of the start of the
|
|
// subregion that isn't done. (The two can be distinguished by querying
|
|
// "cl->abort()".) Return of "NULL" indicates that the iteration
|
|
// completed.
|
|
HeapWord*
|
|
object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
|
|
|
|
HeapWord*
|
|
oops_on_card_seq_iterate_careful(MemRegion mr,
|
|
FilterOutOfRegionClosure* cl);
|
|
|
|
// The region "mr" is entirely in "this", and starts and ends at block
|
|
// boundaries. The caller declares that all the contained blocks are
|
|
// coalesced into one.
|
|
void declare_filled_region_to_BOT(MemRegion mr) {
|
|
_offsets.single_block(mr.start(), mr.end());
|
|
}
|
|
|
|
// A version of block start that is guaranteed to find *some* block
|
|
// boundary at or before "p", but does not object iteration, and may
|
|
// therefore be used safely when the heap is unparseable.
|
|
HeapWord* block_start_careful(const void* p) const {
|
|
return _offsets.block_start_careful(p);
|
|
}
|
|
|
|
// Requires that "addr" is within the region. Returns the start of the
|
|
// first ("careful") block that starts at or after "addr", or else the
|
|
// "end" of the region if there is no such block.
|
|
HeapWord* next_block_start_careful(HeapWord* addr);
|
|
|
|
// Returns the zero-fill-state of the current region.
|
|
ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
|
|
bool zero_fill_is_allocated() { return _zfs == Allocated; }
|
|
Thread* zero_filler() { return _zero_filler; }
|
|
|
|
// Indicate that the contents of the region are unknown, and therefore
|
|
// might require zero-filling.
|
|
void set_zero_fill_needed() {
|
|
set_zero_fill_state_work(NotZeroFilled);
|
|
}
|
|
void set_zero_fill_in_progress(Thread* t) {
|
|
set_zero_fill_state_work(ZeroFilling);
|
|
_zero_filler = t;
|
|
}
|
|
void set_zero_fill_complete();
|
|
void set_zero_fill_allocated() {
|
|
set_zero_fill_state_work(Allocated);
|
|
}
|
|
|
|
void set_zero_fill_state_work(ZeroFillState zfs);
|
|
|
|
// This is called when a full collection shrinks the heap.
|
|
// We want to set the heap region to a value which says
|
|
// it is no longer part of the heap. For now, we'll let "NotZF" fill
|
|
// that role.
|
|
void reset_zero_fill() {
|
|
set_zero_fill_state_work(NotZeroFilled);
|
|
_zero_filler = NULL;
|
|
}
|
|
|
|
#define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
|
|
virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
|
|
SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
|
|
|
|
CompactibleSpace* next_compaction_space() const;
|
|
|
|
virtual void reset_after_compaction();
|
|
|
|
void print() const;
|
|
void print_on(outputStream* st) const;
|
|
|
|
// use_prev_marking == true -> use "prev" marking information,
|
|
// use_prev_marking == false -> use "next" marking information
|
|
// NOTE: Only the "prev" marking information is guaranteed to be
|
|
// consistent most of the time, so most calls to this should use
|
|
// use_prev_marking == true. Currently, there is only one case where
|
|
// this is called with use_prev_marking == false, which is to verify
|
|
// the "next" marking information at the end of remark.
|
|
void verify(bool allow_dirty, bool use_prev_marking) const;
|
|
|
|
// Override; it uses the "prev" marking information
|
|
virtual void verify(bool allow_dirty) const;
|
|
|
|
#ifdef DEBUG
|
|
HeapWord* allocate(size_t size);
|
|
#endif
|
|
};
|
|
|
|
// HeapRegionClosure is used for iterating over regions.
|
|
// Terminates the iteration when the "doHeapRegion" method returns "true".
|
|
class HeapRegionClosure : public StackObj {
|
|
friend class HeapRegionSeq;
|
|
friend class G1CollectedHeap;
|
|
|
|
bool _complete;
|
|
void incomplete() { _complete = false; }
|
|
|
|
public:
|
|
HeapRegionClosure(): _complete(true) {}
|
|
|
|
// Typically called on each region until it returns true.
|
|
virtual bool doHeapRegion(HeapRegion* r) = 0;
|
|
|
|
// True after iteration if the closure was applied to all heap regions
|
|
// and returned "false" in all cases.
|
|
bool complete() { return _complete; }
|
|
};
|
|
|
|
// A linked lists of heap regions. It leaves the "next" field
|
|
// unspecified; that's up to subtypes.
|
|
class RegionList VALUE_OBJ_CLASS_SPEC {
|
|
protected:
|
|
virtual HeapRegion* get_next(HeapRegion* chr) = 0;
|
|
virtual void set_next(HeapRegion* chr,
|
|
HeapRegion* new_next) = 0;
|
|
|
|
HeapRegion* _hd;
|
|
HeapRegion* _tl;
|
|
size_t _sz;
|
|
|
|
// Protected constructor because this type is only meaningful
|
|
// when the _get/_set next functions are defined.
|
|
RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
|
|
public:
|
|
void reset() {
|
|
_hd = NULL;
|
|
_tl = NULL;
|
|
_sz = 0;
|
|
}
|
|
HeapRegion* hd() { return _hd; }
|
|
HeapRegion* tl() { return _tl; }
|
|
size_t sz() { return _sz; }
|
|
size_t length();
|
|
|
|
bool well_formed() {
|
|
return
|
|
((hd() == NULL && tl() == NULL && sz() == 0)
|
|
|| (hd() != NULL && tl() != NULL && sz() > 0))
|
|
&& (sz() == length());
|
|
}
|
|
virtual void insert_before_head(HeapRegion* r);
|
|
void prepend_list(RegionList* new_list);
|
|
virtual HeapRegion* pop();
|
|
void dec_sz() { _sz--; }
|
|
// Requires that "r" is an element of the list, and is not the tail.
|
|
void delete_after(HeapRegion* r);
|
|
};
|
|
|
|
class EmptyNonHRegionList: public RegionList {
|
|
protected:
|
|
// Protected constructor because this type is only meaningful
|
|
// when the _get/_set next functions are defined.
|
|
EmptyNonHRegionList() : RegionList() {}
|
|
|
|
public:
|
|
void insert_before_head(HeapRegion* r) {
|
|
// assert(r->is_empty(), "Better be empty");
|
|
assert(!r->isHumongous(), "Better not be humongous.");
|
|
RegionList::insert_before_head(r);
|
|
}
|
|
void prepend_list(EmptyNonHRegionList* new_list) {
|
|
// assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
|
|
// "Better be empty");
|
|
assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
|
|
"Better not be humongous.");
|
|
// assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
|
|
// "Better be empty");
|
|
assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
|
|
"Better not be humongous.");
|
|
RegionList::prepend_list(new_list);
|
|
}
|
|
};
|
|
|
|
class UncleanRegionList: public EmptyNonHRegionList {
|
|
public:
|
|
HeapRegion* get_next(HeapRegion* hr) {
|
|
return hr->next_from_unclean_list();
|
|
}
|
|
void set_next(HeapRegion* hr, HeapRegion* new_next) {
|
|
hr->set_next_on_unclean_list(new_next);
|
|
}
|
|
|
|
UncleanRegionList() : EmptyNonHRegionList() {}
|
|
|
|
void insert_before_head(HeapRegion* r) {
|
|
assert(!r->is_on_free_list(),
|
|
"Better not already be on free list");
|
|
assert(!r->is_on_unclean_list(),
|
|
"Better not already be on unclean list");
|
|
r->set_zero_fill_needed();
|
|
r->set_on_unclean_list(true);
|
|
EmptyNonHRegionList::insert_before_head(r);
|
|
}
|
|
void prepend_list(UncleanRegionList* new_list) {
|
|
assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
|
|
"Better not already be on free list");
|
|
assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
|
|
"Better already be marked as on unclean list");
|
|
assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
|
|
"Better not already be on free list");
|
|
assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
|
|
"Better already be marked as on unclean list");
|
|
EmptyNonHRegionList::prepend_list(new_list);
|
|
}
|
|
HeapRegion* pop() {
|
|
HeapRegion* res = RegionList::pop();
|
|
if (res != NULL) res->set_on_unclean_list(false);
|
|
return res;
|
|
}
|
|
};
|
|
|
|
// Local Variables: ***
|
|
// c-indentation-style: gnu ***
|
|
// End: ***
|
|
|
|
#endif // SERIALGC
|