jdk/src/hotspot/cpu/riscv/interp_masm_riscv.cpp
Coleen Phillimore 265f40b4f7 8308396: Fix offset_of conversion warnings in runtime code
Reviewed-by: amitkumar, jsjolen, fparain
2023-05-19 17:16:04 +00:00

2024 lines
70 KiB
C++

/*
* Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
* Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interp_masm_riscv.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "logging/log.hpp"
#include "oops/arrayOop.hpp"
#include "oops/markWord.hpp"
#include "oops/method.hpp"
#include "oops/methodData.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/basicLock.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/javaThread.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "utilities/powerOfTwo.hpp"
void InterpreterMacroAssembler::narrow(Register result) {
// Get method->_constMethod->_result_type
ld(t0, Address(fp, frame::interpreter_frame_method_offset * wordSize));
ld(t0, Address(t0, Method::const_offset()));
lbu(t0, Address(t0, ConstMethod::result_type_offset()));
Label done, notBool, notByte, notChar;
// common case first
mv(t1, T_INT);
beq(t0, t1, done);
// mask integer result to narrower return type.
mv(t1, T_BOOLEAN);
bne(t0, t1, notBool);
andi(result, result, 0x1);
j(done);
bind(notBool);
mv(t1, T_BYTE);
bne(t0, t1, notByte);
sign_extend(result, result, 8);
j(done);
bind(notByte);
mv(t1, T_CHAR);
bne(t0, t1, notChar);
zero_extend(result, result, 16);
j(done);
bind(notChar);
sign_extend(result, result, 16);
// Nothing to do for T_INT
bind(done);
addw(result, result, zr);
}
void InterpreterMacroAssembler::jump_to_entry(address entry) {
assert(entry != nullptr, "Entry must have been generated by now");
j(entry);
}
void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
if (JvmtiExport::can_pop_frame()) {
Label L;
// Initiate popframe handling only if it is not already being
// processed. If the flag has the popframe_processing bit set,
// it means that this code is called *during* popframe handling - we
// don't want to reenter.
// This method is only called just after the call into the vm in
// call_VM_base, so the arg registers are available.
lwu(t1, Address(xthread, JavaThread::popframe_condition_offset()));
test_bit(t0, t1, exact_log2(JavaThread::popframe_pending_bit));
beqz(t0, L);
test_bit(t0, t1, exact_log2(JavaThread::popframe_processing_bit));
bnez(t0, L);
// Call Interpreter::remove_activation_preserving_args_entry() to get the
// address of the same-named entrypoint in the generated interpreter code.
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
jr(x10);
bind(L);
}
}
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
ld(x12, Address(xthread, JavaThread::jvmti_thread_state_offset()));
const Address tos_addr(x12, JvmtiThreadState::earlyret_tos_offset());
const Address oop_addr(x12, JvmtiThreadState::earlyret_oop_offset());
const Address val_addr(x12, JvmtiThreadState::earlyret_value_offset());
switch (state) {
case atos:
ld(x10, oop_addr);
sd(zr, oop_addr);
verify_oop(x10);
break;
case ltos:
ld(x10, val_addr);
break;
case btos: // fall through
case ztos: // fall through
case ctos: // fall through
case stos: // fall through
case itos:
lwu(x10, val_addr);
break;
case ftos:
flw(f10, val_addr);
break;
case dtos:
fld(f10, val_addr);
break;
case vtos:
/* nothing to do */
break;
default:
ShouldNotReachHere();
}
// Clean up tos value in the thread object
mv(t0, (int)ilgl);
sw(t0, tos_addr);
sw(zr, val_addr);
}
void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
if (JvmtiExport::can_force_early_return()) {
Label L;
ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset()));
beqz(t0, L); // if thread->jvmti_thread_state() is null then exit
// Initiate earlyret handling only if it is not already being processed.
// If the flag has the earlyret_processing bit set, it means that this code
// is called *during* earlyret handling - we don't want to reenter.
lwu(t0, Address(t0, JvmtiThreadState::earlyret_state_offset()));
mv(t1, JvmtiThreadState::earlyret_pending);
bne(t0, t1, L);
// Call Interpreter::remove_activation_early_entry() to get the address of the
// same-named entrypoint in the generated interpreter code.
ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset()));
lwu(t0, Address(t0, JvmtiThreadState::earlyret_tos_offset()));
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), t0);
jr(x10);
bind(L);
}
}
void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
if (AvoidUnalignedAccesses && (bcp_offset % 2)) {
lbu(t1, Address(xbcp, bcp_offset));
lbu(reg, Address(xbcp, bcp_offset + 1));
slli(t1, t1, 8);
add(reg, reg, t1);
} else {
lhu(reg, Address(xbcp, bcp_offset));
revb_h_h_u(reg, reg);
}
}
void InterpreterMacroAssembler::get_dispatch() {
ExternalAddress target((address)Interpreter::dispatch_table());
relocate(target.rspec(), [&] {
int32_t offset;
la_patchable(xdispatch, target, offset);
addi(xdispatch, xdispatch, offset);
});
}
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
Register tmp,
int bcp_offset,
size_t index_size) {
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
if (index_size == sizeof(u2)) {
if (AvoidUnalignedAccesses) {
assert_different_registers(index, tmp);
load_unsigned_byte(index, Address(xbcp, bcp_offset));
load_unsigned_byte(tmp, Address(xbcp, bcp_offset + 1));
slli(tmp, tmp, 8);
add(index, index, tmp);
} else {
load_unsigned_short(index, Address(xbcp, bcp_offset));
}
} else if (index_size == sizeof(u4)) {
load_int_misaligned(index, Address(xbcp, bcp_offset), tmp, false);
// Check if the secondary index definition is still ~x, otherwise
// we have to change the following assembler code to calculate the
// plain index.
assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
xori(index, index, -1);
addw(index, index, zr);
} else if (index_size == sizeof(u1)) {
load_unsigned_byte(index, Address(xbcp, bcp_offset));
} else {
ShouldNotReachHere();
}
}
// Return
// Rindex: index into constant pool
// Rcache: address of cache entry - ConstantPoolCache::base_offset()
//
// A caller must add ConstantPoolCache::base_offset() to Rcache to get
// the true address of the cache entry.
//
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
Register index,
int bcp_offset,
size_t index_size) {
assert_different_registers(cache, index);
assert_different_registers(cache, xcpool);
// register "cache" is trashed in next shadd, so lets use it as a temporary register
get_cache_index_at_bcp(index, cache, bcp_offset, index_size);
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
// Convert from field index to ConstantPoolCacheEntry
// riscv already has the cache in xcpool so there is no need to
// install it in cache. Instead we pre-add the indexed offset to
// xcpool and return it in cache. All clients of this method need to
// be modified accordingly.
shadd(cache, index, xcpool, cache, 5);
}
void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
Register index,
Register bytecode,
int byte_no,
int bcp_offset,
size_t index_size) {
get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
// We use a 32-bit load here since the layout of 64-bit words on
// little-endian machines allow us that.
// n.b. unlike x86 cache already includes the index offset
la(bytecode, Address(cache,
ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::indices_offset()));
membar(MacroAssembler::AnyAny);
lwu(bytecode, bytecode);
membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
const int shift_count = (1 + byte_no) * BitsPerByte;
slli(bytecode, bytecode, XLEN - (shift_count + BitsPerByte));
srli(bytecode, bytecode, XLEN - BitsPerByte);
}
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
Register tmp,
int bcp_offset,
size_t index_size) {
assert_different_registers(cache, tmp);
// register "cache" is trashed in next ld, so lets use it as a temporary register
get_cache_index_at_bcp(tmp, cache, bcp_offset, index_size);
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
// Convert from field index to ConstantPoolCacheEntry index
// and from word offset to byte offset
assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord,
"else change next line");
ld(cache, Address(fp, frame::interpreter_frame_cache_offset * wordSize));
// skip past the header
add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
// construct pointer to cache entry
shadd(cache, tmp, cache, tmp, 2 + LogBytesPerWord);
}
// Load object from cpool->resolved_references(index)
void InterpreterMacroAssembler::load_resolved_reference_at_index(
Register result, Register index, Register tmp) {
assert_different_registers(result, index);
get_constant_pool(result);
// Load pointer for resolved_references[] objArray
ld(result, Address(result, ConstantPool::cache_offset()));
ld(result, Address(result, ConstantPoolCache::resolved_references_offset()));
resolve_oop_handle(result, tmp, t1);
// Add in the index
addi(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
shadd(result, index, result, index, LogBytesPerHeapOop);
load_heap_oop(result, Address(result, 0), tmp, t1);
}
void InterpreterMacroAssembler::load_resolved_klass_at_offset(
Register cpool, Register index, Register klass, Register temp) {
shadd(temp, index, cpool, temp, LogBytesPerWord);
lhu(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
ld(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
shadd(klass, temp, klass, temp, LogBytesPerWord);
ld(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
}
void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no,
Register method,
Register cache) {
const int method_offset = in_bytes(
ConstantPoolCache::base_offset() +
((byte_no == TemplateTable::f2_byte)
? ConstantPoolCacheEntry::f2_offset()
: ConstantPoolCacheEntry::f1_offset()));
ld(method, Address(cache, method_offset)); // get f1 Method*
}
// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
// subtype of super_klass.
//
// Args:
// x10: superklass
// Rsub_klass: subklass
//
// Kills:
// x12, x15
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
Label& ok_is_subtype) {
assert(Rsub_klass != x10, "x10 holds superklass");
assert(Rsub_klass != x12, "x12 holds 2ndary super array length");
assert(Rsub_klass != x15, "x15 holds 2ndary super array scan ptr");
// Profile the not-null value's klass.
profile_typecheck(x12, Rsub_klass, x15); // blows x12, reloads x15
// Do the check.
check_klass_subtype(Rsub_klass, x10, x12, ok_is_subtype); // blows x12
// Profile the failure of the check.
profile_typecheck_failed(x12); // blows x12
}
// Java Expression Stack
void InterpreterMacroAssembler::pop_ptr(Register r) {
ld(r, Address(esp, 0));
addi(esp, esp, wordSize);
}
void InterpreterMacroAssembler::pop_i(Register r) {
lw(r, Address(esp, 0)); // lw do signed extended
addi(esp, esp, wordSize);
}
void InterpreterMacroAssembler::pop_l(Register r) {
ld(r, Address(esp, 0));
addi(esp, esp, 2 * Interpreter::stackElementSize);
}
void InterpreterMacroAssembler::push_ptr(Register r) {
addi(esp, esp, -wordSize);
sd(r, Address(esp, 0));
}
void InterpreterMacroAssembler::push_i(Register r) {
addi(esp, esp, -wordSize);
addw(r, r, zr); // signed extended
sd(r, Address(esp, 0));
}
void InterpreterMacroAssembler::push_l(Register r) {
addi(esp, esp, -2 * wordSize);
sd(zr, Address(esp, wordSize));
sd(r, Address(esp));
}
void InterpreterMacroAssembler::pop_f(FloatRegister r) {
flw(r, Address(esp, 0));
addi(esp, esp, wordSize);
}
void InterpreterMacroAssembler::pop_d(FloatRegister r) {
fld(r, Address(esp, 0));
addi(esp, esp, 2 * Interpreter::stackElementSize);
}
void InterpreterMacroAssembler::push_f(FloatRegister r) {
addi(esp, esp, -wordSize);
fsw(r, Address(esp, 0));
}
void InterpreterMacroAssembler::push_d(FloatRegister r) {
addi(esp, esp, -2 * wordSize);
fsd(r, Address(esp, 0));
}
void InterpreterMacroAssembler::pop(TosState state) {
switch (state) {
case atos:
pop_ptr();
verify_oop(x10);
break;
case btos: // fall through
case ztos: // fall through
case ctos: // fall through
case stos: // fall through
case itos:
pop_i();
break;
case ltos:
pop_l();
break;
case ftos:
pop_f();
break;
case dtos:
pop_d();
break;
case vtos:
/* nothing to do */
break;
default:
ShouldNotReachHere();
}
}
void InterpreterMacroAssembler::push(TosState state) {
switch (state) {
case atos:
verify_oop(x10);
push_ptr();
break;
case btos: // fall through
case ztos: // fall through
case ctos: // fall through
case stos: // fall through
case itos:
push_i();
break;
case ltos:
push_l();
break;
case ftos:
push_f();
break;
case dtos:
push_d();
break;
case vtos:
/* nothing to do */
break;
default:
ShouldNotReachHere();
}
}
// Helpers for swap and dup
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
ld(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
}
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
sd(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
}
void InterpreterMacroAssembler::load_float(Address src) {
flw(f10, src);
}
void InterpreterMacroAssembler::load_double(Address src) {
fld(f10, src);
}
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
// set sender sp
mv(x19_sender_sp, sp);
// record last_sp
sd(esp, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
}
// Jump to from_interpreted entry of a call unless single stepping is possible
// in this thread in which case we must call the i2i entry
void InterpreterMacroAssembler::jump_from_interpreted(Register method) {
prepare_to_jump_from_interpreted();
if (JvmtiExport::can_post_interpreter_events()) {
Label run_compiled_code;
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
// compiled code in threads for which the event is enabled. Check here for
// interp_only_mode if these events CAN be enabled.
lwu(t0, Address(xthread, JavaThread::interp_only_mode_offset()));
beqz(t0, run_compiled_code);
ld(t0, Address(method, Method::interpreter_entry_offset()));
jr(t0);
bind(run_compiled_code);
}
ld(t0, Address(method, Method::from_interpreted_offset()));
jr(t0);
}
// The following two routines provide a hook so that an implementation
// can schedule the dispatch in two parts. amd64 does not do this.
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
}
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
dispatch_next(state, step);
}
void InterpreterMacroAssembler::dispatch_base(TosState state,
address* table,
bool verifyoop,
bool generate_poll,
Register Rs) {
// Pay attention to the argument Rs, which is acquiesce in t0.
if (VerifyActivationFrameSize) {
Unimplemented();
}
if (verifyoop && state == atos) {
verify_oop(x10);
}
Label safepoint;
address* const safepoint_table = Interpreter::safept_table(state);
bool needs_thread_local_poll = generate_poll && table != safepoint_table;
if (needs_thread_local_poll) {
NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
ld(t1, Address(xthread, JavaThread::polling_word_offset()));
test_bit(t1, t1, exact_log2(SafepointMechanism::poll_bit()));
bnez(t1, safepoint);
}
if (table == Interpreter::dispatch_table(state)) {
mv(t1, Interpreter::distance_from_dispatch_table(state));
add(t1, Rs, t1);
shadd(t1, t1, xdispatch, t1, 3);
} else {
mv(t1, (address)table);
shadd(t1, Rs, t1, Rs, 3);
}
ld(t1, Address(t1));
jr(t1);
if (needs_thread_local_poll) {
bind(safepoint);
la(t1, ExternalAddress((address)safepoint_table));
shadd(t1, Rs, t1, Rs, 3);
ld(t1, Address(t1));
jr(t1);
}
}
void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll, Register Rs) {
dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll, Rs);
}
void InterpreterMacroAssembler::dispatch_only_normal(TosState state, Register Rs) {
dispatch_base(state, Interpreter::normal_table(state), true, false, Rs);
}
void InterpreterMacroAssembler::dispatch_only_noverify(TosState state, Register Rs) {
dispatch_base(state, Interpreter::normal_table(state), false, false, Rs);
}
void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
// load next bytecode
load_unsigned_byte(t0, Address(xbcp, step));
add(xbcp, xbcp, step);
dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
}
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
// load current bytecode
lbu(t0, Address(xbcp, 0));
dispatch_base(state, table);
}
// remove activation
//
// Apply stack watermark barrier.
// Unlock the receiver if this is a synchronized method.
// Unlock any Java monitors from synchronized blocks.
// Remove the activation from the stack.
//
// If there are locked Java monitors
// If throw_monitor_exception
// throws IllegalMonitorStateException
// Else if install_monitor_exception
// installs IllegalMonitorStateException
// Else
// no error processing
void InterpreterMacroAssembler::remove_activation(
TosState state,
bool throw_monitor_exception,
bool install_monitor_exception,
bool notify_jvmdi) {
// Note: Registers x13 may be in use for the
// result check if synchronized method
Label unlocked, unlock, no_unlock;
// The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
// that would normally not be safe to use. Such bad returns into unsafe territory of
// the stack, will call InterpreterRuntime::at_unwind.
Label slow_path;
Label fast_path;
safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */);
j(fast_path);
bind(slow_path);
push(state);
set_last_Java_frame(esp, fp, (address)pc(), t0);
super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), xthread);
reset_last_Java_frame(true);
pop(state);
bind(fast_path);
// get the value of _do_not_unlock_if_synchronized into x13
const Address do_not_unlock_if_synchronized(xthread,
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
lbu(x13, do_not_unlock_if_synchronized);
sb(zr, do_not_unlock_if_synchronized); // reset the flag
// get method access flags
ld(x11, Address(fp, frame::interpreter_frame_method_offset * wordSize));
ld(x12, Address(x11, Method::access_flags_offset()));
test_bit(t0, x12, exact_log2(JVM_ACC_SYNCHRONIZED));
beqz(t0, unlocked);
// Don't unlock anything if the _do_not_unlock_if_synchronized flag
// is set.
bnez(x13, no_unlock);
// unlock monitor
push(state); // save result
// BasicObjectLock will be first in list, since this is a
// synchronized method. However, need to check that the object has
// not been unlocked by an explicit monitorexit bytecode.
const Address monitor(fp, frame::interpreter_frame_initial_sp_offset *
wordSize - (int) sizeof(BasicObjectLock));
// We use c_rarg1 so that if we go slow path it will be the correct
// register for unlock_object to pass to VM directly
la(c_rarg1, monitor); // address of first monitor
ld(x10, Address(c_rarg1, BasicObjectLock::obj_offset()));
bnez(x10, unlock);
pop(state);
if (throw_monitor_exception) {
// Entry already unlocked, need to throw exception
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
// Monitor already unlocked during a stack unroll. If requested,
// install an illegal_monitor_state_exception. Continue with
// stack unrolling.
if (install_monitor_exception) {
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::new_illegal_monitor_state_exception));
}
j(unlocked);
}
bind(unlock);
unlock_object(c_rarg1);
pop(state);
// Check that for block-structured locking (i.e., that all locked
// objects has been unlocked)
bind(unlocked);
// x10: Might contain return value
// Check that all monitors are unlocked
{
Label loop, exception, entry, restart;
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
const Address monitor_block_top(
fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
const Address monitor_block_bot(
fp, frame::interpreter_frame_initial_sp_offset * wordSize);
bind(restart);
// We use c_rarg1 so that if we go slow path it will be the correct
// register for unlock_object to pass to VM directly
ld(c_rarg1, monitor_block_top); // points to current entry, starting
// with top-most entry
la(x9, monitor_block_bot); // points to word before bottom of
// monitor block
j(entry);
// Entry already locked, need to throw exception
bind(exception);
if (throw_monitor_exception) {
// Throw exception
MacroAssembler::call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::
throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
// Stack unrolling. Unlock object and install illegal_monitor_exception.
// Unlock does not block, so don't have to worry about the frame.
// We don't have to preserve c_rarg1 since we are going to throw an exception.
push(state);
unlock_object(c_rarg1);
pop(state);
if (install_monitor_exception) {
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::
new_illegal_monitor_state_exception));
}
j(restart);
}
bind(loop);
// check if current entry is used
add(t0, c_rarg1, in_bytes(BasicObjectLock::obj_offset()));
ld(t0, Address(t0, 0));
bnez(t0, exception);
add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
bind(entry);
bne(c_rarg1, x9, loop); // check if bottom reached if not at bottom then check this entry
}
bind(no_unlock);
// jvmti support
if (notify_jvmdi) {
notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
} else {
notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
}
// remove activation
// get sender esp
ld(t1,
Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize));
if (StackReservedPages > 0) {
// testing if reserved zone needs to be re-enabled
Label no_reserved_zone_enabling;
ld(t0, Address(xthread, JavaThread::reserved_stack_activation_offset()));
ble(t1, t0, no_reserved_zone_enabling);
call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), xthread);
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_delayed_StackOverflowError));
should_not_reach_here();
bind(no_reserved_zone_enabling);
}
// restore sender esp
mv(esp, t1);
// remove frame anchor
leave();
// If we're returning to interpreted code we will shortly be
// adjusting SP to allow some space for ESP. If we're returning to
// compiled code the saved sender SP was saved in sender_sp, so this
// restores it.
andi(sp, esp, -16);
}
// Lock object
//
// Args:
// c_rarg1: BasicObjectLock to be used for locking
//
// Kills:
// x10
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
// t0, t1 (temp regs)
void InterpreterMacroAssembler::lock_object(Register lock_reg)
{
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
if (LockingMode == LM_MONITOR) {
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
lock_reg);
} else {
Label count, done;
const Register swap_reg = x10;
const Register tmp = c_rarg2;
const Register obj_reg = c_rarg3; // Will contain the oop
const int obj_offset = in_bytes(BasicObjectLock::obj_offset());
const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
const int mark_offset = lock_offset +
BasicLock::displaced_header_offset_in_bytes();
Label slow_case;
// Load object pointer into obj_reg c_rarg3
ld(obj_reg, Address(lock_reg, obj_offset));
if (DiagnoseSyncOnValueBasedClasses != 0) {
load_klass(tmp, obj_reg);
lwu(tmp, Address(tmp, Klass::access_flags_offset()));
test_bit(tmp, tmp, exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS));
bnez(tmp, slow_case);
}
if (LockingMode == LM_LIGHTWEIGHT) {
ld(tmp, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
fast_lock(obj_reg, tmp, t0, t1, slow_case);
j(count);
} else if (LockingMode == LM_LEGACY) {
// Load (object->mark() | 1) into swap_reg
ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
ori(swap_reg, t0, 1);
// Save (object->mark() | 1) into BasicLock's displaced header
sd(swap_reg, Address(lock_reg, mark_offset));
assert(lock_offset == 0,
"displached header must be first word in BasicObjectLock");
cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, t0, count, /*fallthrough*/nullptr);
// Test if the oopMark is an obvious stack pointer, i.e.,
// 1) (mark & 7) == 0, and
// 2) sp <= mark < mark + os::pagesize()
//
// These 3 tests can be done by evaluating the following
// expression: ((mark - sp) & (7 - os::vm_page_size())),
// assuming both stack pointer and pagesize have their
// least significant 3 bits clear.
// NOTE: the oopMark is in swap_reg x10 as the result of cmpxchg
sub(swap_reg, swap_reg, sp);
mv(t0, (int64_t)(7 - (int)os::vm_page_size()));
andr(swap_reg, swap_reg, t0);
// Save the test result, for recursive case, the result is zero
sd(swap_reg, Address(lock_reg, mark_offset));
beqz(swap_reg, count);
}
bind(slow_case);
// Call the runtime routine for slow case
if (LockingMode == LM_LIGHTWEIGHT) {
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj),
obj_reg);
} else {
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
lock_reg);
}
j(done);
bind(count);
increment(Address(xthread, JavaThread::held_monitor_count_offset()));
bind(done);
}
}
// Unlocks an object. Used in monitorexit bytecode and
// remove_activation. Throws an IllegalMonitorException if object is
// not locked by current thread.
//
// Args:
// c_rarg1: BasicObjectLock for lock
//
// Kills:
// x10
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
// t0, t1 (temp regs)
void InterpreterMacroAssembler::unlock_object(Register lock_reg)
{
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
if (LockingMode == LM_MONITOR) {
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
} else {
Label count, done;
const Register swap_reg = x10;
const Register header_reg = c_rarg2; // Will contain the old oopMark
const Register obj_reg = c_rarg3; // Will contain the oop
save_bcp(); // Save in case of exception
if (LockingMode != LM_LIGHTWEIGHT) {
// Convert from BasicObjectLock structure to object and BasicLock
// structure Store the BasicLock address into x10
la(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset()));
}
// Load oop into obj_reg(c_rarg3)
ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
// Free entry
sd(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
if (LockingMode == LM_LIGHTWEIGHT) {
Label slow_case;
// Check for non-symmetric locking. This is allowed by the spec and the interpreter
// must handle it.
Register tmp1 = t0;
Register tmp2 = header_reg;
// First check for lock-stack underflow.
lwu(tmp1, Address(xthread, JavaThread::lock_stack_top_offset()));
mv(tmp2, (unsigned)LockStack::start_offset());
ble(tmp1, tmp2, slow_case);
// Then check if the top of the lock-stack matches the unlocked object.
subw(tmp1, tmp1, oopSize);
add(tmp1, xthread, tmp1);
ld(tmp1, Address(tmp1, 0));
bne(tmp1, obj_reg, slow_case);
ld(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
test_bit(t0, header_reg, exact_log2(markWord::monitor_value));
bnez(t0, slow_case);
fast_unlock(obj_reg, header_reg, swap_reg, t0, slow_case);
j(count);
bind(slow_case);
} else if (LockingMode == LM_LEGACY) {
// Load the old header from BasicLock structure
ld(header_reg, Address(swap_reg,
BasicLock::displaced_header_offset_in_bytes()));
// Test for recursion
beqz(header_reg, count);
// Atomic swap back the old header
cmpxchg_obj_header(swap_reg, header_reg, obj_reg, t0, count, /*fallthrough*/nullptr);
}
// Call the runtime routine for slow case.
sd(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
j(done);
bind(count);
decrement(Address(xthread, JavaThread::held_monitor_count_offset()));
bind(done);
restore_bcp();
}
}
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
Label& zero_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
ld(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
beqz(mdp, zero_continue);
}
// Set the method data pointer for the current bcp.
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
assert(ProfileInterpreter, "must be profiling interpreter");
Label set_mdp;
push_reg(RegSet::of(x10, x11), sp); // save x10, x11
// Test MDO to avoid the call if it is null.
ld(x10, Address(xmethod, in_bytes(Method::method_data_offset())));
beqz(x10, set_mdp);
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), xmethod, xbcp);
// x10: mdi
// mdo is guaranteed to be non-zero here, we checked for it before the call.
ld(x11, Address(xmethod, in_bytes(Method::method_data_offset())));
la(x11, Address(x11, in_bytes(MethodData::data_offset())));
add(x10, x11, x10);
sd(x10, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
bind(set_mdp);
pop_reg(RegSet::of(x10, x11), sp);
}
void InterpreterMacroAssembler::verify_method_data_pointer() {
assert(ProfileInterpreter, "must be profiling interpreter");
#ifdef ASSERT
Label verify_continue;
add(sp, sp, -4 * wordSize);
sd(x10, Address(sp, 0));
sd(x11, Address(sp, wordSize));
sd(x12, Address(sp, 2 * wordSize));
sd(x13, Address(sp, 3 * wordSize));
test_method_data_pointer(x13, verify_continue); // If mdp is zero, continue
get_method(x11);
// If the mdp is valid, it will point to a DataLayout header which is
// consistent with the bcp. The converse is highly probable also.
lh(x12, Address(x13, in_bytes(DataLayout::bci_offset())));
ld(t0, Address(x11, Method::const_offset()));
add(x12, x12, t0);
la(x12, Address(x12, ConstMethod::codes_offset()));
beq(x12, xbcp, verify_continue);
// x10: method
// xbcp: bcp // xbcp == 22
// x13: mdp
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
x11, xbcp, x13);
bind(verify_continue);
ld(x10, Address(sp, 0));
ld(x11, Address(sp, wordSize));
ld(x12, Address(sp, 2 * wordSize));
ld(x13, Address(sp, 3 * wordSize));
add(sp, sp, 4 * wordSize);
#endif // ASSERT
}
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
int constant,
Register value) {
assert(ProfileInterpreter, "must be profiling interpreter");
Address data(mdp_in, constant);
sd(value, data);
}
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
int constant,
bool decrement) {
increment_mdp_data_at(mdp_in, noreg, constant, decrement);
}
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
Register reg,
int constant,
bool decrement) {
assert(ProfileInterpreter, "must be profiling interpreter");
// %%% this does 64bit counters at best it is wasting space
// at worst it is a rare bug when counters overflow
assert_different_registers(t1, t0, mdp_in, reg);
Address addr1(mdp_in, constant);
Address addr2(t1, 0);
Address &addr = addr1;
if (reg != noreg) {
la(t1, addr1);
add(t1, t1, reg);
addr = addr2;
}
if (decrement) {
ld(t0, addr);
addi(t0, t0, -DataLayout::counter_increment);
Label L;
bltz(t0, L); // skip store if counter underflow
sd(t0, addr);
bind(L);
} else {
assert(DataLayout::counter_increment == 1,
"flow-free idiom only works with 1");
ld(t0, addr);
addi(t0, t0, DataLayout::counter_increment);
Label L;
blez(t0, L); // skip store if counter overflow
sd(t0, addr);
bind(L);
}
}
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
int flag_byte_constant) {
assert(ProfileInterpreter, "must be profiling interpreter");
int flags_offset = in_bytes(DataLayout::flags_offset());
// Set the flag
lbu(t1, Address(mdp_in, flags_offset));
ori(t1, t1, flag_byte_constant);
sb(t1, Address(mdp_in, flags_offset));
}
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
int offset,
Register value,
Register test_value_out,
Label& not_equal_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
if (test_value_out == noreg) {
ld(t1, Address(mdp_in, offset));
bne(value, t1, not_equal_continue);
} else {
// Put the test value into a register, so caller can use it:
ld(test_value_out, Address(mdp_in, offset));
bne(value, test_value_out, not_equal_continue);
}
}
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
int offset_of_disp) {
assert(ProfileInterpreter, "must be profiling interpreter");
ld(t1, Address(mdp_in, offset_of_disp));
add(mdp_in, mdp_in, t1);
sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
}
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
Register reg,
int offset_of_disp) {
assert(ProfileInterpreter, "must be profiling interpreter");
add(t1, mdp_in, reg);
ld(t1, Address(t1, offset_of_disp));
add(mdp_in, mdp_in, t1);
sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
}
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
int constant) {
assert(ProfileInterpreter, "must be profiling interpreter");
addi(mdp_in, mdp_in, (unsigned)constant);
sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
}
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
assert(ProfileInterpreter, "must be profiling interpreter");
// save/restore across call_VM
addi(sp, sp, -2 * wordSize);
sd(zr, Address(sp, 0));
sd(return_bci, Address(sp, wordSize));
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
return_bci);
ld(zr, Address(sp, 0));
ld(return_bci, Address(sp, wordSize));
addi(sp, sp, 2 * wordSize);
}
void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
Register bumped_count) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
// Otherwise, assign to mdp
test_method_data_pointer(mdp, profile_continue);
// We are taking a branch. Increment the taken count.
Address data(mdp, in_bytes(JumpData::taken_offset()));
ld(bumped_count, data);
assert(DataLayout::counter_increment == 1,
"flow-free idiom only works with 1");
addi(bumped_count, bumped_count, DataLayout::counter_increment);
Label L;
// eg: bumped_count=0x7fff ffff ffff ffff + 1 < 0. so we use <= 0;
blez(bumped_count, L); // skip store if counter overflow,
sd(bumped_count, data);
bind(L);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are taking a branch. Increment the not taken count.
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
// The method data pointer needs to be updated to correspond to
// the next bytecode
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_call(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp,
in_bytes(VirtualCallData::
virtual_call_data_size()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
Register mdp,
Register reg2,
bool receiver_can_be_null) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
Label skip_receiver_profile;
if (receiver_can_be_null) {
Label not_null;
// We are making a call. Increment the count for null receiver.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
j(skip_receiver_profile);
bind(not_null);
}
// Record the receiver type.
record_klass_in_profile(receiver, mdp, reg2, true);
bind(skip_receiver_profile);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp,
in_bytes(VirtualCallData::
virtual_call_data_size()));
bind(profile_continue);
}
}
// This routine creates a state machine for updating the multi-row
// type profile at a virtual call site (or other type-sensitive bytecode).
// The machine visits each row (of receiver/count) until the receiver type
// is found, or until it runs out of rows. At the same time, it remembers
// the location of the first empty row. (An empty row records null for its
// receiver, and can be allocated for a newly-observed receiver type.)
// Because there are two degrees of freedom in the state, a simple linear
// search will not work; it must be a decision tree. Hence this helper
// function is recursive, to generate the required tree structured code.
// It's the interpreter, so we are trading off code space for speed.
// See below for example code.
void InterpreterMacroAssembler::record_klass_in_profile_helper(
Register receiver, Register mdp,
Register reg2,
Label& done, bool is_virtual_call) {
if (TypeProfileWidth == 0) {
if (is_virtual_call) {
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
}
} else {
int non_profiled_offset = -1;
if (is_virtual_call) {
non_profiled_offset = in_bytes(CounterData::count_offset());
}
record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
&VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
}
}
void InterpreterMacroAssembler::record_item_in_profile_helper(
Register item, Register mdp, Register reg2, int start_row, Label& done, int total_rows,
OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, int non_profiled_offset) {
int last_row = total_rows - 1;
assert(start_row <= last_row, "must be work left to do");
// Test this row for both the item and for null.
// Take any of three different outcomes:
// 1. found item => increment count and goto done
// 2. found null => keep looking for case 1, maybe allocate this cell
// 3. found something else => keep looking for cases 1 and 2
// Case 3 is handled by a recursive call.
for (int row = start_row; row <= last_row; row++) {
Label next_test;
bool test_for_null_also = (row == start_row);
// See if the item is item[n].
int item_offset = in_bytes(item_offset_fn(row));
test_mdp_data_at(mdp, item_offset, item,
(test_for_null_also ? reg2 : noreg),
next_test);
// (Reg2 now contains the item from the CallData.)
// The item is item[n]. Increment count[n].
int count_offset = in_bytes(item_count_offset_fn(row));
increment_mdp_data_at(mdp, count_offset);
j(done);
bind(next_test);
if (test_for_null_also) {
Label found_null;
// Failed the equality check on item[n]... Test for null.
if (start_row == last_row) {
// The only thing left to do is handle the null case.
if (non_profiled_offset >= 0) {
beqz(reg2, found_null);
// Item did not match any saved item and there is no empty row for it.
// Increment total counter to indicate polymorphic case.
increment_mdp_data_at(mdp, non_profiled_offset);
j(done);
bind(found_null);
} else {
bnez(reg2, done);
}
break;
}
// Since null is rare, make it be the branch-taken case.
beqz(reg2, found_null);
// Put all the "Case 3" tests here.
record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
item_offset_fn, item_count_offset_fn, non_profiled_offset);
// Found a null. Keep searching for a matching item,
// but remember that this is an empty (unused) slot.
bind(found_null);
}
}
// In the fall-through case, we found no matching item, but we
// observed the item[start_row] is null.
// Fill in the item field and increment the count.
int item_offset = in_bytes(item_offset_fn(start_row));
set_mdp_data_at(mdp, item_offset, item);
int count_offset = in_bytes(item_count_offset_fn(start_row));
mv(reg2, DataLayout::counter_increment);
set_mdp_data_at(mdp, count_offset, reg2);
if (start_row > 0) {
j(done);
}
}
// Example state machine code for three profile rows:
// # main copy of decision tree, rooted at row[1]
// if (row[0].rec == rec) then [
// row[0].incr()
// goto done
// ]
// if (row[0].rec != nullptr) then [
// # inner copy of decision tree, rooted at row[1]
// if (row[1].rec == rec) then [
// row[1].incr()
// goto done
// ]
// if (row[1].rec != nullptr) then [
// # degenerate decision tree, rooted at row[2]
// if (row[2].rec == rec) then [
// row[2].incr()
// goto done
// ]
// if (row[2].rec != nullptr) then [
// count.incr()
// goto done
// ] # overflow
// row[2].init(rec)
// goto done
// ] else [
// # remember row[1] is empty
// if (row[2].rec == rec) then [
// row[2].incr()
// goto done
// ]
// row[1].init(rec)
// goto done
// ]
// else [
// # remember row[0] is empty
// if (row[1].rec == rec) then [
// row[1].incr()
// goto done
// ]
// if (row[2].rec == rec) then [
// row[2].incr()
// goto done
// ]
// row[0].init(rec)
// goto done
// ]
// done:
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
Register mdp, Register reg2,
bool is_virtual_call) {
assert(ProfileInterpreter, "must be profiling");
Label done;
record_klass_in_profile_helper(receiver, mdp, reg2, done, is_virtual_call);
bind(done);
}
void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Update the total ret count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
for (uint row = 0; row < RetData::row_limit(); row++) {
Label next_test;
// See if return_bci is equal to bci[n]:
test_mdp_data_at(mdp,
in_bytes(RetData::bci_offset(row)),
return_bci, noreg,
next_test);
// return_bci is equal to bci[n]. Increment the count.
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(mdp,
in_bytes(RetData::bci_displacement_offset(row)));
j(profile_continue);
bind(next_test);
}
update_mdp_for_ret(return_bci);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
// The method data pointer needs to be updated.
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
}
update_mdp_by_constant(mdp, mdp_delta);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
if (ProfileInterpreter && TypeProfileCasts) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
int count_offset = in_bytes(CounterData::count_offset());
// Back up the address, since we have already bumped the mdp.
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
// *Decrement* the counter. We expect to see zero or small negatives.
increment_mdp_data_at(mdp, count_offset, true);
bind (profile_continue);
}
}
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// The method data pointer needs to be updated.
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
// Record the object type.
record_klass_in_profile(klass, mdp, reg2, false);
}
update_mdp_by_constant(mdp, mdp_delta);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Update the default case count
increment_mdp_data_at(mdp,
in_bytes(MultiBranchData::default_count_offset()));
// The method data pointer needs to be updated.
update_mdp_by_offset(mdp,
in_bytes(MultiBranchData::
default_displacement_offset()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_switch_case(Register index,
Register mdp,
Register reg2) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Build the base (index * per_case_size_in_bytes()) +
// case_array_offset_in_bytes()
mv(reg2, in_bytes(MultiBranchData::per_case_size()));
mv(t0, in_bytes(MultiBranchData::case_array_offset()));
Assembler::mul(index, index, reg2);
Assembler::add(index, index, t0);
// Update the case count
increment_mdp_data_at(mdp,
index,
in_bytes(MultiBranchData::relative_count_offset()));
// The method data pointer need to be updated.
update_mdp_by_offset(mdp,
index,
in_bytes(MultiBranchData::
relative_displacement_offset()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
void InterpreterMacroAssembler::notify_method_entry() {
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
// track stack depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (JvmtiExport::can_post_interpreter_events()) {
Label L;
lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset()));
beqz(x13, L);
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::post_method_entry));
bind(L);
}
{
SkipIfEqual skip(this, &DTraceMethodProbes, false);
get_method(c_rarg1);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
xthread, c_rarg1);
}
// RedefineClasses() tracing support for obsolete method entry
if (log_is_enabled(Trace, redefine, class, obsolete)) {
get_method(c_rarg1);
call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
xthread, c_rarg1);
}
}
void InterpreterMacroAssembler::notify_method_exit(
TosState state, NotifyMethodExitMode mode) {
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
// track stack depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
Label L;
// Note: frame::interpreter_frame_result has a dependency on how the
// method result is saved across the call to post_method_exit. If this
// is changed then the interpreter_frame_result implementation will
// need to be updated too.
// template interpreter will leave the result on the top of the stack.
push(state);
lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset()));
beqz(x13, L);
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
bind(L);
pop(state);
}
{
SkipIfEqual skip(this, &DTraceMethodProbes, false);
push(state);
get_method(c_rarg1);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
xthread, c_rarg1);
pop(state);
}
}
// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
int increment, Address mask,
Register tmp1, Register tmp2,
bool preloaded, Label* where) {
Label done;
if (!preloaded) {
lwu(tmp1, counter_addr);
}
add(tmp1, tmp1, increment);
sw(tmp1, counter_addr);
lwu(tmp2, mask);
andr(tmp1, tmp1, tmp2);
bnez(tmp1, done);
j(*where); // offset is too large so we have to use j instead of beqz here
bind(done);
}
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
int number_of_arguments) {
// interpreter specific
//
// Note: No need to save/restore rbcp & rlocals pointer since these
// are callee saved registers and no blocking/ GC can happen
// in leaf calls.
#ifdef ASSERT
{
Label L;
ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
beqz(t0, L);
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
" last_sp isn't null");
bind(L);
}
#endif /* ASSERT */
// super call
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
}
void InterpreterMacroAssembler::call_VM_base(Register oop_result,
Register java_thread,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions) {
// interpreter specific
//
// Note: Could avoid restoring locals ptr (callee saved) - however doesn't
// really make a difference for these runtime calls, since they are
// slow anyway. Btw., bcp must be saved/restored since it may change
// due to GC.
save_bcp();
#ifdef ASSERT
{
Label L;
ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
beqz(t0, L);
stop("InterpreterMacroAssembler::call_VM_base:"
" last_sp isn't null");
bind(L);
}
#endif /* ASSERT */
// super call
MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
entry_point, number_of_arguments,
check_exceptions);
// interpreter specific
restore_bcp();
restore_locals();
}
void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) {
assert_different_registers(obj, tmp, t0, mdo_addr.base());
Label update, next, none;
verify_oop(obj);
bnez(obj, update);
orptr(mdo_addr, TypeEntries::null_seen, t0, tmp);
j(next);
bind(update);
load_klass(obj, obj);
ld(t0, mdo_addr);
xorr(obj, obj, t0);
andi(t0, obj, TypeEntries::type_klass_mask);
beqz(t0, next); // klass seen before, nothing to
// do. The unknown bit may have been
// set already but no need to check.
test_bit(t0, obj, exact_log2(TypeEntries::type_unknown));
bnez(t0, next);
// already unknown. Nothing to do anymore.
ld(t0, mdo_addr);
beqz(t0, none);
mv(tmp, (u1)TypeEntries::null_seen);
beq(t0, tmp, none);
// There is a chance that the checks above (re-reading profiling
// data from memory) fail if another thread has just set the
// profiling to this obj's klass
ld(t0, mdo_addr);
xorr(obj, obj, t0);
andi(t0, obj, TypeEntries::type_klass_mask);
beqz(t0, next);
// different than before. Cannot keep accurate profile.
orptr(mdo_addr, TypeEntries::type_unknown, t0, tmp);
j(next);
bind(none);
// first time here. Set profile type.
sd(obj, mdo_addr);
bind(next);
}
void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
if (!ProfileInterpreter) {
return;
}
if (MethodData::profile_arguments() || MethodData::profile_return()) {
Label profile_continue;
test_method_data_pointer(mdp, profile_continue);
int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
lbu(t0, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
if (is_virtual) {
mv(tmp, (u1)DataLayout::virtual_call_type_data_tag);
bne(t0, tmp, profile_continue);
} else {
mv(tmp, (u1)DataLayout::call_type_data_tag);
bne(t0, tmp, profile_continue);
}
// calculate slot step
static int stack_slot_offset0 = in_bytes(TypeEntriesAtCall::stack_slot_offset(0));
static int slot_step = in_bytes(TypeEntriesAtCall::stack_slot_offset(1)) - stack_slot_offset0;
// calculate type step
static int argument_type_offset0 = in_bytes(TypeEntriesAtCall::argument_type_offset(0));
static int type_step = in_bytes(TypeEntriesAtCall::argument_type_offset(1)) - argument_type_offset0;
if (MethodData::profile_arguments()) {
Label done, loop, loopEnd, profileArgument, profileReturnType;
RegSet pushed_registers;
pushed_registers += x15;
pushed_registers += x16;
pushed_registers += x17;
Register mdo_addr = x15;
Register index = x16;
Register off_to_args = x17;
push_reg(pushed_registers, sp);
mv(off_to_args, in_bytes(TypeEntriesAtCall::args_data_offset()));
mv(t0, TypeProfileArgsLimit);
beqz(t0, loopEnd);
mv(index, zr); // index < TypeProfileArgsLimit
bind(loop);
bgtz(index, profileReturnType);
mv(t0, (int)MethodData::profile_return());
beqz(t0, profileArgument); // (index > 0 || MethodData::profile_return()) == false
bind(profileReturnType);
// If return value type is profiled we may have no argument to profile
ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
mv(t1, - TypeStackSlotEntries::per_arg_count());
mul(t1, index, t1);
add(tmp, tmp, t1);
mv(t1, TypeStackSlotEntries::per_arg_count());
add(t0, mdp, off_to_args);
blt(tmp, t1, done);
bind(profileArgument);
ld(tmp, Address(callee, Method::const_offset()));
load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
// stack offset o (zero based) from the start of the argument
// list, for n arguments translates into offset n - o - 1 from
// the end of the argument list
mv(t0, stack_slot_offset0);
mv(t1, slot_step);
mul(t1, index, t1);
add(t0, t0, t1);
add(t0, mdp, t0);
ld(t0, Address(t0));
sub(tmp, tmp, t0);
addi(tmp, tmp, -1);
Address arg_addr = argument_address(tmp);
ld(tmp, arg_addr);
mv(t0, argument_type_offset0);
mv(t1, type_step);
mul(t1, index, t1);
add(t0, t0, t1);
add(mdo_addr, mdp, t0);
Address mdo_arg_addr(mdo_addr, 0);
profile_obj_type(tmp, mdo_arg_addr, t1);
int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
addi(off_to_args, off_to_args, to_add);
// increment index by 1
addi(index, index, 1);
mv(t1, TypeProfileArgsLimit);
blt(index, t1, loop);
bind(loopEnd);
if (MethodData::profile_return()) {
ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
addi(tmp, tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
}
add(t0, mdp, off_to_args);
bind(done);
mv(mdp, t0);
// unspill the clobbered registers
pop_reg(pushed_registers, sp);
if (MethodData::profile_return()) {
// We're right after the type profile for the last
// argument. tmp is the number of cells left in the
// CallTypeData/VirtualCallTypeData to reach its end. Non null
// if there's a return to profile.
assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
shadd(mdp, tmp, mdp, tmp, exact_log2(DataLayout::cell_size));
}
sd(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
} else {
assert(MethodData::profile_return(), "either profile call args or call ret");
update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
}
// mdp points right after the end of the
// CallTypeData/VirtualCallTypeData, right after the cells for the
// return value type if there's one
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
assert_different_registers(mdp, ret, tmp, xbcp, t0, t1);
if (ProfileInterpreter && MethodData::profile_return()) {
Label profile_continue, done;
test_method_data_pointer(mdp, profile_continue);
if (MethodData::profile_return_jsr292_only()) {
assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
// If we don't profile all invoke bytecodes we must make sure
// it's a bytecode we indeed profile. We can't go back to the
// beginning of the ProfileData we intend to update to check its
// type because we're right after it and we don't known its
// length
Label do_profile;
lbu(t0, Address(xbcp, 0));
mv(tmp, (u1)Bytecodes::_invokedynamic);
beq(t0, tmp, do_profile);
mv(tmp, (u1)Bytecodes::_invokehandle);
beq(t0, tmp, do_profile);
get_method(tmp);
lhu(t0, Address(tmp, Method::intrinsic_id_offset()));
mv(t1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
bne(t0, t1, profile_continue);
bind(do_profile);
}
Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
mv(tmp, ret);
profile_obj_type(tmp, mdo_ret_addr, t1);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2, Register tmp3) {
assert_different_registers(t0, t1, mdp, tmp1, tmp2, tmp3);
if (ProfileInterpreter && MethodData::profile_parameters()) {
Label profile_continue, done;
test_method_data_pointer(mdp, profile_continue);
// Load the offset of the area within the MDO used for
// parameters. If it's negative we're not profiling any parameters
lwu(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
srli(tmp2, tmp1, 31);
bnez(tmp2, profile_continue); // i.e. sign bit set
// Compute a pointer to the area for parameters from the offset
// and move the pointer to the slot for the last
// parameters. Collect profiling from last parameter down.
// mdo start + parameters offset + array length - 1
add(mdp, mdp, tmp1);
ld(tmp1, Address(mdp, ArrayData::array_len_offset()));
add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count());
Label loop;
bind(loop);
int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
int type_base = in_bytes(ParametersTypeData::type_offset(0));
int per_arg_scale = exact_log2(DataLayout::cell_size);
add(t0, mdp, off_base);
add(t1, mdp, type_base);
shadd(tmp2, tmp1, t0, tmp2, per_arg_scale);
// load offset on the stack from the slot for this parameter
ld(tmp2, Address(tmp2, 0));
neg(tmp2, tmp2);
// read the parameter from the local area
shadd(tmp2, tmp2, xlocals, tmp2, Interpreter::logStackElementSize);
ld(tmp2, Address(tmp2, 0));
// profile the parameter
shadd(t1, tmp1, t1, t0, per_arg_scale);
Address arg_type(t1, 0);
profile_obj_type(tmp2, arg_type, tmp3);
// go to next parameter
add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count());
bgez(tmp1, loop);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
// Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
// register "cache" is trashed in next ld, so lets use it as a temporary register
get_cache_index_at_bcp(index, cache, 1, sizeof(u4));
// Get address of invokedynamic array
ld(cache, Address(xcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
// Scale the index to be the entry index * sizeof(ResolvedInvokeDynamicInfo)
slli(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
add(cache, cache, index);
la(cache, Address(cache, 0));
}
void InterpreterMacroAssembler::get_method_counters(Register method,
Register mcs, Label& skip) {
Label has_counters;
ld(mcs, Address(method, Method::method_counters_offset()));
bnez(mcs, has_counters);
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::build_method_counters), method);
ld(mcs, Address(method, Method::method_counters_offset()));
beqz(mcs, skip); // No MethodCounters allocated, OutOfMemory
bind(has_counters);
}
#ifdef ASSERT
void InterpreterMacroAssembler::verify_access_flags(Register access_flags, uint32_t flag,
const char* msg, bool stop_by_hit) {
Label L;
test_bit(t0, access_flags, exact_log2(flag));
if (stop_by_hit) {
beqz(t0, L);
} else {
bnez(t0, L);
}
stop(msg);
bind(L);
}
void InterpreterMacroAssembler::verify_frame_setup() {
Label L;
const Address monitor_block_top(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
ld(t0, monitor_block_top);
beq(esp, t0, L);
stop("broken stack frame setup in interpreter");
bind(L);
}
#endif