mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-26 14:24:46 +02:00
788 lines
36 KiB
C++
788 lines
36 KiB
C++
/*
|
|
* Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*
|
|
*/
|
|
|
|
inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
|
|
jint& stub_inst = *(jint*) branch;
|
|
stub_inst = patched_branch(target - branch, stub_inst, 0);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
inline void MacroAssembler::pd_print_patched_instruction(address branch) {
|
|
jint stub_inst = *(jint*) branch;
|
|
print_instruction(stub_inst);
|
|
::tty->print("%s", " (unresolved)");
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
|
|
|
|
|
|
// inlines for SPARC assembler -- dmu 5/97
|
|
|
|
inline void Assembler::check_delay() {
|
|
# ifdef CHECK_DELAY
|
|
guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
|
|
delay_state = no_delay;
|
|
# endif
|
|
}
|
|
|
|
inline void Assembler::emit_long(int x) {
|
|
check_delay();
|
|
AbstractAssembler::emit_long(x);
|
|
}
|
|
|
|
inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
|
|
relocate(rtype);
|
|
emit_long(x);
|
|
}
|
|
|
|
inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
|
|
relocate(rspec);
|
|
emit_long(x);
|
|
}
|
|
|
|
|
|
inline void Assembler::add( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::add( Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
|
|
inline void Assembler::add( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
|
|
inline void Assembler::add( const Address& a, Register d, int offset) { add( a.base(), a.disp() + offset, d, a.rspec(offset)); }
|
|
|
|
inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt); has_delay_slot(); }
|
|
inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
|
|
|
|
inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt); has_delay_slot(); }
|
|
inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
|
|
|
|
inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt); has_delay_slot(); }
|
|
inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
|
|
|
|
inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt); has_delay_slot(); }
|
|
inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
|
|
|
|
inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt); has_delay_slot(); }
|
|
inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
|
|
|
|
inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt); has_delay_slot(); }
|
|
inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
|
|
|
|
inline void Assembler::call( address d, relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt); has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
|
|
inline void Assembler::call( Label& L, relocInfo::relocType rt ) { call( target(L), rt); }
|
|
|
|
inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
|
|
inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
inline void Assembler::jmpl( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2)); has_delay_slot(); }
|
|
inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); has_delay_slot(); }
|
|
|
|
inline void Assembler::jmpl( Address& a, Register d, int offset) { jmpl( a.base(), a.disp() + offset, d, a.rspec(offset)); }
|
|
|
|
|
|
inline void Assembler::ldf( FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::ldf( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
inline void Assembler::ldf( FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
|
|
|
|
inline void Assembler::ldfsr( Register s1, Register s2) { v9_dep(); emit_long( op(ldst_op) | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::ldfsr( Register s1, int simm13a) { v9_dep(); emit_data( op(ldst_op) | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only(); emit_long( op(ldst_op) | rd(G1) | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only(); emit_data( op(ldst_op) | rd(G1) | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
inline void Assembler::ldc( Register s1, Register s2, int crd) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3 ) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::ldc( Register s1, int simm13a, int crd) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::lddc( Register s1, Register s2, int crd) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::lddc( Register s1, int simm13a, int crd) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
inline void Assembler::ldsb( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::ldsb( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
inline void Assembler::ldsh( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::ldsh( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::ldsw( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::ldsw( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::ldub( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::ldub( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::lduh( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::lduh( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::lduw( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::lduw( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
inline void Assembler::ldx( Register s1, Register s2, Register d) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::ldx( Register s1, int simm13a, Register d) { v9_only(); emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::ldd( Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::ldd( Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
#ifdef _LP64
|
|
// Make all 32 bit loads signed so 64 bit registers maintain proper sign
|
|
inline void Assembler::ld( Register s1, Register s2, Register d) { ldsw( s1, s2, d); }
|
|
inline void Assembler::ld( Register s1, int simm13a, Register d) { ldsw( s1, simm13a, d); }
|
|
#else
|
|
inline void Assembler::ld( Register s1, Register s2, Register d) { lduw( s1, s2, d); }
|
|
inline void Assembler::ld( Register s1, int simm13a, Register d) { lduw( s1, simm13a, d); }
|
|
#endif
|
|
|
|
inline void Assembler::ldub( Register s1, RegisterConstant s2, Register d) {
|
|
if (s2.is_register()) ldsb(s1, s2.as_register(), d);
|
|
else ldsb(s1, s2.as_constant(), d);
|
|
}
|
|
inline void Assembler::ldsb( Register s1, RegisterConstant s2, Register d) {
|
|
if (s2.is_register()) ldsb(s1, s2.as_register(), d);
|
|
else ldsb(s1, s2.as_constant(), d);
|
|
}
|
|
inline void Assembler::lduh( Register s1, RegisterConstant s2, Register d) {
|
|
if (s2.is_register()) ldsh(s1, s2.as_register(), d);
|
|
else ldsh(s1, s2.as_constant(), d);
|
|
}
|
|
inline void Assembler::ldsh( Register s1, RegisterConstant s2, Register d) {
|
|
if (s2.is_register()) ldsh(s1, s2.as_register(), d);
|
|
else ldsh(s1, s2.as_constant(), d);
|
|
}
|
|
inline void Assembler::lduw( Register s1, RegisterConstant s2, Register d) {
|
|
if (s2.is_register()) ldsw(s1, s2.as_register(), d);
|
|
else ldsw(s1, s2.as_constant(), d);
|
|
}
|
|
inline void Assembler::ldsw( Register s1, RegisterConstant s2, Register d) {
|
|
if (s2.is_register()) ldsw(s1, s2.as_register(), d);
|
|
else ldsw(s1, s2.as_constant(), d);
|
|
}
|
|
inline void Assembler::ldx( Register s1, RegisterConstant s2, Register d) {
|
|
if (s2.is_register()) ldx(s1, s2.as_register(), d);
|
|
else ldx(s1, s2.as_constant(), d);
|
|
}
|
|
inline void Assembler::ld( Register s1, RegisterConstant s2, Register d) {
|
|
if (s2.is_register()) ld(s1, s2.as_register(), d);
|
|
else ld(s1, s2.as_constant(), d);
|
|
}
|
|
inline void Assembler::ldd( Register s1, RegisterConstant s2, Register d) {
|
|
if (s2.is_register()) ldd(s1, s2.as_register(), d);
|
|
else ldd(s1, s2.as_constant(), d);
|
|
}
|
|
|
|
// form effective addresses this way:
|
|
inline void Assembler::add( Register s1, RegisterConstant s2, Register d, int offset) {
|
|
if (s2.is_register()) add(s1, s2.as_register(), d);
|
|
else { add(s1, s2.as_constant() + offset, d); offset = 0; }
|
|
if (offset != 0) add(d, offset, d);
|
|
}
|
|
|
|
inline void Assembler::ld( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ld( a.base(), a.disp() + offset, d ); }
|
|
inline void Assembler::ldsb( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsb( a.base(), a.disp() + offset, d ); }
|
|
inline void Assembler::ldsh( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsh( a.base(), a.disp() + offset, d ); }
|
|
inline void Assembler::ldsw( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsw( a.base(), a.disp() + offset, d ); }
|
|
inline void Assembler::ldub( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldub( a.base(), a.disp() + offset, d ); }
|
|
inline void Assembler::lduh( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); lduh( a.base(), a.disp() + offset, d ); }
|
|
inline void Assembler::lduw( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); lduw( a.base(), a.disp() + offset, d ); }
|
|
inline void Assembler::ldd( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldd( a.base(), a.disp() + offset, d ); }
|
|
inline void Assembler::ldx( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldx( a.base(), a.disp() + offset, d ); }
|
|
|
|
|
|
inline void Assembler::ldstub( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::ldstub( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
|
|
inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only(); emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
|
|
|
|
|
|
inline void Assembler::rett( Register s1, Register s2 ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2)); has_delay_slot(); }
|
|
inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt); has_delay_slot(); }
|
|
|
|
inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
|
|
|
|
// pp 222
|
|
|
|
inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
|
|
|
|
inline void Assembler::stfsr( Register s1, Register s2) { v9_dep(); emit_long( op(ldst_op) | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::stfsr( Register s1, int simm13a) { v9_dep(); emit_data( op(ldst_op) | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::stxfsr( Register s1, Register s2) { v9_only(); emit_long( op(ldst_op) | rd(G1) | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only(); emit_data( op(ldst_op) | rd(G1) | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
// p 226
|
|
|
|
inline void Assembler::stb( Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::stb( Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::sth( Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::sth( Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::stw( Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::stw( Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
|
|
inline void Assembler::stx( Register d, Register s1, Register s2) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::stx( Register d, Register s1, int simm13a) { v9_only(); emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::std( Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::std( Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
inline void Assembler::st( Register d, Register s1, Register s2) { stw(d, s1, s2); }
|
|
inline void Assembler::st( Register d, Register s1, int simm13a) { stw(d, s1, simm13a); }
|
|
|
|
inline void Assembler::stb( Register d, Register s1, RegisterConstant s2) {
|
|
if (s2.is_register()) stb(d, s1, s2.as_register());
|
|
else stb(d, s1, s2.as_constant());
|
|
}
|
|
inline void Assembler::sth( Register d, Register s1, RegisterConstant s2) {
|
|
if (s2.is_register()) sth(d, s1, s2.as_register());
|
|
else sth(d, s1, s2.as_constant());
|
|
}
|
|
inline void Assembler::stx( Register d, Register s1, RegisterConstant s2) {
|
|
if (s2.is_register()) stx(d, s1, s2.as_register());
|
|
else stx(d, s1, s2.as_constant());
|
|
}
|
|
inline void Assembler::std( Register d, Register s1, RegisterConstant s2) {
|
|
if (s2.is_register()) std(d, s1, s2.as_register());
|
|
else std(d, s1, s2.as_constant());
|
|
}
|
|
inline void Assembler::st( Register d, Register s1, RegisterConstant s2) {
|
|
if (s2.is_register()) st(d, s1, s2.as_register());
|
|
else st(d, s1, s2.as_constant());
|
|
}
|
|
|
|
inline void Assembler::stb( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stb( d, a.base(), a.disp() + offset); }
|
|
inline void Assembler::sth( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); sth( d, a.base(), a.disp() + offset); }
|
|
inline void Assembler::stw( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stw( d, a.base(), a.disp() + offset); }
|
|
inline void Assembler::st( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); st( d, a.base(), a.disp() + offset); }
|
|
inline void Assembler::std( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); std( d, a.base(), a.disp() + offset); }
|
|
inline void Assembler::stx( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stx( d, a.base(), a.disp() + offset); }
|
|
|
|
// v8 p 99
|
|
|
|
inline void Assembler::stc( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::stc( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::stdc( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::stdc( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::stcsr( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::stcsr( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
inline void Assembler::stdcq( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::stdcq( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
|
|
// pp 231
|
|
|
|
inline void Assembler::swap( Register s1, Register s2, Register d) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
|
|
inline void Assembler::swap( Register s1, int simm13a, Register d) { v9_dep(); emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
|
|
|
|
inline void Assembler::swap( Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap( a.base(), a.disp() + offset, d ); }
|
|
|
|
|
|
// Use the right loads/stores for the platform
|
|
inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
|
|
#ifdef _LP64
|
|
Assembler::ldx( s1, s2, d);
|
|
#else
|
|
Assembler::ld( s1, s2, d);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
|
|
#ifdef _LP64
|
|
Assembler::ldx( s1, simm13a, d);
|
|
#else
|
|
Assembler::ld( s1, simm13a, d);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::ld_ptr( Register s1, RegisterConstant s2, Register d ) {
|
|
#ifdef _LP64
|
|
Assembler::ldx( s1, s2, d);
|
|
#else
|
|
Assembler::ld( s1, s2, d);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::ld_ptr( const Address& a, Register d, int offset ) {
|
|
#ifdef _LP64
|
|
Assembler::ldx( a, d, offset );
|
|
#else
|
|
Assembler::ld( a, d, offset );
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
|
|
#ifdef _LP64
|
|
Assembler::stx( d, s1, s2);
|
|
#else
|
|
Assembler::st( d, s1, s2);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
|
|
#ifdef _LP64
|
|
Assembler::stx( d, s1, simm13a);
|
|
#else
|
|
Assembler::st( d, s1, simm13a);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterConstant s2 ) {
|
|
#ifdef _LP64
|
|
Assembler::stx( d, s1, s2);
|
|
#else
|
|
Assembler::st( d, s1, s2);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::st_ptr( Register d, const Address& a, int offset) {
|
|
#ifdef _LP64
|
|
Assembler::stx( d, a, offset);
|
|
#else
|
|
Assembler::st( d, a, offset);
|
|
#endif
|
|
}
|
|
|
|
// Use the right loads/stores for the platform
|
|
inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
|
|
#ifdef _LP64
|
|
Assembler::ldx(s1, s2, d);
|
|
#else
|
|
Assembler::ldd(s1, s2, d);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
|
|
#ifdef _LP64
|
|
Assembler::ldx(s1, simm13a, d);
|
|
#else
|
|
Assembler::ldd(s1, simm13a, d);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::ld_long( Register s1, RegisterConstant s2, Register d ) {
|
|
#ifdef _LP64
|
|
Assembler::ldx(s1, s2, d);
|
|
#else
|
|
Assembler::ldd(s1, s2, d);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::ld_long( const Address& a, Register d, int offset ) {
|
|
#ifdef _LP64
|
|
Assembler::ldx(a, d, offset );
|
|
#else
|
|
Assembler::ldd(a, d, offset );
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
|
|
#ifdef _LP64
|
|
Assembler::stx(d, s1, s2);
|
|
#else
|
|
Assembler::std(d, s1, s2);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
|
|
#ifdef _LP64
|
|
Assembler::stx(d, s1, simm13a);
|
|
#else
|
|
Assembler::std(d, s1, simm13a);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::st_long( Register d, Register s1, RegisterConstant s2 ) {
|
|
#ifdef _LP64
|
|
Assembler::stx(d, s1, s2);
|
|
#else
|
|
Assembler::std(d, s1, s2);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
|
|
#ifdef _LP64
|
|
Assembler::stx(d, a, offset);
|
|
#else
|
|
Assembler::std(d, a, offset);
|
|
#endif
|
|
}
|
|
|
|
// Functions for isolating 64 bit shifts for LP64
|
|
|
|
inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
|
|
#ifdef _LP64
|
|
Assembler::sllx(s1, s2, d);
|
|
#else
|
|
Assembler::sll(s1, s2, d);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::sll_ptr( Register s1, int imm6a, Register d ) {
|
|
#ifdef _LP64
|
|
Assembler::sllx(s1, imm6a, d);
|
|
#else
|
|
Assembler::sll(s1, imm6a, d);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
|
|
#ifdef _LP64
|
|
Assembler::srlx(s1, s2, d);
|
|
#else
|
|
Assembler::srl(s1, s2, d);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::srl_ptr( Register s1, int imm6a, Register d ) {
|
|
#ifdef _LP64
|
|
Assembler::srlx(s1, imm6a, d);
|
|
#else
|
|
Assembler::srl(s1, imm6a, d);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::sll_ptr( Register s1, RegisterConstant s2, Register d ) {
|
|
if (s2.is_register()) sll_ptr(s1, s2.as_register(), d);
|
|
else sll_ptr(s1, s2.as_constant(), d);
|
|
}
|
|
|
|
// Use the right branch for the platform
|
|
|
|
inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
|
|
if (VM_Version::v9_instructions_work())
|
|
Assembler::bp(c, a, icc, p, d, rt);
|
|
else
|
|
Assembler::br(c, a, d, rt);
|
|
}
|
|
|
|
inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
|
|
br(c, a, p, target(L));
|
|
}
|
|
|
|
|
|
// Branch that tests either xcc or icc depending on the
|
|
// architecture compiled (LP64 or not)
|
|
inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
|
|
#ifdef _LP64
|
|
Assembler::bp(c, a, xcc, p, d, rt);
|
|
#else
|
|
MacroAssembler::br(c, a, p, d, rt);
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
|
|
brx(c, a, p, target(L));
|
|
}
|
|
|
|
inline void MacroAssembler::ba( bool a, Label& L ) {
|
|
br(always, a, pt, L);
|
|
}
|
|
|
|
// Warning: V9 only functions
|
|
inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
|
|
Assembler::bp(c, a, cc, p, d, rt);
|
|
}
|
|
|
|
inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
|
|
Assembler::bp(c, a, cc, p, L);
|
|
}
|
|
|
|
inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
|
|
if (VM_Version::v9_instructions_work())
|
|
fbp(c, a, fcc0, p, d, rt);
|
|
else
|
|
Assembler::fb(c, a, d, rt);
|
|
}
|
|
|
|
inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
|
|
fb(c, a, p, target(L));
|
|
}
|
|
|
|
inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
|
|
Assembler::fbp(c, a, cc, p, d, rt);
|
|
}
|
|
|
|
inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
|
|
Assembler::fbp(c, a, cc, p, L);
|
|
}
|
|
|
|
inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
|
|
inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
|
|
|
|
// Call with a check to see if we need to deal with the added
|
|
// expense of relocation and if we overflow the displacement
|
|
// of the quick call instruction./
|
|
// Check to see if we have to deal with relocations
|
|
inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
|
|
#ifdef _LP64
|
|
intptr_t disp;
|
|
// NULL is ok because it will be relocated later.
|
|
// Must change NULL to a reachable address in order to
|
|
// pass asserts here and in wdisp.
|
|
if ( d == NULL )
|
|
d = pc();
|
|
|
|
// Is this address within range of the call instruction?
|
|
// If not, use the expensive instruction sequence
|
|
disp = (intptr_t)d - (intptr_t)pc();
|
|
if ( disp != (intptr_t)(int32_t)disp ) {
|
|
relocate(rt);
|
|
Address dest(O7, (address)d);
|
|
sethi(dest, /*ForceRelocatable=*/ true);
|
|
jmpl(dest, O7);
|
|
}
|
|
else {
|
|
Assembler::call( d, rt );
|
|
}
|
|
#else
|
|
Assembler::call( d, rt );
|
|
#endif
|
|
}
|
|
|
|
inline void MacroAssembler::call( Label& L, relocInfo::relocType rt ) {
|
|
MacroAssembler::call( target(L), rt);
|
|
}
|
|
|
|
|
|
|
|
inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
|
|
inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
|
|
|
|
// prefetch instruction
|
|
inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
|
|
if (VM_Version::v9_instructions_work())
|
|
Assembler::bp( never, true, xcc, pt, d, rt );
|
|
}
|
|
inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
|
|
|
|
|
|
// clobbers o7 on V8!!
|
|
// returns delta from gotten pc to addr after
|
|
inline int MacroAssembler::get_pc( Register d ) {
|
|
int x = offset();
|
|
if (VM_Version::v9_instructions_work())
|
|
rdpc(d);
|
|
else {
|
|
Label lbl;
|
|
Assembler::call(lbl, relocInfo::none); // No relocation as this is call to pc+0x8
|
|
if (d == O7) delayed()->nop();
|
|
else delayed()->mov(O7, d);
|
|
bind(lbl);
|
|
}
|
|
return offset() - x;
|
|
}
|
|
|
|
|
|
// Note: All MacroAssembler::set_foo functions are defined out-of-line.
|
|
|
|
|
|
// Loads the current PC of the following instruction as an immediate value in
|
|
// 2 instructions. All PCs in the CodeCache are within 2 Gig of each other.
|
|
inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
|
|
intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
|
|
#ifdef _LP64
|
|
Unimplemented();
|
|
#else
|
|
Assembler::sethi( thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
|
|
Assembler::add(reg,thepc & 0x3ff, reg, internal_word_Relocation::spec((address)thepc));
|
|
#endif
|
|
return thepc;
|
|
}
|
|
|
|
inline void MacroAssembler::load_address( Address& a, int offset ) {
|
|
assert_not_delayed();
|
|
#ifdef _LP64
|
|
sethi(a);
|
|
add(a, a.base(), offset);
|
|
#else
|
|
if (a.hi() == 0 && a.rtype() == relocInfo::none) {
|
|
set(a.disp() + offset, a.base());
|
|
}
|
|
else {
|
|
sethi(a);
|
|
add(a, a.base(), offset);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
inline void MacroAssembler::split_disp( Address& a, Register temp ) {
|
|
assert_not_delayed();
|
|
a = a.split_disp();
|
|
Assembler::sethi(a.hi(), temp, a.rspec());
|
|
add(a.base(), temp, a.base());
|
|
}
|
|
|
|
|
|
inline void MacroAssembler::load_contents( Address& a, Register d, int offset ) {
|
|
assert_not_delayed();
|
|
sethi(a);
|
|
ld(a, d, offset);
|
|
}
|
|
|
|
|
|
inline void MacroAssembler::load_ptr_contents( Address& a, Register d, int offset ) {
|
|
assert_not_delayed();
|
|
sethi(a);
|
|
ld_ptr(a, d, offset);
|
|
}
|
|
|
|
|
|
inline void MacroAssembler::store_contents( Register s, Address& a, int offset ) {
|
|
assert_not_delayed();
|
|
sethi(a);
|
|
st(s, a, offset);
|
|
}
|
|
|
|
|
|
inline void MacroAssembler::store_ptr_contents( Register s, Address& a, int offset ) {
|
|
assert_not_delayed();
|
|
sethi(a);
|
|
st_ptr(s, a, offset);
|
|
}
|
|
|
|
|
|
// This code sequence is relocatable to any address, even on LP64.
|
|
inline void MacroAssembler::jumpl_to( Address& a, Register d, int offset ) {
|
|
assert_not_delayed();
|
|
// Force fixed length sethi because NativeJump and NativeFarCall don't handle
|
|
// variable length instruction streams.
|
|
sethi(a, /*ForceRelocatable=*/ true);
|
|
jmpl(a, d, offset);
|
|
}
|
|
|
|
|
|
inline void MacroAssembler::jump_to( Address& a, int offset ) {
|
|
jumpl_to( a, G0, offset );
|
|
}
|
|
|
|
|
|
inline void MacroAssembler::set_oop( jobject obj, Register d ) {
|
|
set_oop(allocate_oop_address(obj, d));
|
|
}
|
|
|
|
|
|
inline void MacroAssembler::set_oop_constant( jobject obj, Register d ) {
|
|
set_oop(constant_oop_address(obj, d));
|
|
}
|
|
|
|
|
|
inline void MacroAssembler::set_oop( Address obj_addr ) {
|
|
assert(obj_addr.rspec().type()==relocInfo::oop_type, "must be an oop reloc");
|
|
load_address(obj_addr);
|
|
}
|
|
|
|
|
|
inline void MacroAssembler::load_argument( Argument& a, Register d ) {
|
|
if (a.is_register())
|
|
mov(a.as_register(), d);
|
|
else
|
|
ld (a.as_address(), d);
|
|
}
|
|
|
|
inline void MacroAssembler::store_argument( Register s, Argument& a ) {
|
|
if (a.is_register())
|
|
mov(s, a.as_register());
|
|
else
|
|
st_ptr (s, a.as_address()); // ABI says everything is right justified.
|
|
}
|
|
|
|
inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
|
|
if (a.is_register())
|
|
mov(s, a.as_register());
|
|
else
|
|
st_ptr (s, a.as_address());
|
|
}
|
|
|
|
|
|
#ifdef _LP64
|
|
inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
|
|
if (a.is_float_register())
|
|
// V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
|
|
fmov(FloatRegisterImpl::S, s, a.as_float_register() );
|
|
else
|
|
// Floats are stored in the high half of the stack entry
|
|
// The low half is undefined per the ABI.
|
|
stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
|
|
}
|
|
|
|
inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
|
|
if (a.is_float_register())
|
|
// V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
|
|
fmov(FloatRegisterImpl::D, s, a.as_double_register() );
|
|
else
|
|
stf(FloatRegisterImpl::D, s, a.as_address());
|
|
}
|
|
|
|
inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
|
|
if (a.is_register())
|
|
mov(s, a.as_register());
|
|
else
|
|
stx(s, a.as_address());
|
|
}
|
|
#endif
|
|
|
|
inline void MacroAssembler::clrb( Register s1, Register s2) { stb( G0, s1, s2 ); }
|
|
inline void MacroAssembler::clrh( Register s1, Register s2) { sth( G0, s1, s2 ); }
|
|
inline void MacroAssembler::clr( Register s1, Register s2) { stw( G0, s1, s2 ); }
|
|
inline void MacroAssembler::clrx( Register s1, Register s2) { stx( G0, s1, s2 ); }
|
|
|
|
inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
|
|
inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
|
|
inline void MacroAssembler::clr( Register s1, int simm13a) { stw( G0, s1, simm13a); }
|
|
inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
|
|
|
|
// returns if membar generates anything, obviously this code should mirror
|
|
// membar below.
|
|
inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
|
|
if( !os::is_MP() ) return false; // Not needed on single CPU
|
|
if( VM_Version::v9_instructions_work() ) {
|
|
const Membar_mask_bits effective_mask =
|
|
Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
|
|
return (effective_mask != 0);
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
|
|
// Uniprocessors do not need memory barriers
|
|
if (!os::is_MP()) return;
|
|
// Weakened for current Sparcs and TSO. See the v9 manual, sections 8.4.3,
|
|
// 8.4.4.3, a.31 and a.50.
|
|
if( VM_Version::v9_instructions_work() ) {
|
|
// Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
|
|
// of the mmask subfield of const7a that does anything that isn't done
|
|
// implicitly is StoreLoad.
|
|
const Membar_mask_bits effective_mask =
|
|
Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
|
|
if ( effective_mask != 0 ) {
|
|
Assembler::membar( effective_mask );
|
|
}
|
|
} else {
|
|
// stbar is the closest there is on v8. Equivalent to membar(StoreStore). We
|
|
// do not issue the stbar because to my knowledge all v8 machines implement TSO,
|
|
// which guarantees that all stores behave as if an stbar were issued just after
|
|
// each one of them. On these machines, stbar ought to be a nop. There doesn't
|
|
// appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
|
|
// it can't be specified by stbar, nor have I come up with a way to simulate it.
|
|
//
|
|
// Addendum. Dave says that ldstub guarantees a write buffer flush to coherent
|
|
// space. Put one here to be on the safe side.
|
|
Assembler::ldstub(SP, 0, G0);
|
|
}
|
|
}
|