mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-21 11:34:38 +02:00
614 lines
19 KiB
C++
614 lines
19 KiB
C++
/*
|
|
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "runtime/atomic.inline.hpp"
|
|
#include "utilities/bitMap.inline.hpp"
|
|
#include "utilities/copy.hpp"
|
|
|
|
BitMap::BitMap(bm_word_t* map, idx_t size_in_bits) :
|
|
_map(map), _size(size_in_bits), _map_allocator(false)
|
|
{
|
|
assert(sizeof(bm_word_t) == BytesPerWord, "Implementation assumption.");
|
|
assert(size_in_bits >= 0, "just checking");
|
|
}
|
|
|
|
|
|
BitMap::BitMap(idx_t size_in_bits, bool in_resource_area) :
|
|
_map(NULL), _size(0), _map_allocator(false)
|
|
{
|
|
assert(sizeof(bm_word_t) == BytesPerWord, "Implementation assumption.");
|
|
resize(size_in_bits, in_resource_area);
|
|
}
|
|
|
|
void BitMap::resize(idx_t size_in_bits, bool in_resource_area) {
|
|
assert(size_in_bits >= 0, "just checking");
|
|
idx_t old_size_in_words = size_in_words();
|
|
bm_word_t* old_map = map();
|
|
|
|
_size = size_in_bits;
|
|
idx_t new_size_in_words = size_in_words();
|
|
if (in_resource_area) {
|
|
_map = NEW_RESOURCE_ARRAY(bm_word_t, new_size_in_words);
|
|
Copy::disjoint_words((HeapWord*)old_map, (HeapWord*) _map,
|
|
MIN2(old_size_in_words, new_size_in_words));
|
|
} else {
|
|
_map = _map_allocator.reallocate(new_size_in_words);
|
|
}
|
|
|
|
if (new_size_in_words > old_size_in_words) {
|
|
clear_range_of_words(old_size_in_words, new_size_in_words);
|
|
}
|
|
}
|
|
|
|
void BitMap::set_range_within_word(idx_t beg, idx_t end) {
|
|
// With a valid range (beg <= end), this test ensures that end != 0, as
|
|
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
|
|
if (beg != end) {
|
|
bm_word_t mask = inverted_bit_mask_for_range(beg, end);
|
|
*word_addr(beg) |= ~mask;
|
|
}
|
|
}
|
|
|
|
void BitMap::clear_range_within_word(idx_t beg, idx_t end) {
|
|
// With a valid range (beg <= end), this test ensures that end != 0, as
|
|
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
|
|
if (beg != end) {
|
|
bm_word_t mask = inverted_bit_mask_for_range(beg, end);
|
|
*word_addr(beg) &= mask;
|
|
}
|
|
}
|
|
|
|
void BitMap::par_put_range_within_word(idx_t beg, idx_t end, bool value) {
|
|
assert(value == 0 || value == 1, "0 for clear, 1 for set");
|
|
// With a valid range (beg <= end), this test ensures that end != 0, as
|
|
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
|
|
if (beg != end) {
|
|
intptr_t* pw = (intptr_t*)word_addr(beg);
|
|
intptr_t w = *pw;
|
|
intptr_t mr = (intptr_t)inverted_bit_mask_for_range(beg, end);
|
|
intptr_t nw = value ? (w | ~mr) : (w & mr);
|
|
while (true) {
|
|
intptr_t res = Atomic::cmpxchg_ptr(nw, pw, w);
|
|
if (res == w) break;
|
|
w = res;
|
|
nw = value ? (w | ~mr) : (w & mr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BitMap::set_range(idx_t beg, idx_t end) {
|
|
verify_range(beg, end);
|
|
|
|
idx_t beg_full_word = word_index_round_up(beg);
|
|
idx_t end_full_word = word_index(end);
|
|
|
|
if (beg_full_word < end_full_word) {
|
|
// The range includes at least one full word.
|
|
set_range_within_word(beg, bit_index(beg_full_word));
|
|
set_range_of_words(beg_full_word, end_full_word);
|
|
set_range_within_word(bit_index(end_full_word), end);
|
|
} else {
|
|
// The range spans at most 2 partial words.
|
|
idx_t boundary = MIN2(bit_index(beg_full_word), end);
|
|
set_range_within_word(beg, boundary);
|
|
set_range_within_word(boundary, end);
|
|
}
|
|
}
|
|
|
|
void BitMap::clear_range(idx_t beg, idx_t end) {
|
|
verify_range(beg, end);
|
|
|
|
idx_t beg_full_word = word_index_round_up(beg);
|
|
idx_t end_full_word = word_index(end);
|
|
|
|
if (beg_full_word < end_full_word) {
|
|
// The range includes at least one full word.
|
|
clear_range_within_word(beg, bit_index(beg_full_word));
|
|
clear_range_of_words(beg_full_word, end_full_word);
|
|
clear_range_within_word(bit_index(end_full_word), end);
|
|
} else {
|
|
// The range spans at most 2 partial words.
|
|
idx_t boundary = MIN2(bit_index(beg_full_word), end);
|
|
clear_range_within_word(beg, boundary);
|
|
clear_range_within_word(boundary, end);
|
|
}
|
|
}
|
|
|
|
void BitMap::set_large_range(idx_t beg, idx_t end) {
|
|
verify_range(beg, end);
|
|
|
|
idx_t beg_full_word = word_index_round_up(beg);
|
|
idx_t end_full_word = word_index(end);
|
|
|
|
assert(end_full_word - beg_full_word >= 32,
|
|
"the range must include at least 32 bytes");
|
|
|
|
// The range includes at least one full word.
|
|
set_range_within_word(beg, bit_index(beg_full_word));
|
|
set_large_range_of_words(beg_full_word, end_full_word);
|
|
set_range_within_word(bit_index(end_full_word), end);
|
|
}
|
|
|
|
void BitMap::clear_large_range(idx_t beg, idx_t end) {
|
|
verify_range(beg, end);
|
|
|
|
idx_t beg_full_word = word_index_round_up(beg);
|
|
idx_t end_full_word = word_index(end);
|
|
|
|
assert(end_full_word - beg_full_word >= 32,
|
|
"the range must include at least 32 bytes");
|
|
|
|
// The range includes at least one full word.
|
|
clear_range_within_word(beg, bit_index(beg_full_word));
|
|
clear_large_range_of_words(beg_full_word, end_full_word);
|
|
clear_range_within_word(bit_index(end_full_word), end);
|
|
}
|
|
|
|
void BitMap::at_put(idx_t offset, bool value) {
|
|
if (value) {
|
|
set_bit(offset);
|
|
} else {
|
|
clear_bit(offset);
|
|
}
|
|
}
|
|
|
|
// Return true to indicate that this thread changed
|
|
// the bit, false to indicate that someone else did.
|
|
// In either case, the requested bit is in the
|
|
// requested state some time during the period that
|
|
// this thread is executing this call. More importantly,
|
|
// if no other thread is executing an action to
|
|
// change the requested bit to a state other than
|
|
// the one that this thread is trying to set it to,
|
|
// then the the bit is in the expected state
|
|
// at exit from this method. However, rather than
|
|
// make such a strong assertion here, based on
|
|
// assuming such constrained use (which though true
|
|
// today, could change in the future to service some
|
|
// funky parallel algorithm), we encourage callers
|
|
// to do such verification, as and when appropriate.
|
|
bool BitMap::par_at_put(idx_t bit, bool value) {
|
|
return value ? par_set_bit(bit) : par_clear_bit(bit);
|
|
}
|
|
|
|
void BitMap::at_put_grow(idx_t offset, bool value) {
|
|
if (offset >= size()) {
|
|
resize(2 * MAX2(size(), offset));
|
|
}
|
|
at_put(offset, value);
|
|
}
|
|
|
|
void BitMap::at_put_range(idx_t start_offset, idx_t end_offset, bool value) {
|
|
if (value) {
|
|
set_range(start_offset, end_offset);
|
|
} else {
|
|
clear_range(start_offset, end_offset);
|
|
}
|
|
}
|
|
|
|
void BitMap::par_at_put_range(idx_t beg, idx_t end, bool value) {
|
|
verify_range(beg, end);
|
|
|
|
idx_t beg_full_word = word_index_round_up(beg);
|
|
idx_t end_full_word = word_index(end);
|
|
|
|
if (beg_full_word < end_full_word) {
|
|
// The range includes at least one full word.
|
|
par_put_range_within_word(beg, bit_index(beg_full_word), value);
|
|
if (value) {
|
|
set_range_of_words(beg_full_word, end_full_word);
|
|
} else {
|
|
clear_range_of_words(beg_full_word, end_full_word);
|
|
}
|
|
par_put_range_within_word(bit_index(end_full_word), end, value);
|
|
} else {
|
|
// The range spans at most 2 partial words.
|
|
idx_t boundary = MIN2(bit_index(beg_full_word), end);
|
|
par_put_range_within_word(beg, boundary, value);
|
|
par_put_range_within_word(boundary, end, value);
|
|
}
|
|
|
|
}
|
|
|
|
void BitMap::at_put_large_range(idx_t beg, idx_t end, bool value) {
|
|
if (value) {
|
|
set_large_range(beg, end);
|
|
} else {
|
|
clear_large_range(beg, end);
|
|
}
|
|
}
|
|
|
|
void BitMap::par_at_put_large_range(idx_t beg, idx_t end, bool value) {
|
|
verify_range(beg, end);
|
|
|
|
idx_t beg_full_word = word_index_round_up(beg);
|
|
idx_t end_full_word = word_index(end);
|
|
|
|
assert(end_full_word - beg_full_word >= 32,
|
|
"the range must include at least 32 bytes");
|
|
|
|
// The range includes at least one full word.
|
|
par_put_range_within_word(beg, bit_index(beg_full_word), value);
|
|
if (value) {
|
|
set_large_range_of_words(beg_full_word, end_full_word);
|
|
} else {
|
|
clear_large_range_of_words(beg_full_word, end_full_word);
|
|
}
|
|
par_put_range_within_word(bit_index(end_full_word), end, value);
|
|
}
|
|
|
|
bool BitMap::contains(const BitMap other) const {
|
|
assert(size() == other.size(), "must have same size");
|
|
bm_word_t* dest_map = map();
|
|
bm_word_t* other_map = other.map();
|
|
idx_t size = size_in_words();
|
|
for (idx_t index = 0; index < size_in_words(); index++) {
|
|
bm_word_t word_union = dest_map[index] | other_map[index];
|
|
// If this has more bits set than dest_map[index], then other is not a
|
|
// subset.
|
|
if (word_union != dest_map[index]) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool BitMap::intersects(const BitMap other) const {
|
|
assert(size() == other.size(), "must have same size");
|
|
bm_word_t* dest_map = map();
|
|
bm_word_t* other_map = other.map();
|
|
idx_t size = size_in_words();
|
|
for (idx_t index = 0; index < size_in_words(); index++) {
|
|
if ((dest_map[index] & other_map[index]) != 0) return true;
|
|
}
|
|
// Otherwise, no intersection.
|
|
return false;
|
|
}
|
|
|
|
void BitMap::set_union(BitMap other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bm_word_t* dest_map = map();
|
|
bm_word_t* other_map = other.map();
|
|
idx_t size = size_in_words();
|
|
for (idx_t index = 0; index < size_in_words(); index++) {
|
|
dest_map[index] = dest_map[index] | other_map[index];
|
|
}
|
|
}
|
|
|
|
|
|
void BitMap::set_difference(BitMap other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bm_word_t* dest_map = map();
|
|
bm_word_t* other_map = other.map();
|
|
idx_t size = size_in_words();
|
|
for (idx_t index = 0; index < size_in_words(); index++) {
|
|
dest_map[index] = dest_map[index] & ~(other_map[index]);
|
|
}
|
|
}
|
|
|
|
|
|
void BitMap::set_intersection(BitMap other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bm_word_t* dest_map = map();
|
|
bm_word_t* other_map = other.map();
|
|
idx_t size = size_in_words();
|
|
for (idx_t index = 0; index < size; index++) {
|
|
dest_map[index] = dest_map[index] & other_map[index];
|
|
}
|
|
}
|
|
|
|
|
|
void BitMap::set_intersection_at_offset(BitMap other, idx_t offset) {
|
|
assert(other.size() >= offset, "offset not in range");
|
|
assert(other.size() - offset >= size(), "other not large enough");
|
|
// XXX Ideally, we would remove this restriction.
|
|
guarantee((offset % (sizeof(bm_word_t) * BitsPerByte)) == 0,
|
|
"Only handle aligned cases so far.");
|
|
bm_word_t* dest_map = map();
|
|
bm_word_t* other_map = other.map();
|
|
idx_t offset_word_ind = word_index(offset);
|
|
idx_t size = size_in_words();
|
|
for (idx_t index = 0; index < size; index++) {
|
|
dest_map[index] = dest_map[index] & other_map[offset_word_ind + index];
|
|
}
|
|
}
|
|
|
|
bool BitMap::set_union_with_result(BitMap other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bool changed = false;
|
|
bm_word_t* dest_map = map();
|
|
bm_word_t* other_map = other.map();
|
|
idx_t size = size_in_words();
|
|
for (idx_t index = 0; index < size; index++) {
|
|
idx_t temp = map(index) | other_map[index];
|
|
changed = changed || (temp != map(index));
|
|
map()[index] = temp;
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
|
|
bool BitMap::set_difference_with_result(BitMap other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bool changed = false;
|
|
bm_word_t* dest_map = map();
|
|
bm_word_t* other_map = other.map();
|
|
idx_t size = size_in_words();
|
|
for (idx_t index = 0; index < size; index++) {
|
|
bm_word_t temp = dest_map[index] & ~(other_map[index]);
|
|
changed = changed || (temp != dest_map[index]);
|
|
dest_map[index] = temp;
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
|
|
bool BitMap::set_intersection_with_result(BitMap other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bool changed = false;
|
|
bm_word_t* dest_map = map();
|
|
bm_word_t* other_map = other.map();
|
|
idx_t size = size_in_words();
|
|
for (idx_t index = 0; index < size; index++) {
|
|
bm_word_t orig = dest_map[index];
|
|
bm_word_t temp = orig & other_map[index];
|
|
changed = changed || (temp != orig);
|
|
dest_map[index] = temp;
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
|
|
void BitMap::set_from(BitMap other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bm_word_t* dest_map = map();
|
|
bm_word_t* other_map = other.map();
|
|
idx_t size = size_in_words();
|
|
for (idx_t index = 0; index < size; index++) {
|
|
dest_map[index] = other_map[index];
|
|
}
|
|
}
|
|
|
|
|
|
bool BitMap::is_same(BitMap other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bm_word_t* dest_map = map();
|
|
bm_word_t* other_map = other.map();
|
|
idx_t size = size_in_words();
|
|
for (idx_t index = 0; index < size; index++) {
|
|
if (dest_map[index] != other_map[index]) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool BitMap::is_full() const {
|
|
bm_word_t* word = map();
|
|
idx_t rest = size();
|
|
for (; rest >= (idx_t) BitsPerWord; rest -= BitsPerWord) {
|
|
if (*word != (bm_word_t) AllBits) return false;
|
|
word++;
|
|
}
|
|
return rest == 0 || (*word | ~right_n_bits((int)rest)) == (bm_word_t) AllBits;
|
|
}
|
|
|
|
|
|
bool BitMap::is_empty() const {
|
|
bm_word_t* word = map();
|
|
idx_t rest = size();
|
|
for (; rest >= (idx_t) BitsPerWord; rest -= BitsPerWord) {
|
|
if (*word != (bm_word_t) NoBits) return false;
|
|
word++;
|
|
}
|
|
return rest == 0 || (*word & right_n_bits((int)rest)) == (bm_word_t) NoBits;
|
|
}
|
|
|
|
void BitMap::clear_large() {
|
|
clear_large_range_of_words(0, size_in_words());
|
|
}
|
|
|
|
// Note that if the closure itself modifies the bitmap
|
|
// then modifications in and to the left of the _bit_ being
|
|
// currently sampled will not be seen. Note also that the
|
|
// interval [leftOffset, rightOffset) is right open.
|
|
bool BitMap::iterate(BitMapClosure* blk, idx_t leftOffset, idx_t rightOffset) {
|
|
verify_range(leftOffset, rightOffset);
|
|
|
|
idx_t startIndex = word_index(leftOffset);
|
|
idx_t endIndex = MIN2(word_index(rightOffset) + 1, size_in_words());
|
|
for (idx_t index = startIndex, offset = leftOffset;
|
|
offset < rightOffset && index < endIndex;
|
|
offset = (++index) << LogBitsPerWord) {
|
|
idx_t rest = map(index) >> (offset & (BitsPerWord - 1));
|
|
for (; offset < rightOffset && rest != (bm_word_t)NoBits; offset++) {
|
|
if (rest & 1) {
|
|
if (!blk->do_bit(offset)) return false;
|
|
// resample at each closure application
|
|
// (see, for instance, CMS bug 4525989)
|
|
rest = map(index) >> (offset & (BitsPerWord -1));
|
|
}
|
|
rest = rest >> 1;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
BitMap::idx_t* BitMap::_pop_count_table = NULL;
|
|
|
|
void BitMap::init_pop_count_table() {
|
|
if (_pop_count_table == NULL) {
|
|
BitMap::idx_t *table = NEW_C_HEAP_ARRAY(idx_t, 256, mtInternal);
|
|
for (uint i = 0; i < 256; i++) {
|
|
table[i] = num_set_bits(i);
|
|
}
|
|
|
|
intptr_t res = Atomic::cmpxchg_ptr((intptr_t) table,
|
|
(intptr_t*) &_pop_count_table,
|
|
(intptr_t) NULL_WORD);
|
|
if (res != NULL_WORD) {
|
|
guarantee( _pop_count_table == (void*) res, "invariant" );
|
|
FREE_C_HEAP_ARRAY(bm_word_t, table, mtInternal);
|
|
}
|
|
}
|
|
}
|
|
|
|
BitMap::idx_t BitMap::num_set_bits(bm_word_t w) {
|
|
idx_t bits = 0;
|
|
|
|
while (w != 0) {
|
|
while ((w & 1) == 0) {
|
|
w >>= 1;
|
|
}
|
|
bits++;
|
|
w >>= 1;
|
|
}
|
|
return bits;
|
|
}
|
|
|
|
BitMap::idx_t BitMap::num_set_bits_from_table(unsigned char c) {
|
|
assert(_pop_count_table != NULL, "precondition");
|
|
return _pop_count_table[c];
|
|
}
|
|
|
|
BitMap::idx_t BitMap::count_one_bits() const {
|
|
init_pop_count_table(); // If necessary.
|
|
idx_t sum = 0;
|
|
typedef unsigned char uchar;
|
|
for (idx_t i = 0; i < size_in_words(); i++) {
|
|
bm_word_t w = map()[i];
|
|
for (size_t j = 0; j < sizeof(bm_word_t); j++) {
|
|
sum += num_set_bits_from_table(uchar(w & 255));
|
|
w >>= 8;
|
|
}
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
void BitMap::print_on_error(outputStream* st, const char* prefix) const {
|
|
st->print_cr("%s[" PTR_FORMAT ", " PTR_FORMAT ")",
|
|
prefix, p2i(map()), p2i((char*)map() + (size() >> LogBitsPerByte)));
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
|
|
void BitMap::print_on(outputStream* st) const {
|
|
tty->print("Bitmap(" SIZE_FORMAT "):", size());
|
|
for (idx_t index = 0; index < size(); index++) {
|
|
tty->print("%c", at(index) ? '1' : '0');
|
|
}
|
|
tty->cr();
|
|
}
|
|
|
|
class TestBitMap : public AllStatic {
|
|
const static BitMap::idx_t BITMAP_SIZE = 1024;
|
|
static void fillBitMap(BitMap& map) {
|
|
map.set_bit(1);
|
|
map.set_bit(3);
|
|
map.set_bit(17);
|
|
map.set_bit(512);
|
|
}
|
|
|
|
static void testResize(bool in_resource_area) {
|
|
{
|
|
BitMap map(0, in_resource_area);
|
|
map.resize(BITMAP_SIZE, in_resource_area);
|
|
fillBitMap(map);
|
|
|
|
BitMap map2(BITMAP_SIZE, in_resource_area);
|
|
fillBitMap(map2);
|
|
assert(map.is_same(map2), "could be");
|
|
}
|
|
|
|
{
|
|
BitMap map(128, in_resource_area);
|
|
map.resize(BITMAP_SIZE, in_resource_area);
|
|
fillBitMap(map);
|
|
|
|
BitMap map2(BITMAP_SIZE, in_resource_area);
|
|
fillBitMap(map2);
|
|
assert(map.is_same(map2), "could be");
|
|
}
|
|
|
|
{
|
|
BitMap map(BITMAP_SIZE, in_resource_area);
|
|
map.resize(BITMAP_SIZE, in_resource_area);
|
|
fillBitMap(map);
|
|
|
|
BitMap map2(BITMAP_SIZE, in_resource_area);
|
|
fillBitMap(map2);
|
|
assert(map.is_same(map2), "could be");
|
|
}
|
|
}
|
|
|
|
static void testResizeResource() {
|
|
ResourceMark rm;
|
|
testResize(true);
|
|
}
|
|
|
|
static void testResizeNonResource() {
|
|
const size_t bitmap_bytes = BITMAP_SIZE / BitsPerByte;
|
|
|
|
// Test the default behavior
|
|
testResize(false);
|
|
|
|
{
|
|
// Make sure that AllocatorMallocLimit is larger than our allocation request
|
|
// forcing it to call standard malloc()
|
|
SizeTFlagSetting fs(ArrayAllocatorMallocLimit, bitmap_bytes * 4);
|
|
testResize(false);
|
|
}
|
|
{
|
|
// Make sure that AllocatorMallocLimit is smaller than our allocation request
|
|
// forcing it to call mmap() (or equivalent)
|
|
SizeTFlagSetting fs(ArrayAllocatorMallocLimit, bitmap_bytes / 4);
|
|
testResize(false);
|
|
}
|
|
}
|
|
|
|
public:
|
|
static void test() {
|
|
testResizeResource();
|
|
testResizeNonResource();
|
|
}
|
|
|
|
};
|
|
|
|
void TestBitMap_test() {
|
|
TestBitMap::test();
|
|
}
|
|
#endif
|
|
|
|
|
|
BitMap2D::BitMap2D(bm_word_t* map, idx_t size_in_slots, idx_t bits_per_slot)
|
|
: _bits_per_slot(bits_per_slot)
|
|
, _map(map, size_in_slots * bits_per_slot)
|
|
{
|
|
}
|
|
|
|
|
|
BitMap2D::BitMap2D(idx_t size_in_slots, idx_t bits_per_slot)
|
|
: _bits_per_slot(bits_per_slot)
|
|
, _map(size_in_slots * bits_per_slot)
|
|
{
|
|
}
|