mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-17 01:24:33 +02:00
1601 lines
58 KiB
C++
1601 lines
58 KiB
C++
/*
|
|
* Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc/g1/g1BarrierSet.hpp"
|
|
#include "gc/g1/g1BatchedTask.hpp"
|
|
#include "gc/g1/g1BlockOffsetTable.inline.hpp"
|
|
#include "gc/g1/g1CardSet.inline.hpp"
|
|
#include "gc/g1/g1CardTable.inline.hpp"
|
|
#include "gc/g1/g1CardTableEntryClosure.hpp"
|
|
#include "gc/g1/g1CollectedHeap.inline.hpp"
|
|
#include "gc/g1/g1ConcurrentRefine.hpp"
|
|
#include "gc/g1/g1DirtyCardQueue.hpp"
|
|
#include "gc/g1/g1FromCardCache.hpp"
|
|
#include "gc/g1/g1GCParPhaseTimesTracker.hpp"
|
|
#include "gc/g1/g1GCPhaseTimes.hpp"
|
|
#include "gc/g1/g1OopClosures.inline.hpp"
|
|
#include "gc/g1/g1Policy.hpp"
|
|
#include "gc/g1/g1RootClosures.hpp"
|
|
#include "gc/g1/g1RemSet.hpp"
|
|
#include "gc/g1/g1_globals.hpp"
|
|
#include "gc/g1/heapRegion.inline.hpp"
|
|
#include "gc/g1/heapRegionManager.inline.hpp"
|
|
#include "gc/g1/heapRegionRemSet.inline.hpp"
|
|
#include "gc/shared/bufferNodeList.hpp"
|
|
#include "gc/shared/gcTraceTime.inline.hpp"
|
|
#include "gc/shared/ptrQueue.hpp"
|
|
#include "jfr/jfrEvents.hpp"
|
|
#include "memory/iterator.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/access.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/atomic.hpp"
|
|
#include "runtime/os.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
#include "utilities/powerOfTwo.hpp"
|
|
#include "utilities/stack.inline.hpp"
|
|
#include "utilities/ticks.hpp"
|
|
#include CPU_HEADER(gc/g1/g1Globals)
|
|
|
|
// Collects information about the overall heap root scan progress during an evacuation.
|
|
//
|
|
// Scanning the remembered sets works by first merging all sources of cards to be
|
|
// scanned (log buffers, remembered sets) into a single data structure to remove
|
|
// duplicates and simplify work distribution.
|
|
//
|
|
// During the following card scanning we not only scan this combined set of cards, but
|
|
// also remember that these were completely scanned. The following evacuation passes
|
|
// do not scan these cards again, and so need to be preserved across increments.
|
|
//
|
|
// The representation for all the cards to scan is the card table: cards can have
|
|
// one of three states during GC:
|
|
// - clean: these cards will not be scanned in this pass
|
|
// - dirty: these cards will be scanned in this pass
|
|
// - scanned: these cards have already been scanned in a previous pass
|
|
//
|
|
// After all evacuation is done, we reset the card table to clean.
|
|
//
|
|
// Work distribution occurs on "chunk" basis, i.e. contiguous ranges of cards. As an
|
|
// additional optimization, during card merging we remember which regions and which
|
|
// chunks actually contain cards to be scanned. Threads iterate only across these
|
|
// regions, and only compete for chunks containing any cards.
|
|
//
|
|
// Within these chunks, a worker scans the card table on "blocks" of cards, i.e.
|
|
// contiguous ranges of dirty cards to be scanned. These blocks are converted to actual
|
|
// memory ranges and then passed on to actual scanning.
|
|
class G1RemSetScanState : public CHeapObj<mtGC> {
|
|
class G1DirtyRegions;
|
|
|
|
size_t _max_reserved_regions;
|
|
|
|
// Has this region that is part of the regions in the collection set been processed yet.
|
|
typedef bool G1RemsetIterState;
|
|
|
|
G1RemsetIterState volatile* _collection_set_iter_state;
|
|
|
|
// Card table iteration claim for each heap region, from 0 (completely unscanned)
|
|
// to (>=) HeapRegion::CardsPerRegion (completely scanned).
|
|
uint volatile* _card_table_scan_state;
|
|
|
|
uint _scan_chunks_per_region; // Number of chunks per region.
|
|
uint8_t _log_scan_chunks_per_region; // Log of number of chunks per region.
|
|
bool* _region_scan_chunks;
|
|
size_t _num_total_scan_chunks; // Total number of elements in _region_scan_chunks.
|
|
uint8_t _scan_chunks_shift; // For conversion between card index and chunk index.
|
|
public:
|
|
uint scan_chunk_size_in_cards() const { return (uint)1 << _scan_chunks_shift; }
|
|
|
|
// Returns whether the chunk corresponding to the given region/card in region contain a
|
|
// dirty card, i.e. actually needs scanning.
|
|
bool chunk_needs_scan(uint const region_idx, uint const card_in_region) const {
|
|
size_t const idx = ((size_t)region_idx << _log_scan_chunks_per_region) + (card_in_region >> _scan_chunks_shift);
|
|
assert(idx < _num_total_scan_chunks, "Index " SIZE_FORMAT " out of bounds " SIZE_FORMAT,
|
|
idx, _num_total_scan_chunks);
|
|
return _region_scan_chunks[idx];
|
|
}
|
|
|
|
private:
|
|
// The complete set of regions which card table needs to be cleared at the end
|
|
// of GC because we scribbled over these card tables.
|
|
//
|
|
// Regions may be added for two reasons:
|
|
// - they were part of the collection set: they may contain g1_young_card_val
|
|
// or regular card marks that we never scan so we must always clear their card
|
|
// table
|
|
// - or in case g1 does an optional evacuation pass, g1 marks the cards in there
|
|
// as g1_scanned_card_val. If G1 only did an initial evacuation pass, the
|
|
// scanning already cleared these cards. In that case they are not in this set
|
|
// at the end of the collection.
|
|
G1DirtyRegions* _all_dirty_regions;
|
|
// The set of regions which card table needs to be scanned for new dirty cards
|
|
// in the current evacuation pass.
|
|
G1DirtyRegions* _next_dirty_regions;
|
|
|
|
// Set of (unique) regions that can be added to concurrently.
|
|
class G1DirtyRegions : public CHeapObj<mtGC> {
|
|
uint* _buffer;
|
|
uint _cur_idx;
|
|
size_t _max_reserved_regions;
|
|
|
|
bool* _contains;
|
|
|
|
public:
|
|
G1DirtyRegions(size_t max_reserved_regions) :
|
|
_buffer(NEW_C_HEAP_ARRAY(uint, max_reserved_regions, mtGC)),
|
|
_cur_idx(0),
|
|
_max_reserved_regions(max_reserved_regions),
|
|
_contains(NEW_C_HEAP_ARRAY(bool, max_reserved_regions, mtGC)) {
|
|
|
|
reset();
|
|
}
|
|
|
|
static size_t chunk_size() { return M; }
|
|
|
|
~G1DirtyRegions() {
|
|
FREE_C_HEAP_ARRAY(uint, _buffer);
|
|
FREE_C_HEAP_ARRAY(bool, _contains);
|
|
}
|
|
|
|
void reset() {
|
|
_cur_idx = 0;
|
|
::memset(_contains, false, _max_reserved_regions * sizeof(bool));
|
|
}
|
|
|
|
uint size() const { return _cur_idx; }
|
|
|
|
uint at(uint idx) const {
|
|
assert(idx < _cur_idx, "Index %u beyond valid regions", idx);
|
|
return _buffer[idx];
|
|
}
|
|
|
|
void add_dirty_region(uint region) {
|
|
if (_contains[region]) {
|
|
return;
|
|
}
|
|
|
|
bool marked_as_dirty = Atomic::cmpxchg(&_contains[region], false, true) == false;
|
|
if (marked_as_dirty) {
|
|
uint allocated = Atomic::fetch_and_add(&_cur_idx, 1u);
|
|
_buffer[allocated] = region;
|
|
}
|
|
}
|
|
|
|
// Creates the union of this and the other G1DirtyRegions.
|
|
void merge(const G1DirtyRegions* other) {
|
|
for (uint i = 0; i < other->size(); i++) {
|
|
uint region = other->at(i);
|
|
if (!_contains[region]) {
|
|
_buffer[_cur_idx++] = region;
|
|
_contains[region] = true;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// For each region, contains the maximum top() value to be used during this garbage
|
|
// collection. Subsumes common checks like filtering out everything but old and
|
|
// humongous regions outside the collection set.
|
|
// This is valid because we are not interested in scanning stray remembered set
|
|
// entries from free regions.
|
|
HeapWord** _scan_top;
|
|
|
|
class G1ClearCardTableTask : public G1AbstractSubTask {
|
|
G1CollectedHeap* _g1h;
|
|
G1DirtyRegions* _regions;
|
|
uint volatile _cur_dirty_regions;
|
|
|
|
G1RemSetScanState* _scan_state;
|
|
|
|
static constexpr uint num_cards_per_worker = M;
|
|
public:
|
|
G1ClearCardTableTask(G1CollectedHeap* g1h,
|
|
G1DirtyRegions* regions,
|
|
G1RemSetScanState* scan_state) :
|
|
G1AbstractSubTask(G1GCPhaseTimes::ClearCardTable),
|
|
_g1h(g1h),
|
|
_regions(regions),
|
|
_cur_dirty_regions(0),
|
|
_scan_state(scan_state) {}
|
|
|
|
double worker_cost() const override {
|
|
uint num_regions = _regions->size();
|
|
|
|
if (num_regions == 0) {
|
|
// There is no card table clean work, only some cleanup of memory.
|
|
return AlmostNoWork;
|
|
}
|
|
|
|
double num_cards = num_regions << HeapRegion::LogCardsPerRegion;
|
|
return ceil(num_cards / num_cards_per_worker);
|
|
}
|
|
|
|
virtual ~G1ClearCardTableTask() {
|
|
_scan_state->cleanup();
|
|
#ifndef PRODUCT
|
|
G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
|
|
#endif
|
|
}
|
|
|
|
void do_work(uint worker_id) override {
|
|
const uint num_regions_per_worker = num_cards_per_worker / (uint)HeapRegion::CardsPerRegion;
|
|
|
|
while (_cur_dirty_regions < _regions->size()) {
|
|
uint next = Atomic::fetch_and_add(&_cur_dirty_regions, num_regions_per_worker);
|
|
uint max = MIN2(next + num_regions_per_worker, _regions->size());
|
|
|
|
for (uint i = next; i < max; i++) {
|
|
HeapRegion* r = _g1h->region_at(_regions->at(i));
|
|
r->clear_cardtable();
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
public:
|
|
G1RemSetScanState() :
|
|
_max_reserved_regions(0),
|
|
_collection_set_iter_state(NULL),
|
|
_card_table_scan_state(NULL),
|
|
_scan_chunks_per_region(G1CollectedHeap::get_chunks_per_region()),
|
|
_log_scan_chunks_per_region(log2i(_scan_chunks_per_region)),
|
|
_region_scan_chunks(NULL),
|
|
_num_total_scan_chunks(0),
|
|
_scan_chunks_shift(0),
|
|
_all_dirty_regions(NULL),
|
|
_next_dirty_regions(NULL),
|
|
_scan_top(NULL) {
|
|
}
|
|
|
|
~G1RemSetScanState() {
|
|
FREE_C_HEAP_ARRAY(G1RemsetIterState, _collection_set_iter_state);
|
|
FREE_C_HEAP_ARRAY(uint, _card_table_scan_state);
|
|
FREE_C_HEAP_ARRAY(bool, _region_scan_chunks);
|
|
FREE_C_HEAP_ARRAY(HeapWord*, _scan_top);
|
|
}
|
|
|
|
void initialize(size_t max_reserved_regions) {
|
|
assert(_collection_set_iter_state == NULL, "Must not be initialized twice");
|
|
_max_reserved_regions = max_reserved_regions;
|
|
_collection_set_iter_state = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_reserved_regions, mtGC);
|
|
_card_table_scan_state = NEW_C_HEAP_ARRAY(uint, max_reserved_regions, mtGC);
|
|
_num_total_scan_chunks = max_reserved_regions * _scan_chunks_per_region;
|
|
_region_scan_chunks = NEW_C_HEAP_ARRAY(bool, _num_total_scan_chunks, mtGC);
|
|
|
|
_scan_chunks_shift = (uint8_t)log2i(HeapRegion::CardsPerRegion / _scan_chunks_per_region);
|
|
_scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_reserved_regions, mtGC);
|
|
}
|
|
|
|
void prepare() {
|
|
// Reset the claim and clear scan top for all regions, including
|
|
// regions currently not available or free. Since regions might
|
|
// become used during the collection these values must be valid
|
|
// for those regions as well.
|
|
for (size_t i = 0; i < _max_reserved_regions; i++) {
|
|
reset_region_claim((uint)i);
|
|
clear_scan_top((uint)i);
|
|
}
|
|
|
|
_all_dirty_regions = new G1DirtyRegions(_max_reserved_regions);
|
|
_next_dirty_regions = new G1DirtyRegions(_max_reserved_regions);
|
|
}
|
|
|
|
void prepare_for_merge_heap_roots() {
|
|
assert(_next_dirty_regions->size() == 0, "next dirty regions must be empty");
|
|
|
|
for (size_t i = 0; i < _max_reserved_regions; i++) {
|
|
_card_table_scan_state[i] = 0;
|
|
}
|
|
|
|
::memset(_region_scan_chunks, false, _num_total_scan_chunks * sizeof(*_region_scan_chunks));
|
|
}
|
|
|
|
void complete_evac_phase(bool merge_dirty_regions) {
|
|
if (merge_dirty_regions) {
|
|
_all_dirty_regions->merge(_next_dirty_regions);
|
|
}
|
|
_next_dirty_regions->reset();
|
|
}
|
|
|
|
// Returns whether the given region contains cards we need to scan. The remembered
|
|
// set and other sources may contain cards that
|
|
// - are in uncommitted regions
|
|
// - are located in the collection set
|
|
// - are located in free regions
|
|
// as we do not clean up remembered sets before merging heap roots.
|
|
bool contains_cards_to_process(uint const region_idx) const {
|
|
HeapRegion* hr = G1CollectedHeap::heap()->region_at_or_null(region_idx);
|
|
return (hr != NULL && !hr->in_collection_set() && hr->is_old_or_humongous());
|
|
}
|
|
|
|
size_t num_visited_cards() const {
|
|
size_t result = 0;
|
|
for (uint i = 0; i < _num_total_scan_chunks; i++) {
|
|
if (_region_scan_chunks[i]) {
|
|
result++;
|
|
}
|
|
}
|
|
return result * (HeapRegion::CardsPerRegion / _scan_chunks_per_region);
|
|
}
|
|
|
|
size_t num_cards_in_dirty_regions() const {
|
|
return _next_dirty_regions->size() * HeapRegion::CardsPerRegion;
|
|
}
|
|
|
|
void set_chunk_range_dirty(size_t const region_card_idx, size_t const card_length) {
|
|
size_t chunk_idx = region_card_idx >> _scan_chunks_shift;
|
|
// Make sure that all chunks that contain the range are marked. Calculate the
|
|
// chunk of the last card that is actually marked.
|
|
size_t const end_chunk = (region_card_idx + card_length - 1) >> _scan_chunks_shift;
|
|
for (; chunk_idx <= end_chunk; chunk_idx++) {
|
|
_region_scan_chunks[chunk_idx] = true;
|
|
}
|
|
}
|
|
|
|
void set_chunk_dirty(size_t const card_idx) {
|
|
assert((card_idx >> _scan_chunks_shift) < _num_total_scan_chunks,
|
|
"Trying to access index " SIZE_FORMAT " out of bounds " SIZE_FORMAT,
|
|
card_idx >> _scan_chunks_shift, _num_total_scan_chunks);
|
|
size_t const chunk_idx = card_idx >> _scan_chunks_shift;
|
|
_region_scan_chunks[chunk_idx] = true;
|
|
}
|
|
|
|
G1AbstractSubTask* create_cleanup_after_scan_heap_roots_task() {
|
|
return new G1ClearCardTableTask(G1CollectedHeap::heap(), _all_dirty_regions, this);
|
|
}
|
|
|
|
void cleanup() {
|
|
delete _all_dirty_regions;
|
|
_all_dirty_regions = NULL;
|
|
|
|
delete _next_dirty_regions;
|
|
_next_dirty_regions = NULL;
|
|
}
|
|
|
|
void iterate_dirty_regions_from(HeapRegionClosure* cl, uint worker_id) {
|
|
uint num_regions = _next_dirty_regions->size();
|
|
|
|
if (num_regions == 0) {
|
|
return;
|
|
}
|
|
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
WorkerThreads* workers = g1h->workers();
|
|
uint const max_workers = workers->active_workers();
|
|
|
|
uint const start_pos = num_regions * worker_id / max_workers;
|
|
uint cur = start_pos;
|
|
|
|
do {
|
|
bool result = cl->do_heap_region(g1h->region_at(_next_dirty_regions->at(cur)));
|
|
guarantee(!result, "Not allowed to ask for early termination.");
|
|
cur++;
|
|
if (cur == _next_dirty_regions->size()) {
|
|
cur = 0;
|
|
}
|
|
} while (cur != start_pos);
|
|
}
|
|
|
|
void reset_region_claim(uint region_idx) {
|
|
_collection_set_iter_state[region_idx] = false;
|
|
}
|
|
|
|
// Attempt to claim the given region in the collection set for iteration. Returns true
|
|
// if this call caused the transition from Unclaimed to Claimed.
|
|
inline bool claim_collection_set_region(uint region) {
|
|
assert(region < _max_reserved_regions, "Tried to access invalid region %u", region);
|
|
if (_collection_set_iter_state[region]) {
|
|
return false;
|
|
}
|
|
return !Atomic::cmpxchg(&_collection_set_iter_state[region], false, true);
|
|
}
|
|
|
|
bool has_cards_to_scan(uint region) {
|
|
assert(region < _max_reserved_regions, "Tried to access invalid region %u", region);
|
|
return _card_table_scan_state[region] < HeapRegion::CardsPerRegion;
|
|
}
|
|
|
|
uint claim_cards_to_scan(uint region, uint increment) {
|
|
assert(region < _max_reserved_regions, "Tried to access invalid region %u", region);
|
|
return Atomic::fetch_and_add(&_card_table_scan_state[region], increment, memory_order_relaxed);
|
|
}
|
|
|
|
void add_dirty_region(uint const region) {
|
|
#ifdef ASSERT
|
|
HeapRegion* hr = G1CollectedHeap::heap()->region_at(region);
|
|
assert(!hr->in_collection_set() && hr->is_old_or_humongous(),
|
|
"Region %u is not suitable for scanning, is %sin collection set or %s",
|
|
hr->hrm_index(), hr->in_collection_set() ? "" : "not ", hr->get_short_type_str());
|
|
#endif
|
|
_next_dirty_regions->add_dirty_region(region);
|
|
}
|
|
|
|
void add_all_dirty_region(uint region) {
|
|
#ifdef ASSERT
|
|
HeapRegion* hr = G1CollectedHeap::heap()->region_at(region);
|
|
assert(hr->in_collection_set(),
|
|
"Only add collection set regions to all dirty regions directly but %u is %s",
|
|
hr->hrm_index(), hr->get_short_type_str());
|
|
#endif
|
|
_all_dirty_regions->add_dirty_region(region);
|
|
}
|
|
|
|
void set_scan_top(uint region_idx, HeapWord* value) {
|
|
_scan_top[region_idx] = value;
|
|
}
|
|
|
|
HeapWord* scan_top(uint region_idx) const {
|
|
return _scan_top[region_idx];
|
|
}
|
|
|
|
void clear_scan_top(uint region_idx) {
|
|
set_scan_top(region_idx, NULL);
|
|
}
|
|
};
|
|
|
|
G1RemSet::G1RemSet(G1CollectedHeap* g1h,
|
|
G1CardTable* ct) :
|
|
_scan_state(new G1RemSetScanState()),
|
|
_prev_period_summary(false),
|
|
_g1h(g1h),
|
|
_ct(ct),
|
|
_g1p(_g1h->policy()) {
|
|
}
|
|
|
|
G1RemSet::~G1RemSet() {
|
|
delete _scan_state;
|
|
}
|
|
|
|
void G1RemSet::initialize(uint max_reserved_regions) {
|
|
_scan_state->initialize(max_reserved_regions);
|
|
}
|
|
|
|
// Helper class to claim dirty chunks within the card table.
|
|
class G1CardTableChunkClaimer {
|
|
G1RemSetScanState* _scan_state;
|
|
uint _region_idx;
|
|
uint _cur_claim;
|
|
|
|
public:
|
|
G1CardTableChunkClaimer(G1RemSetScanState* scan_state, uint region_idx) :
|
|
_scan_state(scan_state),
|
|
_region_idx(region_idx),
|
|
_cur_claim(0) {
|
|
guarantee(size() <= HeapRegion::CardsPerRegion, "Should not claim more space than possible.");
|
|
}
|
|
|
|
bool has_next() {
|
|
while (true) {
|
|
_cur_claim = _scan_state->claim_cards_to_scan(_region_idx, size());
|
|
if (_cur_claim >= HeapRegion::CardsPerRegion) {
|
|
return false;
|
|
}
|
|
if (_scan_state->chunk_needs_scan(_region_idx, _cur_claim)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint value() const { return _cur_claim; }
|
|
uint size() const { return _scan_state->scan_chunk_size_in_cards(); }
|
|
};
|
|
|
|
// Scans a heap region for dirty cards.
|
|
class G1ScanHRForRegionClosure : public HeapRegionClosure {
|
|
using CardValue = CardTable::CardValue;
|
|
|
|
G1CollectedHeap* _g1h;
|
|
G1CardTable* _ct;
|
|
|
|
G1ParScanThreadState* _pss;
|
|
|
|
G1RemSetScanState* _scan_state;
|
|
|
|
G1GCPhaseTimes::GCParPhases _phase;
|
|
|
|
uint _worker_id;
|
|
|
|
size_t _cards_scanned;
|
|
size_t _blocks_scanned;
|
|
size_t _chunks_claimed;
|
|
size_t _heap_roots_found;
|
|
|
|
Tickspan _rem_set_root_scan_time;
|
|
Tickspan _rem_set_trim_partially_time;
|
|
|
|
// The address to which this thread already scanned (walked the heap) up to during
|
|
// card scanning (exclusive).
|
|
HeapWord* _scanned_to;
|
|
CardValue _scanned_card_value;
|
|
|
|
HeapWord* scan_memregion(uint region_idx_for_card, MemRegion mr) {
|
|
HeapRegion* const card_region = _g1h->region_at(region_idx_for_card);
|
|
G1ScanCardClosure card_cl(_g1h, _pss, _heap_roots_found);
|
|
|
|
HeapWord* const scanned_to = card_region->oops_on_memregion_seq_iterate_careful<true>(mr, &card_cl);
|
|
assert(scanned_to != NULL, "Should be able to scan range");
|
|
assert(scanned_to >= mr.end(), "Scanned to " PTR_FORMAT " less than range " PTR_FORMAT, p2i(scanned_to), p2i(mr.end()));
|
|
|
|
_pss->trim_queue_partially();
|
|
return scanned_to;
|
|
}
|
|
|
|
void do_claimed_block(uint const region_idx, CardValue* const dirty_l, CardValue* const dirty_r) {
|
|
_ct->change_dirty_cards_to(dirty_l, dirty_r, _scanned_card_value);
|
|
size_t num_cards = dirty_r - dirty_l;
|
|
_blocks_scanned++;
|
|
|
|
HeapWord* const card_start = _ct->addr_for(dirty_l);
|
|
HeapWord* const top = _scan_state->scan_top(region_idx);
|
|
if (card_start >= top) {
|
|
return;
|
|
}
|
|
|
|
HeapWord* scan_end = MIN2(card_start + (num_cards << BOTConstants::log_card_size_in_words()), top);
|
|
if (_scanned_to >= scan_end) {
|
|
return;
|
|
}
|
|
MemRegion mr(MAX2(card_start, _scanned_to), scan_end);
|
|
_scanned_to = scan_memregion(region_idx, mr);
|
|
|
|
_cards_scanned += num_cards;
|
|
}
|
|
|
|
// To locate consecutive dirty cards inside a chunk.
|
|
class ChunkScanner {
|
|
using Word = size_t;
|
|
|
|
CardValue* const _start_card;
|
|
CardValue* const _end_card;
|
|
|
|
static const size_t ExpandedToScanMask = G1CardTable::WordAlreadyScanned;
|
|
static const size_t ToScanMask = G1CardTable::g1_card_already_scanned;
|
|
|
|
static bool is_card_dirty(const CardValue* const card) {
|
|
return (*card & ToScanMask) == 0;
|
|
}
|
|
|
|
static bool is_word_aligned(const void* const addr) {
|
|
return ((uintptr_t)addr) % sizeof(Word) == 0;
|
|
}
|
|
|
|
CardValue* find_first_dirty_card(CardValue* i_card) const {
|
|
while (!is_word_aligned(i_card)) {
|
|
if (is_card_dirty(i_card)) {
|
|
return i_card;
|
|
}
|
|
i_card++;
|
|
}
|
|
|
|
for (/* empty */; i_card < _end_card; i_card += sizeof(Word)) {
|
|
Word word_value = *reinterpret_cast<Word*>(i_card);
|
|
bool has_dirty_cards_in_word = (~word_value & ExpandedToScanMask) != 0;
|
|
|
|
if (has_dirty_cards_in_word) {
|
|
for (uint i = 0; i < sizeof(Word); ++i) {
|
|
if (is_card_dirty(i_card)) {
|
|
return i_card;
|
|
}
|
|
i_card++;
|
|
}
|
|
assert(false, "should have early-returned");
|
|
}
|
|
}
|
|
|
|
return _end_card;
|
|
}
|
|
|
|
CardValue* find_first_non_dirty_card(CardValue* i_card) const {
|
|
while (!is_word_aligned(i_card)) {
|
|
if (!is_card_dirty(i_card)) {
|
|
return i_card;
|
|
}
|
|
i_card++;
|
|
}
|
|
|
|
for (/* empty */; i_card < _end_card; i_card += sizeof(Word)) {
|
|
Word word_value = *reinterpret_cast<Word*>(i_card);
|
|
bool all_cards_dirty = (word_value == G1CardTable::WordAllDirty);
|
|
|
|
if (!all_cards_dirty) {
|
|
for (uint i = 0; i < sizeof(Word); ++i) {
|
|
if (!is_card_dirty(i_card)) {
|
|
return i_card;
|
|
}
|
|
i_card++;
|
|
}
|
|
assert(false, "should have early-returned");
|
|
}
|
|
}
|
|
|
|
return _end_card;
|
|
}
|
|
|
|
public:
|
|
ChunkScanner(CardValue* const start_card, CardValue* const end_card) :
|
|
_start_card(start_card),
|
|
_end_card(end_card) {
|
|
assert(is_word_aligned(start_card), "precondition");
|
|
assert(is_word_aligned(end_card), "precondition");
|
|
}
|
|
|
|
template<typename Func>
|
|
void on_dirty_cards(Func&& f) {
|
|
for (CardValue* cur_card = _start_card; cur_card < _end_card; /* empty */) {
|
|
CardValue* dirty_l = find_first_dirty_card(cur_card);
|
|
CardValue* dirty_r = find_first_non_dirty_card(dirty_l);
|
|
|
|
assert(dirty_l <= dirty_r, "inv");
|
|
|
|
if (dirty_l == dirty_r) {
|
|
assert(dirty_r == _end_card, "finished the entire chunk");
|
|
return;
|
|
}
|
|
|
|
f(dirty_l, dirty_r);
|
|
|
|
cur_card = dirty_r + 1;
|
|
}
|
|
}
|
|
};
|
|
|
|
void scan_heap_roots(HeapRegion* r) {
|
|
uint const region_idx = r->hrm_index();
|
|
|
|
ResourceMark rm;
|
|
|
|
G1CardTableChunkClaimer claim(_scan_state, region_idx);
|
|
|
|
// Set the current scan "finger" to NULL for every heap region to scan. Since
|
|
// the claim value is monotonically increasing, the check to not scan below this
|
|
// will filter out objects spanning chunks within the region too then, as opposed
|
|
// to resetting this value for every claim.
|
|
_scanned_to = NULL;
|
|
|
|
while (claim.has_next()) {
|
|
_chunks_claimed++;
|
|
|
|
size_t const region_card_base_idx = ((size_t)region_idx << HeapRegion::LogCardsPerRegion) + claim.value();
|
|
|
|
CardValue* const start_card = _ct->byte_for_index(region_card_base_idx);
|
|
CardValue* const end_card = start_card + claim.size();
|
|
|
|
ChunkScanner chunk_scanner{start_card, end_card};
|
|
chunk_scanner.on_dirty_cards([&] (CardValue* dirty_l, CardValue* dirty_r) {
|
|
do_claimed_block(region_idx, dirty_l, dirty_r);
|
|
});
|
|
}
|
|
}
|
|
|
|
public:
|
|
G1ScanHRForRegionClosure(G1RemSetScanState* scan_state,
|
|
G1ParScanThreadState* pss,
|
|
uint worker_id,
|
|
G1GCPhaseTimes::GCParPhases phase,
|
|
bool remember_already_scanned_cards) :
|
|
_g1h(G1CollectedHeap::heap()),
|
|
_ct(_g1h->card_table()),
|
|
_pss(pss),
|
|
_scan_state(scan_state),
|
|
_phase(phase),
|
|
_worker_id(worker_id),
|
|
_cards_scanned(0),
|
|
_blocks_scanned(0),
|
|
_chunks_claimed(0),
|
|
_heap_roots_found(0),
|
|
_rem_set_root_scan_time(),
|
|
_rem_set_trim_partially_time(),
|
|
_scanned_to(NULL),
|
|
_scanned_card_value(remember_already_scanned_cards ? G1CardTable::g1_scanned_card_val()
|
|
: G1CardTable::clean_card_val()) {
|
|
}
|
|
|
|
bool do_heap_region(HeapRegion* r) {
|
|
assert(!r->in_collection_set() && r->is_old_or_humongous(),
|
|
"Should only be called on old gen non-collection set regions but region %u is not.",
|
|
r->hrm_index());
|
|
uint const region_idx = r->hrm_index();
|
|
|
|
if (_scan_state->has_cards_to_scan(region_idx)) {
|
|
G1EvacPhaseWithTrimTimeTracker timer(_pss, _rem_set_root_scan_time, _rem_set_trim_partially_time);
|
|
scan_heap_roots(r);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Tickspan rem_set_root_scan_time() const { return _rem_set_root_scan_time; }
|
|
Tickspan rem_set_trim_partially_time() const { return _rem_set_trim_partially_time; }
|
|
|
|
size_t cards_scanned() const { return _cards_scanned; }
|
|
size_t blocks_scanned() const { return _blocks_scanned; }
|
|
size_t chunks_claimed() const { return _chunks_claimed; }
|
|
size_t heap_roots_found() const { return _heap_roots_found; }
|
|
};
|
|
|
|
void G1RemSet::scan_heap_roots(G1ParScanThreadState* pss,
|
|
uint worker_id,
|
|
G1GCPhaseTimes::GCParPhases scan_phase,
|
|
G1GCPhaseTimes::GCParPhases objcopy_phase,
|
|
bool remember_already_scanned_cards) {
|
|
EventGCPhaseParallel event;
|
|
G1ScanHRForRegionClosure cl(_scan_state, pss, worker_id, scan_phase, remember_already_scanned_cards);
|
|
_scan_state->iterate_dirty_regions_from(&cl, worker_id);
|
|
|
|
event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(scan_phase));
|
|
|
|
G1GCPhaseTimes* p = _g1p->phase_times();
|
|
|
|
p->record_or_add_time_secs(objcopy_phase, worker_id, cl.rem_set_trim_partially_time().seconds());
|
|
|
|
p->record_or_add_time_secs(scan_phase, worker_id, cl.rem_set_root_scan_time().seconds());
|
|
p->record_or_add_thread_work_item(scan_phase, worker_id, cl.cards_scanned(), G1GCPhaseTimes::ScanHRScannedCards);
|
|
p->record_or_add_thread_work_item(scan_phase, worker_id, cl.blocks_scanned(), G1GCPhaseTimes::ScanHRScannedBlocks);
|
|
p->record_or_add_thread_work_item(scan_phase, worker_id, cl.chunks_claimed(), G1GCPhaseTimes::ScanHRClaimedChunks);
|
|
p->record_or_add_thread_work_item(scan_phase, worker_id, cl.heap_roots_found(), G1GCPhaseTimes::ScanHRFoundRoots);
|
|
}
|
|
|
|
// Heap region closure to be applied to all regions in the current collection set
|
|
// increment to fix up non-card related roots.
|
|
class G1ScanCollectionSetRegionClosure : public HeapRegionClosure {
|
|
G1ParScanThreadState* _pss;
|
|
G1RemSetScanState* _scan_state;
|
|
|
|
G1GCPhaseTimes::GCParPhases _scan_phase;
|
|
G1GCPhaseTimes::GCParPhases _code_roots_phase;
|
|
|
|
uint _worker_id;
|
|
|
|
size_t _opt_roots_scanned;
|
|
size_t _opt_refs_scanned;
|
|
size_t _opt_refs_memory_used;
|
|
|
|
Tickspan _code_root_scan_time;
|
|
Tickspan _code_trim_partially_time;
|
|
|
|
Tickspan _rem_set_opt_root_scan_time;
|
|
Tickspan _rem_set_opt_trim_partially_time;
|
|
|
|
void scan_opt_rem_set_roots(HeapRegion* r) {
|
|
G1OopStarChunkedList* opt_rem_set_list = _pss->oops_into_optional_region(r);
|
|
|
|
G1ScanCardClosure scan_cl(G1CollectedHeap::heap(), _pss, _opt_roots_scanned);
|
|
G1ScanRSForOptionalClosure cl(G1CollectedHeap::heap(), &scan_cl);
|
|
_opt_refs_scanned += opt_rem_set_list->oops_do(&cl, _pss->closures()->strong_oops());
|
|
_opt_refs_memory_used += opt_rem_set_list->used_memory();
|
|
}
|
|
|
|
public:
|
|
G1ScanCollectionSetRegionClosure(G1RemSetScanState* scan_state,
|
|
G1ParScanThreadState* pss,
|
|
uint worker_id,
|
|
G1GCPhaseTimes::GCParPhases scan_phase,
|
|
G1GCPhaseTimes::GCParPhases code_roots_phase) :
|
|
_pss(pss),
|
|
_scan_state(scan_state),
|
|
_scan_phase(scan_phase),
|
|
_code_roots_phase(code_roots_phase),
|
|
_worker_id(worker_id),
|
|
_opt_roots_scanned(0),
|
|
_opt_refs_scanned(0),
|
|
_opt_refs_memory_used(0),
|
|
_code_root_scan_time(),
|
|
_code_trim_partially_time(),
|
|
_rem_set_opt_root_scan_time(),
|
|
_rem_set_opt_trim_partially_time() { }
|
|
|
|
bool do_heap_region(HeapRegion* r) {
|
|
uint const region_idx = r->hrm_index();
|
|
|
|
// The individual references for the optional remembered set are per-worker, so we
|
|
// always need to scan them.
|
|
if (r->has_index_in_opt_cset()) {
|
|
EventGCPhaseParallel event;
|
|
G1EvacPhaseWithTrimTimeTracker timer(_pss, _rem_set_opt_root_scan_time, _rem_set_opt_trim_partially_time);
|
|
scan_opt_rem_set_roots(r);
|
|
|
|
event.commit(GCId::current(), _worker_id, G1GCPhaseTimes::phase_name(_scan_phase));
|
|
}
|
|
|
|
if (_scan_state->claim_collection_set_region(region_idx)) {
|
|
EventGCPhaseParallel event;
|
|
G1EvacPhaseWithTrimTimeTracker timer(_pss, _code_root_scan_time, _code_trim_partially_time);
|
|
// Scan the code root list attached to the current region
|
|
r->code_roots_do(_pss->closures()->weak_codeblobs());
|
|
|
|
event.commit(GCId::current(), _worker_id, G1GCPhaseTimes::phase_name(_code_roots_phase));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Tickspan code_root_scan_time() const { return _code_root_scan_time; }
|
|
Tickspan code_root_trim_partially_time() const { return _code_trim_partially_time; }
|
|
|
|
Tickspan rem_set_opt_root_scan_time() const { return _rem_set_opt_root_scan_time; }
|
|
Tickspan rem_set_opt_trim_partially_time() const { return _rem_set_opt_trim_partially_time; }
|
|
|
|
size_t opt_roots_scanned() const { return _opt_roots_scanned; }
|
|
size_t opt_refs_scanned() const { return _opt_refs_scanned; }
|
|
size_t opt_refs_memory_used() const { return _opt_refs_memory_used; }
|
|
};
|
|
|
|
void G1RemSet::scan_collection_set_regions(G1ParScanThreadState* pss,
|
|
uint worker_id,
|
|
G1GCPhaseTimes::GCParPhases scan_phase,
|
|
G1GCPhaseTimes::GCParPhases coderoots_phase,
|
|
G1GCPhaseTimes::GCParPhases objcopy_phase) {
|
|
G1ScanCollectionSetRegionClosure cl(_scan_state, pss, worker_id, scan_phase, coderoots_phase);
|
|
_g1h->collection_set_iterate_increment_from(&cl, worker_id);
|
|
|
|
G1GCPhaseTimes* p = _g1h->phase_times();
|
|
|
|
p->record_or_add_time_secs(scan_phase, worker_id, cl.rem_set_opt_root_scan_time().seconds());
|
|
p->record_or_add_time_secs(scan_phase, worker_id, cl.rem_set_opt_trim_partially_time().seconds());
|
|
|
|
p->record_or_add_time_secs(coderoots_phase, worker_id, cl.code_root_scan_time().seconds());
|
|
p->add_time_secs(objcopy_phase, worker_id, cl.code_root_trim_partially_time().seconds());
|
|
|
|
// At this time we record some metrics only for the evacuations after the initial one.
|
|
if (scan_phase == G1GCPhaseTimes::OptScanHR) {
|
|
p->record_or_add_thread_work_item(scan_phase, worker_id, cl.opt_roots_scanned(), G1GCPhaseTimes::ScanHRFoundRoots);
|
|
p->record_or_add_thread_work_item(scan_phase, worker_id, cl.opt_refs_scanned(), G1GCPhaseTimes::ScanHRScannedOptRefs);
|
|
p->record_or_add_thread_work_item(scan_phase, worker_id, cl.opt_refs_memory_used(), G1GCPhaseTimes::ScanHRUsedMemory);
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void G1RemSet::assert_scan_top_is_null(uint hrm_index) {
|
|
assert(_scan_state->scan_top(hrm_index) == NULL,
|
|
"scan_top of region %u is unexpectedly " PTR_FORMAT,
|
|
hrm_index, p2i(_scan_state->scan_top(hrm_index)));
|
|
}
|
|
#endif
|
|
|
|
void G1RemSet::prepare_region_for_scan(HeapRegion* r) {
|
|
uint hrm_index = r->hrm_index();
|
|
|
|
r->prepare_remset_for_scan();
|
|
|
|
// Only update non-collection set old regions, others must have already been set
|
|
// to NULL (don't scan) in the initialization.
|
|
if (r->in_collection_set()) {
|
|
assert_scan_top_is_null(hrm_index);
|
|
} else if (r->is_old_or_humongous()) {
|
|
_scan_state->set_scan_top(hrm_index, r->top());
|
|
} else {
|
|
assert_scan_top_is_null(hrm_index);
|
|
assert(r->is_free(),
|
|
"Region %u should be free region but is %s", hrm_index, r->get_type_str());
|
|
}
|
|
}
|
|
|
|
void G1RemSet::prepare_for_scan_heap_roots() {
|
|
_scan_state->prepare();
|
|
}
|
|
|
|
// Small ring buffer used for prefetching cards for write from the card
|
|
// table during GC.
|
|
template <class T>
|
|
class G1MergeHeapRootsPrefetchCache {
|
|
public:
|
|
static const uint CacheSize = G1MergeHeapRootsPrefetchCacheSize;
|
|
|
|
static_assert(is_power_of_2(CacheSize), "Cache size must be power of 2");
|
|
|
|
private:
|
|
T* _cache[CacheSize];
|
|
|
|
uint _cur_cache_idx;
|
|
|
|
NONCOPYABLE(G1MergeHeapRootsPrefetchCache);
|
|
|
|
protected:
|
|
// Initial content of all elements in the cache. It's value should be
|
|
// "neutral", i.e. no work done on it when processing it.
|
|
G1CardTable::CardValue _dummy_card;
|
|
|
|
~G1MergeHeapRootsPrefetchCache() = default;
|
|
|
|
public:
|
|
|
|
G1MergeHeapRootsPrefetchCache(G1CardTable::CardValue dummy_card_value) :
|
|
_cur_cache_idx(0),
|
|
_dummy_card(dummy_card_value) {
|
|
|
|
for (uint i = 0; i < CacheSize; i++) {
|
|
push(&_dummy_card);
|
|
}
|
|
}
|
|
|
|
T* push(T* elem) {
|
|
Prefetch::write(elem, 0);
|
|
T* result = _cache[_cur_cache_idx];
|
|
_cache[_cur_cache_idx++] = elem;
|
|
_cur_cache_idx &= (CacheSize - 1);
|
|
|
|
return result;
|
|
}
|
|
};
|
|
|
|
class G1MergeHeapRootsTask : public WorkerTask {
|
|
|
|
class G1MergeCardSetStats {
|
|
size_t _merged[G1GCPhaseTimes::MergeRSContainersSentinel];
|
|
|
|
public:
|
|
G1MergeCardSetStats() {
|
|
for (uint i = 0; i < ARRAY_SIZE(_merged); i++) {
|
|
_merged[i] = 0;
|
|
}
|
|
}
|
|
|
|
void inc_card_set_merged(uint tag) {
|
|
assert(tag < ARRAY_SIZE(_merged), "tag out of bounds %u", tag);
|
|
_merged[tag]++;
|
|
}
|
|
|
|
void inc_remset_cards(size_t increment = 1) {
|
|
_merged[G1GCPhaseTimes::MergeRSCards] += increment;
|
|
}
|
|
|
|
size_t merged(uint i) const { return _merged[i]; }
|
|
};
|
|
|
|
// Visitor for remembered sets. Several methods of it are called by a region's
|
|
// card set iterator to drop card set remembered set entries onto the card.
|
|
// table. This is in addition to being the HeapRegionClosure to iterate over
|
|
// all region's remembered sets.
|
|
//
|
|
// We add a small prefetching cache in front of the actual work as dropping
|
|
// onto the card table is basically random memory access. This improves
|
|
// performance of this operation significantly.
|
|
class G1MergeCardSetClosure : public HeapRegionClosure {
|
|
friend class G1MergeCardSetCache;
|
|
|
|
G1RemSetScanState* _scan_state;
|
|
G1CardTable* _ct;
|
|
|
|
G1MergeCardSetStats _stats;
|
|
|
|
// Cached card table index of the currently processed region to avoid constant
|
|
// recalculation as our remembered set containers are per region.
|
|
size_t _region_base_idx;
|
|
|
|
class G1MergeCardSetCache : public G1MergeHeapRootsPrefetchCache<G1CardTable::CardValue> {
|
|
G1MergeCardSetClosure* const _merge_card_cl;
|
|
|
|
public:
|
|
G1MergeCardSetCache(G1MergeCardSetClosure* const merge_card_cl) :
|
|
// Initially set dummy card value to Dirty to avoid any actual mark work if we
|
|
// try to process it.
|
|
G1MergeHeapRootsPrefetchCache<G1CardTable::CardValue>(G1CardTable::dirty_card_val()),
|
|
_merge_card_cl(merge_card_cl) { }
|
|
|
|
void flush() {
|
|
for (uint i = 0; i < CacheSize; i++) {
|
|
_merge_card_cl->mark_card(push(&_dummy_card));
|
|
}
|
|
}
|
|
} _merge_card_set_cache;
|
|
|
|
// Returns whether the region contains cards we need to scan. If so, remember that
|
|
// region in the current set of dirty regions.
|
|
bool remember_if_interesting(uint const region_idx) {
|
|
if (!_scan_state->contains_cards_to_process(region_idx)) {
|
|
return false;
|
|
}
|
|
_scan_state->add_dirty_region(region_idx);
|
|
return true;
|
|
}
|
|
|
|
void mark_card(G1CardTable::CardValue* value) {
|
|
if (_ct->mark_clean_as_dirty(value)) {
|
|
_scan_state->set_chunk_dirty(_ct->index_for_cardvalue(value));
|
|
}
|
|
_stats.inc_remset_cards();
|
|
}
|
|
|
|
public:
|
|
|
|
G1MergeCardSetClosure(G1RemSetScanState* scan_state) :
|
|
_scan_state(scan_state),
|
|
_ct(G1CollectedHeap::heap()->card_table()),
|
|
_stats(),
|
|
_region_base_idx(0),
|
|
_merge_card_set_cache(this) { }
|
|
|
|
void do_card(uint const card_idx) {
|
|
G1CardTable::CardValue* to_prefetch = _ct->byte_for_index(_region_base_idx + card_idx);
|
|
G1CardTable::CardValue* to_process = _merge_card_set_cache.push(to_prefetch);
|
|
|
|
mark_card(to_process);
|
|
}
|
|
|
|
// Returns whether the given region actually needs iteration.
|
|
bool start_iterate(uint const tag, uint const region_idx) {
|
|
assert(tag < G1GCPhaseTimes::MergeRSCards, "invalid tag %u", tag);
|
|
if (remember_if_interesting(region_idx)) {
|
|
_region_base_idx = (size_t)region_idx << HeapRegion::LogCardsPerRegion;
|
|
_stats.inc_card_set_merged(tag);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void do_card_range(uint const start_card_idx, uint const length) {
|
|
_ct->mark_range_dirty(_region_base_idx + start_card_idx, length);
|
|
_stats.inc_remset_cards(length);
|
|
_scan_state->set_chunk_range_dirty(_region_base_idx + start_card_idx, length);
|
|
}
|
|
|
|
// Helper to merge the cards in the card set for the given region onto the card
|
|
// table.
|
|
//
|
|
// Called directly for humongous starts regions because we should not add
|
|
// humongous eager reclaim candidates to the "all" list of regions to
|
|
// clear the card table by default as we do not know yet whether this region
|
|
// will be reclaimed (and reused).
|
|
// If the humongous region contains dirty cards, g1 will scan them
|
|
// because dumping the remembered set entries onto the card table will add
|
|
// the humongous region to the "dirty" region list to scan. Then scanning
|
|
// either clears the card during scan (if there is only an initial evacuation
|
|
// pass) or the "dirty" list will be merged with the "all" list later otherwise.
|
|
// (And there is no problem either way if the region does not contain dirty
|
|
// cards).
|
|
void merge_card_set_for_region(HeapRegion* r) {
|
|
assert(r->in_collection_set() || r->is_starts_humongous(), "must be");
|
|
|
|
HeapRegionRemSet* rem_set = r->rem_set();
|
|
if (!rem_set->is_empty()) {
|
|
rem_set->iterate_for_merge(*this);
|
|
}
|
|
}
|
|
|
|
virtual bool do_heap_region(HeapRegion* r) {
|
|
assert(r->in_collection_set(), "must be");
|
|
|
|
_scan_state->add_all_dirty_region(r->hrm_index());
|
|
merge_card_set_for_region(r);
|
|
|
|
return false;
|
|
}
|
|
|
|
G1MergeCardSetStats stats() {
|
|
_merge_card_set_cache.flush();
|
|
return _stats;
|
|
}
|
|
};
|
|
|
|
// Closure to make sure that the marking bitmap is clear for any old region in
|
|
// the collection set.
|
|
// This is needed to be able to use the bitmap for evacuation failure handling.
|
|
class G1ClearBitmapClosure : public HeapRegionClosure {
|
|
G1CollectedHeap* _g1h;
|
|
|
|
void assert_bitmap_clear(HeapRegion* hr, const G1CMBitMap* bitmap) {
|
|
assert(bitmap->get_next_marked_addr(hr->bottom(), hr->end()) == hr->end(),
|
|
"Bitmap should have no mark for region %u (%s)", hr->hrm_index(), hr->get_short_type_str());
|
|
}
|
|
|
|
bool should_clear_region(HeapRegion* hr) const {
|
|
// The bitmap for young regions must obviously be clear as we never mark through them;
|
|
// old regions are only in the collection set after the concurrent cycle completed,
|
|
// so their bitmaps must also be clear except when the pause occurs during the
|
|
// Concurrent Cleanup for Next Mark phase. Only at that point the region's bitmap may
|
|
// contain marks while being in the collection set at the same time.
|
|
//
|
|
// There is one exception: shutdown might have aborted the Concurrent Cleanup for Next
|
|
// Mark phase midway, which might have also left stale marks in old generation regions.
|
|
// There might actually have been scheduled multiple collections, but at that point we do
|
|
// not care that much about performance and just do the work multiple times if needed.
|
|
return (_g1h->collector_state()->clearing_bitmap() ||
|
|
_g1h->concurrent_mark_is_terminating()) &&
|
|
hr->is_old();
|
|
}
|
|
|
|
public:
|
|
G1ClearBitmapClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
|
|
|
|
bool do_heap_region(HeapRegion* hr) {
|
|
assert(_g1h->is_in_cset(hr), "Should only be used iterating the collection set");
|
|
|
|
// Evacuation failure uses the bitmap to record evacuation failed objects,
|
|
// so the bitmap for the regions in the collection set must be cleared if not already.
|
|
if (should_clear_region(hr)) {
|
|
_g1h->clear_bitmap_for_region(hr);
|
|
hr->reset_top_at_mark_start();
|
|
} else {
|
|
assert_bitmap_clear(hr, _g1h->concurrent_mark()->mark_bitmap());
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
// Helper to allow two closure to be applied when
|
|
// iterating through the collection set.
|
|
class G1CombinedClosure : public HeapRegionClosure {
|
|
HeapRegionClosure* _closure1;
|
|
HeapRegionClosure* _closure2;
|
|
public:
|
|
G1CombinedClosure(HeapRegionClosure* cl1, HeapRegionClosure* cl2) :
|
|
_closure1(cl1),
|
|
_closure2(cl2) { }
|
|
|
|
bool do_heap_region(HeapRegion* hr) {
|
|
return _closure1->do_heap_region(hr) ||
|
|
_closure2->do_heap_region(hr);
|
|
}
|
|
};
|
|
|
|
// Visitor for the remembered sets of humongous candidate regions to merge their
|
|
// remembered set into the card table.
|
|
class G1FlushHumongousCandidateRemSets : public HeapRegionIndexClosure {
|
|
G1MergeCardSetClosure _cl;
|
|
|
|
public:
|
|
G1FlushHumongousCandidateRemSets(G1RemSetScanState* scan_state) : _cl(scan_state) { }
|
|
|
|
bool do_heap_region_index(uint region_index) override {
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
if (!g1h->region_attr(region_index).is_humongous_candidate()) {
|
|
return false;
|
|
}
|
|
|
|
HeapRegion* r = g1h->region_at(region_index);
|
|
if (r->rem_set()->is_empty()) {
|
|
return false;
|
|
}
|
|
|
|
guarantee(r->rem_set()->occupancy_less_or_equal_than(G1EagerReclaimRemSetThreshold),
|
|
"Found a not-small remembered set here. This is inconsistent with previous assumptions.");
|
|
|
|
|
|
_cl.merge_card_set_for_region(r);
|
|
|
|
// We should only clear the card based remembered set here as we will not
|
|
// implicitly rebuild anything else during eager reclaim. Note that at the moment
|
|
// (and probably never) we do not enter this path if there are other kind of
|
|
// remembered sets for this region.
|
|
r->rem_set()->clear_locked(true /* only_cardset */);
|
|
// Clear_locked() above sets the state to Empty. However we want to continue
|
|
// collecting remembered set entries for humongous regions that were not
|
|
// reclaimed.
|
|
r->rem_set()->set_state_complete();
|
|
#ifdef ASSERT
|
|
G1HeapRegionAttr region_attr = g1h->region_attr(region_index);
|
|
assert(region_attr.remset_is_tracked(), "must be");
|
|
#endif
|
|
assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
|
|
|
|
return false;
|
|
}
|
|
|
|
G1MergeCardSetStats stats() {
|
|
return _cl.stats();
|
|
}
|
|
};
|
|
|
|
// Visitor for the log buffer entries to merge them into the card table.
|
|
class G1MergeLogBufferCardsClosure : public G1CardTableEntryClosure {
|
|
|
|
G1RemSetScanState* _scan_state;
|
|
G1CardTable* _ct;
|
|
|
|
size_t _cards_dirty;
|
|
size_t _cards_skipped;
|
|
|
|
void process_card(CardValue* card_ptr) {
|
|
if (*card_ptr == G1CardTable::dirty_card_val()) {
|
|
uint const region_idx = _ct->region_idx_for(card_ptr);
|
|
_scan_state->add_dirty_region(region_idx);
|
|
_scan_state->set_chunk_dirty(_ct->index_for_cardvalue(card_ptr));
|
|
_cards_dirty++;
|
|
}
|
|
}
|
|
|
|
public:
|
|
G1MergeLogBufferCardsClosure(G1CollectedHeap* g1h, G1RemSetScanState* scan_state) :
|
|
_scan_state(scan_state),
|
|
_ct(g1h->card_table()),
|
|
_cards_dirty(0),
|
|
_cards_skipped(0)
|
|
{}
|
|
|
|
void do_card_ptr(CardValue* card_ptr, uint worker_id) {
|
|
// The only time we care about recording cards that
|
|
// contain references that point into the collection set
|
|
// is during RSet updating within an evacuation pause.
|
|
// In this case worker_id should be the id of a GC worker thread.
|
|
assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
|
|
|
|
uint const region_idx = _ct->region_idx_for(card_ptr);
|
|
|
|
// The second clause must come after - the log buffers might contain cards to uncommitted
|
|
// regions.
|
|
// This code may count duplicate entries in the log buffers (even if rare) multiple
|
|
// times.
|
|
if (_scan_state->contains_cards_to_process(region_idx)) {
|
|
process_card(card_ptr);
|
|
} else {
|
|
// We may have had dirty cards in the (initial) collection set (or the
|
|
// young regions which are always in the initial collection set). We do
|
|
// not fix their cards here: we already added these regions to the set of
|
|
// regions to clear the card table at the end during the prepare() phase.
|
|
_cards_skipped++;
|
|
}
|
|
}
|
|
|
|
size_t cards_dirty() const { return _cards_dirty; }
|
|
size_t cards_skipped() const { return _cards_skipped; }
|
|
};
|
|
|
|
HeapRegionClaimer _hr_claimer;
|
|
G1RemSetScanState* _scan_state;
|
|
BufferNode::Stack _dirty_card_buffers;
|
|
bool _initial_evacuation;
|
|
|
|
volatile bool _fast_reclaim_handled;
|
|
|
|
void apply_closure_to_dirty_card_buffers(G1MergeLogBufferCardsClosure* cl, uint worker_id) {
|
|
G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
|
|
size_t buffer_size = dcqs.buffer_size();
|
|
while (BufferNode* node = _dirty_card_buffers.pop()) {
|
|
cl->apply_to_buffer(node, buffer_size, worker_id);
|
|
dcqs.deallocate_buffer(node);
|
|
}
|
|
}
|
|
|
|
public:
|
|
G1MergeHeapRootsTask(G1RemSetScanState* scan_state, uint num_workers, bool initial_evacuation) :
|
|
WorkerTask("G1 Merge Heap Roots"),
|
|
_hr_claimer(num_workers),
|
|
_scan_state(scan_state),
|
|
_dirty_card_buffers(),
|
|
_initial_evacuation(initial_evacuation),
|
|
_fast_reclaim_handled(false)
|
|
{
|
|
if (initial_evacuation) {
|
|
G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
|
|
BufferNodeList buffers = dcqs.take_all_completed_buffers();
|
|
if (buffers._entry_count != 0) {
|
|
_dirty_card_buffers.prepend(*buffers._head, *buffers._tail);
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual void work(uint worker_id) {
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
G1GCPhaseTimes* p = g1h->phase_times();
|
|
|
|
G1GCPhaseTimes::GCParPhases merge_remset_phase = _initial_evacuation ?
|
|
G1GCPhaseTimes::MergeRS :
|
|
G1GCPhaseTimes::OptMergeRS;
|
|
|
|
{
|
|
// Merge remset of ...
|
|
G1GCParPhaseTimesTracker x(p, merge_remset_phase, worker_id, !_initial_evacuation /* allow_multiple_record */);
|
|
|
|
{
|
|
// 1. eager-reclaim candidates
|
|
if (_initial_evacuation &&
|
|
g1h->has_humongous_reclaim_candidates() &&
|
|
!_fast_reclaim_handled &&
|
|
!Atomic::cmpxchg(&_fast_reclaim_handled, false, true)) {
|
|
|
|
G1GCParPhaseTimesTracker subphase_x(p, G1GCPhaseTimes::MergeER, worker_id);
|
|
|
|
G1FlushHumongousCandidateRemSets cl(_scan_state);
|
|
g1h->heap_region_iterate(&cl);
|
|
G1MergeCardSetStats stats = cl.stats();
|
|
|
|
for (uint i = 0; i < G1GCPhaseTimes::MergeRSContainersSentinel; i++) {
|
|
p->record_or_add_thread_work_item(merge_remset_phase, worker_id, stats.merged(i), i);
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// 2. collection set
|
|
G1MergeCardSetClosure merge(_scan_state);
|
|
G1ClearBitmapClosure clear(g1h);
|
|
G1CombinedClosure combined(&merge, &clear);
|
|
|
|
g1h->collection_set_iterate_increment_from(&combined, nullptr, worker_id);
|
|
G1MergeCardSetStats stats = merge.stats();
|
|
|
|
for (uint i = 0; i < G1GCPhaseTimes::MergeRSContainersSentinel; i++) {
|
|
p->record_or_add_thread_work_item(merge_remset_phase, worker_id, stats.merged(i), i);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now apply the closure to all remaining log entries.
|
|
if (_initial_evacuation) {
|
|
assert(merge_remset_phase == G1GCPhaseTimes::MergeRS, "Wrong merge phase");
|
|
G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::MergeLB, worker_id);
|
|
|
|
G1MergeLogBufferCardsClosure cl(g1h, _scan_state);
|
|
apply_closure_to_dirty_card_buffers(&cl, worker_id);
|
|
|
|
p->record_thread_work_item(G1GCPhaseTimes::MergeLB, worker_id, cl.cards_dirty(), G1GCPhaseTimes::MergeLBDirtyCards);
|
|
p->record_thread_work_item(G1GCPhaseTimes::MergeLB, worker_id, cl.cards_skipped(), G1GCPhaseTimes::MergeLBSkippedCards);
|
|
}
|
|
}
|
|
};
|
|
|
|
void G1RemSet::print_merge_heap_roots_stats() {
|
|
LogTarget(Debug, gc, remset) lt;
|
|
if (lt.is_enabled()) {
|
|
LogStream ls(lt);
|
|
|
|
size_t num_visited_cards = _scan_state->num_visited_cards();
|
|
|
|
size_t total_dirty_region_cards = _scan_state->num_cards_in_dirty_regions();
|
|
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
size_t total_old_region_cards =
|
|
(g1h->num_regions() - (g1h->num_free_regions() - g1h->collection_set()->cur_length())) * HeapRegion::CardsPerRegion;
|
|
|
|
ls.print_cr("Visited cards " SIZE_FORMAT " Total dirty " SIZE_FORMAT " (%.2lf%%) Total old " SIZE_FORMAT " (%.2lf%%)",
|
|
num_visited_cards,
|
|
total_dirty_region_cards,
|
|
percent_of(num_visited_cards, total_dirty_region_cards),
|
|
total_old_region_cards,
|
|
percent_of(num_visited_cards, total_old_region_cards));
|
|
}
|
|
}
|
|
|
|
void G1RemSet::merge_heap_roots(bool initial_evacuation) {
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
{
|
|
Ticks start = Ticks::now();
|
|
|
|
_scan_state->prepare_for_merge_heap_roots();
|
|
|
|
Tickspan total = Ticks::now() - start;
|
|
if (initial_evacuation) {
|
|
g1h->phase_times()->record_prepare_merge_heap_roots_time(total.seconds() * 1000.0);
|
|
} else {
|
|
g1h->phase_times()->record_or_add_optional_prepare_merge_heap_roots_time(total.seconds() * 1000.0);
|
|
}
|
|
}
|
|
|
|
WorkerThreads* workers = g1h->workers();
|
|
size_t const increment_length = g1h->collection_set()->increment_length();
|
|
|
|
uint const num_workers = initial_evacuation ? workers->active_workers() :
|
|
MIN2(workers->active_workers(), (uint)increment_length);
|
|
|
|
{
|
|
G1MergeHeapRootsTask cl(_scan_state, num_workers, initial_evacuation);
|
|
log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " regions",
|
|
cl.name(), num_workers, increment_length);
|
|
workers->run_task(&cl, num_workers);
|
|
}
|
|
|
|
print_merge_heap_roots_stats();
|
|
}
|
|
|
|
void G1RemSet::complete_evac_phase(bool has_more_than_one_evacuation_phase) {
|
|
_scan_state->complete_evac_phase(has_more_than_one_evacuation_phase);
|
|
}
|
|
|
|
void G1RemSet::exclude_region_from_scan(uint region_idx) {
|
|
_scan_state->clear_scan_top(region_idx);
|
|
}
|
|
|
|
G1AbstractSubTask* G1RemSet::create_cleanup_after_scan_heap_roots_task() {
|
|
return _scan_state->create_cleanup_after_scan_heap_roots_task();
|
|
}
|
|
|
|
void G1RemSet::print_coarsen_stats() {
|
|
LogTarget(Debug, gc, remset) lt;
|
|
if (lt.is_enabled()) {
|
|
LogStream ls(lt);
|
|
|
|
G1CardSet::print_coarsen_stats(&ls);
|
|
}
|
|
}
|
|
|
|
inline void check_card_ptr(CardTable::CardValue* card_ptr, G1CardTable* ct) {
|
|
#ifdef ASSERT
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
assert(g1h->is_in(ct->addr_for(card_ptr)),
|
|
"Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
|
|
p2i(card_ptr),
|
|
ct->index_for(ct->addr_for(card_ptr)),
|
|
p2i(ct->addr_for(card_ptr)),
|
|
g1h->addr_to_region(ct->addr_for(card_ptr)));
|
|
#endif
|
|
}
|
|
|
|
bool G1RemSet::clean_card_before_refine(CardValue** const card_ptr_addr) {
|
|
assert(!SafepointSynchronize::is_at_safepoint(), "Only call concurrently");
|
|
|
|
CardValue* card_ptr = *card_ptr_addr;
|
|
// Find the start address represented by the card.
|
|
HeapWord* start = _ct->addr_for(card_ptr);
|
|
// And find the region containing it.
|
|
HeapRegion* r = _g1h->heap_region_containing_or_null(start);
|
|
|
|
// If this is a (stale) card into an uncommitted region, exit.
|
|
if (r == NULL) {
|
|
return false;
|
|
}
|
|
|
|
check_card_ptr(card_ptr, _ct);
|
|
|
|
// If the card is no longer dirty, nothing to do.
|
|
// We cannot load the card value before the "r == NULL" check, because G1
|
|
// could uncommit parts of the card table covering uncommitted regions.
|
|
if (*card_ptr != G1CardTable::dirty_card_val()) {
|
|
return false;
|
|
}
|
|
|
|
// This check is needed for some uncommon cases where we should
|
|
// ignore the card.
|
|
//
|
|
// The region could be young. Cards for young regions are
|
|
// distinctly marked (set to g1_young_gen), so the post-barrier will
|
|
// filter them out. However, that marking is performed
|
|
// concurrently. A write to a young object could occur before the
|
|
// card has been marked young, slipping past the filter.
|
|
//
|
|
// The card could be stale, because the region has been freed since
|
|
// the card was recorded. In this case the region type could be
|
|
// anything. If (still) free or (reallocated) young, just ignore
|
|
// it. If (reallocated) old or humongous, the later card trimming
|
|
// and additional checks in iteration may detect staleness. At
|
|
// worst, we end up processing a stale card unnecessarily.
|
|
//
|
|
// In the normal (non-stale) case, the synchronization between the
|
|
// enqueueing of the card and processing it here will have ensured
|
|
// we see the up-to-date region type here.
|
|
if (!r->is_old_or_humongous()) {
|
|
return false;
|
|
}
|
|
|
|
// Trim the region designated by the card to what's been allocated
|
|
// in the region. The card could be stale, or the card could cover
|
|
// (part of) an object at the end of the allocated space and extend
|
|
// beyond the end of allocation.
|
|
|
|
// Non-humongous objects are either allocated in the old regions during GC.
|
|
// So if region is old then top is stable.
|
|
// Humongous object allocation sets top last; if top has not yet been set,
|
|
// this is a stale card and we'll end up with an empty intersection.
|
|
// If this is not a stale card, the synchronization between the
|
|
// enqueuing of the card and processing it here will have ensured
|
|
// we see the up-to-date top here.
|
|
HeapWord* scan_limit = r->top();
|
|
|
|
if (scan_limit <= start) {
|
|
// If the trimmed region is empty, the card must be stale.
|
|
return false;
|
|
}
|
|
|
|
// Okay to clean and process the card now. There are still some
|
|
// stale card cases that may be detected by iteration and dealt with
|
|
// as iteration failure.
|
|
*const_cast<volatile CardValue*>(card_ptr) = G1CardTable::clean_card_val();
|
|
|
|
return true;
|
|
}
|
|
|
|
void G1RemSet::refine_card_concurrently(CardValue* const card_ptr,
|
|
const uint worker_id) {
|
|
assert(!_g1h->is_gc_active(), "Only call concurrently");
|
|
check_card_ptr(card_ptr, _ct);
|
|
|
|
// Construct the MemRegion representing the card.
|
|
HeapWord* start = _ct->addr_for(card_ptr);
|
|
// And find the region containing it.
|
|
HeapRegion* r = _g1h->heap_region_containing(start);
|
|
// This reload of the top is safe even though it happens after the full
|
|
// fence, because top is stable for old and unfiltered humongous
|
|
// regions, so it must return the same value as the previous load when
|
|
// cleaning the card. Also cleaning the card and refinement of the card
|
|
// cannot span across safepoint, so we don't need to worry about top being
|
|
// changed during safepoint.
|
|
HeapWord* scan_limit = r->top();
|
|
assert(scan_limit > start, "sanity");
|
|
|
|
// Don't use addr_for(card_ptr + 1) which can ask for
|
|
// a card beyond the heap.
|
|
HeapWord* end = start + G1CardTable::card_size_in_words();
|
|
MemRegion dirty_region(start, MIN2(scan_limit, end));
|
|
assert(!dirty_region.is_empty(), "sanity");
|
|
|
|
G1ConcurrentRefineOopClosure conc_refine_cl(_g1h, worker_id);
|
|
if (r->oops_on_memregion_seq_iterate_careful<false>(dirty_region, &conc_refine_cl) != NULL) {
|
|
return;
|
|
}
|
|
|
|
// If unable to process the card then we encountered an unparsable
|
|
// part of the heap (e.g. a partially allocated object, so only
|
|
// temporarily a problem) while processing a stale card. Despite
|
|
// the card being stale, we can't simply ignore it, because we've
|
|
// already marked the card cleaned, so taken responsibility for
|
|
// ensuring the card gets scanned.
|
|
//
|
|
// However, the card might have gotten re-dirtied and re-enqueued
|
|
// while we worked. (In fact, it's pretty likely.)
|
|
if (*card_ptr == G1CardTable::dirty_card_val()) {
|
|
return;
|
|
}
|
|
|
|
enqueue_for_reprocessing(card_ptr);
|
|
}
|
|
|
|
// Re-dirty and re-enqueue the card to retry refinement later.
|
|
// This is used to deal with a rare race condition in concurrent refinement.
|
|
void G1RemSet::enqueue_for_reprocessing(CardValue* card_ptr) {
|
|
// We can't use the thread-local queue, because that might be the queue
|
|
// that is being processed by us; we could be a Java thread conscripted to
|
|
// perform refinement on our queue's current buffer. This situation only
|
|
// arises from rare race condition, so it's not worth any significant
|
|
// development effort or clever lock-free queue implementation. Instead
|
|
// we use brute force, allocating and enqueuing an entire buffer for just
|
|
// this card. Since buffers are processed in FIFO order and we try to
|
|
// keep some in the queue, it is likely that the racing state will have
|
|
// resolved by the time this card comes up for reprocessing.
|
|
*card_ptr = G1CardTable::dirty_card_val();
|
|
G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
|
|
void** buffer = dcqs.allocate_buffer();
|
|
size_t index = dcqs.buffer_size() - 1;
|
|
buffer[index] = card_ptr;
|
|
dcqs.enqueue_completed_buffer(BufferNode::make_node_from_buffer(buffer, index));
|
|
}
|
|
|
|
void G1RemSet::print_periodic_summary_info(const char* header, uint period_count, bool show_thread_times) {
|
|
if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
|
|
(period_count % G1SummarizeRSetStatsPeriod == 0)) {
|
|
|
|
G1RemSetSummary current;
|
|
_prev_period_summary.subtract_from(¤t);
|
|
|
|
Log(gc, remset) log;
|
|
log.trace("%s", header);
|
|
ResourceMark rm;
|
|
LogStream ls(log.trace());
|
|
_prev_period_summary.print_on(&ls, show_thread_times);
|
|
|
|
_prev_period_summary.set(¤t);
|
|
}
|
|
}
|
|
|
|
void G1RemSet::print_summary_info() {
|
|
Log(gc, remset, exit) log;
|
|
if (log.is_trace()) {
|
|
log.trace(" Cumulative RS summary");
|
|
G1RemSetSummary current;
|
|
ResourceMark rm;
|
|
LogStream ls(log.trace());
|
|
current.print_on(&ls, true /* show_thread_times*/);
|
|
}
|
|
}
|