mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-27 14:54:52 +02:00

Co-authored-by: Jan Lahoda <jlahoda@openjdk.org> Co-authored-by: Maurizio Cimadamore <mcimadamore@openjdk.org> Co-authored-by: Gavin Bierman <gbierman@openjdk.org> Co-authored-by: Brian Goetz <briangoetz@openjdk.org> Co-authored-by: Raffaello Giulietti <rgiulietti@openjdk.org> Co-authored-by: Aggelos Biboudis <abimpoudis@openjdk.org> Reviewed-by: vromero, jlahoda
296 lines
12 KiB
Java
296 lines
12 KiB
Java
/*
|
|
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
package java.lang.runtime;
|
|
|
|
/**
|
|
* A testing conversion of a value is exact if it yields a result without loss
|
|
* of information or throwing an exception. Otherwise, it is inexact. Some
|
|
* conversions are always exact regardless of the value. These conversions are
|
|
* said to be unconditionally exact.
|
|
* <p>
|
|
* For example, a conversion from {@code int} to {@code byte} for the value 10
|
|
* is exact because the result, 10, is the same as the original value. In
|
|
* contrast, if the {@code int} variable {@code i} stores the value 1000 then a
|
|
* narrowing primitive conversion to {@code byte} will yield the result -24.
|
|
* Loss of information has occurred: both the magnitude and the sign of the
|
|
* result are different than those of the original value. As such, a conversion
|
|
* from {@code int} to {@code byte} for the value 1000 is inexact. Finally a
|
|
* widening primitive conversion from {@code byte} to {@code int} is
|
|
* unconditionally exact because it will always succeed with no loss of
|
|
* information about the magnitude of the numeric value.
|
|
* <p>
|
|
* The methods in this class provide the run-time support for the exactness
|
|
* checks of testing conversions from a primitive type to primitive type. These
|
|
* methods may be used, for example, by Java compiler implementations to
|
|
* implement checks for {@code instanceof} and pattern matching runtime
|
|
* implementations. Unconditionally exact testing conversions do not require a
|
|
* corresponding action at run time and, for this reason, methods corresponding
|
|
* to these exactness checks are omitted here.
|
|
* <p>
|
|
* The run time conversion checks examine whether loss of information would
|
|
* occur if a testing conversion would be to be applied. In those cases where a
|
|
* floating-point primitive type is involved, and the value of the testing
|
|
* conversion is either signed zero, signed infinity or {@code NaN}, these
|
|
* methods comply with the following:
|
|
*
|
|
* <ul>
|
|
* <li>Converting a floating-point negative zero to an integer type is considered
|
|
* inexact.</li>
|
|
* <li>Converting a floating-point {@code NaN} or infinity to an integer type is
|
|
* considered inexact.</li>
|
|
* <li>Converting a floating-point {@code NaN} or infinity or signed zero to another
|
|
* floating-point type is considered exact.</li>
|
|
* </ul>
|
|
*
|
|
* @jls 5.7.1 Exact Testing Conversions
|
|
* @jls 5.7.2 Unconditionally Exact Testing Conversions
|
|
* @jls 15.20.2 The instanceof Operator
|
|
*
|
|
* @implNote Some exactness checks describe a test which can be redirected
|
|
* safely through one of the existing methods. Those are omitted too (i.e.,
|
|
* {@code byte} to {@code char} can be redirected to
|
|
* {@link ExactConversionsSupport#isIntToCharExact(int)}, {@code short} to
|
|
* {@code byte} can be redirected to
|
|
* {@link ExactConversionsSupport#isIntToByteExact(int)} and similarly for
|
|
* {@code short} to {@code char}, {@code char} to {@code byte} and {@code char}
|
|
* to {@code short} to the corresponding methods that take an {@code int}).
|
|
*
|
|
* @since 23
|
|
*/
|
|
public final class ExactConversionsSupport {
|
|
|
|
private ExactConversionsSupport() { }
|
|
|
|
/**
|
|
* Exactness method from int to byte
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
*/
|
|
public static boolean isIntToByteExact(int n) {return n == (int)(byte)n;}
|
|
|
|
/**
|
|
* Exactness method from int to short
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
*/
|
|
public static boolean isIntToShortExact(int n) {return n == (int)(short)n;}
|
|
|
|
/**
|
|
* Exactness method from int to char
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
*/
|
|
public static boolean isIntToCharExact(int n) {return n == (int)(char)n;}
|
|
|
|
/**
|
|
* Exactness method from int to float
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
*
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isIntToFloatExact(int n) {
|
|
return n == (int)(float)n && n != Integer.MAX_VALUE;
|
|
}
|
|
/**
|
|
* Exactness method from long to byte
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
*/
|
|
public static boolean isLongToByteExact(long n) {return n == (long)(byte)n;}
|
|
|
|
/**
|
|
* Exactness method from long to short
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
*/
|
|
public static boolean isLongToShortExact(long n) {return n == (long)(short)n;}
|
|
|
|
/**
|
|
* Exactness method from long to char
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
*/
|
|
public static boolean isLongToCharExact(long n) {return n == (long)(char)n;}
|
|
|
|
/**
|
|
* Exactness method from long to int
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
*/
|
|
public static boolean isLongToIntExact(long n) {return n == (long)(int)n;}
|
|
|
|
/**
|
|
* Exactness method from long to float
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isLongToFloatExact(long n) {
|
|
return n == (long)(float)n && n != Long.MAX_VALUE;
|
|
}
|
|
|
|
/**
|
|
* Exactness method from long to double
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isLongToDoubleExact(long n) {
|
|
return n == (long)(double)n && n != Long.MAX_VALUE;
|
|
}
|
|
|
|
/**
|
|
* Exactness method from float to byte
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isFloatToByteExact(float n) {
|
|
return n == (float)(byte)n && !isNegativeZero(n);
|
|
}
|
|
|
|
/**
|
|
* Exactness method from float to short
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isFloatToShortExact(float n) {
|
|
return n == (float)(short)n && !isNegativeZero(n);
|
|
}
|
|
|
|
/**
|
|
* Exactness method from float to char
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isFloatToCharExact(float n) {
|
|
return n == (float)(char)n && !isNegativeZero(n);
|
|
}
|
|
|
|
/**
|
|
* Exactness method from float to int
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isFloatToIntExact(float n) {
|
|
return n == (float)(int)n && n != 0x1p31f && !isNegativeZero(n);
|
|
}
|
|
|
|
/**
|
|
* Exactness method from float to long
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isFloatToLongExact(float n) {
|
|
return n == (float)(long)n && n != 0x1p63f && !isNegativeZero(n);
|
|
}
|
|
|
|
/**
|
|
* Exactness method from double to byte
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isDoubleToByteExact(double n) {
|
|
return n == (double)(byte)n && !isNegativeZero(n);
|
|
}
|
|
|
|
/**
|
|
* Exactness method from double to short
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isDoubleToShortExact(double n){
|
|
return n == (double)(short)n && !isNegativeZero(n);
|
|
}
|
|
|
|
/**
|
|
* Exactness method from double to char
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isDoubleToCharExact(double n) {
|
|
return n == (double)(char)n && !isNegativeZero(n);
|
|
}
|
|
|
|
/**
|
|
* Exactness method from double to int
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isDoubleToIntExact(double n) {
|
|
return n == (double)(int)n && !isNegativeZero(n);
|
|
}
|
|
|
|
/**
|
|
* Exactness method from double to long
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isDoubleToLongExact(double n) {
|
|
return n == (double)(long)n && n != 0x1p63 && !isNegativeZero(n);
|
|
}
|
|
|
|
/**
|
|
* Exactness method from double to float
|
|
* @param n value
|
|
* @return true if and only if the passed value can be converted exactly to the target type
|
|
* @implSpec relies on the notion of representation equivalence defined in the
|
|
* specification of the {@linkplain Double} class.
|
|
*/
|
|
public static boolean isDoubleToFloatExact(double n) {
|
|
return n == (double)(float)n || n != n;
|
|
}
|
|
|
|
private static boolean isNegativeZero(float n) {
|
|
return Float.floatToRawIntBits(n) == Integer.MIN_VALUE;
|
|
}
|
|
|
|
private static boolean isNegativeZero(double n) {
|
|
return Double.doubleToRawLongBits(n) == Long.MIN_VALUE;
|
|
}
|
|
}
|