mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-25 22:04:51 +02:00
4644 lines
146 KiB
C++
4644 lines
146 KiB
C++
/*
|
|
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
// no precompiled headers
|
|
#include "classfile/classLoader.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "compiler/compileBroker.hpp"
|
|
#include "compiler/disassembler.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "jvm_bsd.h"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/filemap.hpp"
|
|
#include "mutex_bsd.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "os_bsd.inline.hpp"
|
|
#include "os_share_bsd.hpp"
|
|
#include "prims/jniFastGetField.hpp"
|
|
#include "prims/jvm.h"
|
|
#include "prims/jvm_misc.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/atomic.inline.hpp"
|
|
#include "runtime/extendedPC.hpp"
|
|
#include "runtime/globals.hpp"
|
|
#include "runtime/interfaceSupport.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/javaCalls.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "runtime/objectMonitor.hpp"
|
|
#include "runtime/orderAccess.inline.hpp"
|
|
#include "runtime/osThread.hpp"
|
|
#include "runtime/perfMemory.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/statSampler.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "runtime/threadCritical.hpp"
|
|
#include "runtime/timer.hpp"
|
|
#include "services/attachListener.hpp"
|
|
#include "services/memTracker.hpp"
|
|
#include "services/runtimeService.hpp"
|
|
#include "utilities/decoder.hpp"
|
|
#include "utilities/defaultStream.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/growableArray.hpp"
|
|
#include "utilities/vmError.hpp"
|
|
|
|
// put OS-includes here
|
|
# include <sys/types.h>
|
|
# include <sys/mman.h>
|
|
# include <sys/stat.h>
|
|
# include <sys/select.h>
|
|
# include <pthread.h>
|
|
# include <signal.h>
|
|
# include <errno.h>
|
|
# include <dlfcn.h>
|
|
# include <stdio.h>
|
|
# include <unistd.h>
|
|
# include <sys/resource.h>
|
|
# include <pthread.h>
|
|
# include <sys/stat.h>
|
|
# include <sys/time.h>
|
|
# include <sys/times.h>
|
|
# include <sys/utsname.h>
|
|
# include <sys/socket.h>
|
|
# include <sys/wait.h>
|
|
# include <time.h>
|
|
# include <pwd.h>
|
|
# include <poll.h>
|
|
# include <semaphore.h>
|
|
# include <fcntl.h>
|
|
# include <string.h>
|
|
# include <sys/param.h>
|
|
# include <sys/sysctl.h>
|
|
# include <sys/ipc.h>
|
|
# include <sys/shm.h>
|
|
#ifndef __APPLE__
|
|
# include <link.h>
|
|
#endif
|
|
# include <stdint.h>
|
|
# include <inttypes.h>
|
|
# include <sys/ioctl.h>
|
|
# include <sys/syscall.h>
|
|
|
|
#if defined(__FreeBSD__) || defined(__NetBSD__)
|
|
#include <elf.h>
|
|
#endif
|
|
|
|
#ifdef __APPLE__
|
|
#include <mach/mach.h> // semaphore_* API
|
|
#include <mach-o/dyld.h>
|
|
#include <sys/proc_info.h>
|
|
#include <objc/objc-auto.h>
|
|
#endif
|
|
|
|
#ifndef MAP_ANONYMOUS
|
|
#define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
|
|
#define MAX_PATH (2 * K)
|
|
|
|
// for timer info max values which include all bits
|
|
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
|
|
|
|
#define LARGEPAGES_BIT (1 << 6)
|
|
|
|
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// global variables
|
|
julong os::Bsd::_physical_memory = 0;
|
|
|
|
#ifdef __APPLE__
|
|
mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
|
|
volatile uint64_t os::Bsd::_max_abstime = 0;
|
|
#else
|
|
int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
|
|
#endif
|
|
pthread_t os::Bsd::_main_thread;
|
|
int os::Bsd::_page_size = -1;
|
|
|
|
static jlong initial_time_count=0;
|
|
|
|
static int clock_tics_per_sec = 100;
|
|
|
|
// For diagnostics to print a message once. see run_periodic_checks
|
|
static sigset_t check_signal_done;
|
|
static bool check_signals = true;
|
|
|
|
static pid_t _initial_pid = 0;
|
|
|
|
// Signal number used to suspend/resume a thread
|
|
|
|
// do not use any signal number less than SIGSEGV, see 4355769
|
|
static int SR_signum = SIGUSR2;
|
|
sigset_t SR_sigset;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// utility functions
|
|
|
|
static int SR_initialize();
|
|
static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
|
|
|
|
julong os::available_memory() {
|
|
return Bsd::available_memory();
|
|
}
|
|
|
|
// available here means free
|
|
julong os::Bsd::available_memory() {
|
|
uint64_t available = physical_memory() >> 2;
|
|
#ifdef __APPLE__
|
|
mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
|
|
vm_statistics64_data_t vmstat;
|
|
kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
|
|
(host_info64_t)&vmstat, &count);
|
|
assert(kerr == KERN_SUCCESS,
|
|
"host_statistics64 failed - check mach_host_self() and count");
|
|
if (kerr == KERN_SUCCESS) {
|
|
available = vmstat.free_count * os::vm_page_size();
|
|
}
|
|
#endif
|
|
return available;
|
|
}
|
|
|
|
julong os::physical_memory() {
|
|
return Bsd::physical_memory();
|
|
}
|
|
|
|
// Return true if user is running as root.
|
|
|
|
bool os::have_special_privileges() {
|
|
static bool init = false;
|
|
static bool privileges = false;
|
|
if (!init) {
|
|
privileges = (getuid() != geteuid()) || (getgid() != getegid());
|
|
init = true;
|
|
}
|
|
return privileges;
|
|
}
|
|
|
|
|
|
|
|
// Cpu architecture string
|
|
#if defined(ZERO)
|
|
static char cpu_arch[] = ZERO_LIBARCH;
|
|
#elif defined(IA64)
|
|
static char cpu_arch[] = "ia64";
|
|
#elif defined(IA32)
|
|
static char cpu_arch[] = "i386";
|
|
#elif defined(AMD64)
|
|
static char cpu_arch[] = "amd64";
|
|
#elif defined(ARM)
|
|
static char cpu_arch[] = "arm";
|
|
#elif defined(PPC32)
|
|
static char cpu_arch[] = "ppc";
|
|
#elif defined(SPARC)
|
|
#ifdef _LP64
|
|
static char cpu_arch[] = "sparcv9";
|
|
#else
|
|
static char cpu_arch[] = "sparc";
|
|
#endif
|
|
#else
|
|
#error Add appropriate cpu_arch setting
|
|
#endif
|
|
|
|
// Compiler variant
|
|
#ifdef COMPILER2
|
|
#define COMPILER_VARIANT "server"
|
|
#else
|
|
#define COMPILER_VARIANT "client"
|
|
#endif
|
|
|
|
|
|
void os::Bsd::initialize_system_info() {
|
|
int mib[2];
|
|
size_t len;
|
|
int cpu_val;
|
|
julong mem_val;
|
|
|
|
// get processors count via hw.ncpus sysctl
|
|
mib[0] = CTL_HW;
|
|
mib[1] = HW_NCPU;
|
|
len = sizeof(cpu_val);
|
|
if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
|
|
assert(len == sizeof(cpu_val), "unexpected data size");
|
|
set_processor_count(cpu_val);
|
|
} else {
|
|
set_processor_count(1); // fallback
|
|
}
|
|
|
|
// get physical memory via hw.memsize sysctl (hw.memsize is used
|
|
// since it returns a 64 bit value)
|
|
mib[0] = CTL_HW;
|
|
|
|
#if defined (HW_MEMSIZE) // Apple
|
|
mib[1] = HW_MEMSIZE;
|
|
#elif defined(HW_PHYSMEM) // Most of BSD
|
|
mib[1] = HW_PHYSMEM;
|
|
#elif defined(HW_REALMEM) // Old FreeBSD
|
|
mib[1] = HW_REALMEM;
|
|
#else
|
|
#error No ways to get physmem
|
|
#endif
|
|
|
|
len = sizeof(mem_val);
|
|
if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
|
|
assert(len == sizeof(mem_val), "unexpected data size");
|
|
_physical_memory = mem_val;
|
|
} else {
|
|
_physical_memory = 256 * 1024 * 1024; // fallback (XXXBSD?)
|
|
}
|
|
|
|
#ifdef __OpenBSD__
|
|
{
|
|
// limit _physical_memory memory view on OpenBSD since
|
|
// datasize rlimit restricts us anyway.
|
|
struct rlimit limits;
|
|
getrlimit(RLIMIT_DATA, &limits);
|
|
_physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef __APPLE__
|
|
static const char *get_home() {
|
|
const char *home_dir = ::getenv("HOME");
|
|
if ((home_dir == NULL) || (*home_dir == '\0')) {
|
|
struct passwd *passwd_info = getpwuid(geteuid());
|
|
if (passwd_info != NULL) {
|
|
home_dir = passwd_info->pw_dir;
|
|
}
|
|
}
|
|
|
|
return home_dir;
|
|
}
|
|
#endif
|
|
|
|
void os::init_system_properties_values() {
|
|
// The next steps are taken in the product version:
|
|
//
|
|
// Obtain the JAVA_HOME value from the location of libjvm.so.
|
|
// This library should be located at:
|
|
// <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
|
|
//
|
|
// If "/jre/lib/" appears at the right place in the path, then we
|
|
// assume libjvm.so is installed in a JDK and we use this path.
|
|
//
|
|
// Otherwise exit with message: "Could not create the Java virtual machine."
|
|
//
|
|
// The following extra steps are taken in the debugging version:
|
|
//
|
|
// If "/jre/lib/" does NOT appear at the right place in the path
|
|
// instead of exit check for $JAVA_HOME environment variable.
|
|
//
|
|
// If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
|
|
// then we append a fake suffix "hotspot/libjvm.so" to this path so
|
|
// it looks like libjvm.so is installed there
|
|
// <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
|
|
//
|
|
// Otherwise exit.
|
|
//
|
|
// Important note: if the location of libjvm.so changes this
|
|
// code needs to be changed accordingly.
|
|
|
|
// See ld(1):
|
|
// The linker uses the following search paths to locate required
|
|
// shared libraries:
|
|
// 1: ...
|
|
// ...
|
|
// 7: The default directories, normally /lib and /usr/lib.
|
|
#ifndef DEFAULT_LIBPATH
|
|
#define DEFAULT_LIBPATH "/lib:/usr/lib"
|
|
#endif
|
|
|
|
// Base path of extensions installed on the system.
|
|
#define SYS_EXT_DIR "/usr/java/packages"
|
|
#define EXTENSIONS_DIR "/lib/ext"
|
|
|
|
#ifndef __APPLE__
|
|
|
|
// Buffer that fits several sprintfs.
|
|
// Note that the space for the colon and the trailing null are provided
|
|
// by the nulls included by the sizeof operator.
|
|
const size_t bufsize =
|
|
MAX2((size_t)MAXPATHLEN, // For dll_dir & friends.
|
|
(size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
|
|
char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
|
|
|
|
// sysclasspath, java_home, dll_dir
|
|
{
|
|
char *pslash;
|
|
os::jvm_path(buf, bufsize);
|
|
|
|
// Found the full path to libjvm.so.
|
|
// Now cut the path to <java_home>/jre if we can.
|
|
*(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /{client|server|hotspot}.
|
|
}
|
|
Arguments::set_dll_dir(buf);
|
|
|
|
if (pslash != NULL) {
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /<arch>.
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /lib.
|
|
}
|
|
}
|
|
}
|
|
Arguments::set_java_home(buf);
|
|
set_boot_path('/', ':');
|
|
}
|
|
|
|
// Where to look for native libraries.
|
|
//
|
|
// Note: Due to a legacy implementation, most of the library path
|
|
// is set in the launcher. This was to accomodate linking restrictions
|
|
// on legacy Bsd implementations (which are no longer supported).
|
|
// Eventually, all the library path setting will be done here.
|
|
//
|
|
// However, to prevent the proliferation of improperly built native
|
|
// libraries, the new path component /usr/java/packages is added here.
|
|
// Eventually, all the library path setting will be done here.
|
|
{
|
|
// Get the user setting of LD_LIBRARY_PATH, and prepended it. It
|
|
// should always exist (until the legacy problem cited above is
|
|
// addressed).
|
|
const char *v = ::getenv("LD_LIBRARY_PATH");
|
|
const char *v_colon = ":";
|
|
if (v == NULL) { v = ""; v_colon = ""; }
|
|
// That's +1 for the colon and +1 for the trailing '\0'.
|
|
char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
|
|
strlen(v) + 1 +
|
|
sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
|
|
mtInternal);
|
|
sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
|
|
Arguments::set_library_path(ld_library_path);
|
|
FREE_C_HEAP_ARRAY(char, ld_library_path);
|
|
}
|
|
|
|
// Extensions directories.
|
|
sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
|
|
Arguments::set_ext_dirs(buf);
|
|
|
|
FREE_C_HEAP_ARRAY(char, buf);
|
|
|
|
#else // __APPLE__
|
|
|
|
#define SYS_EXTENSIONS_DIR "/Library/Java/Extensions"
|
|
#define SYS_EXTENSIONS_DIRS SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
|
|
|
|
const char *user_home_dir = get_home();
|
|
// The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
|
|
size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
|
|
sizeof(SYS_EXTENSIONS_DIRS);
|
|
|
|
// Buffer that fits several sprintfs.
|
|
// Note that the space for the colon and the trailing null are provided
|
|
// by the nulls included by the sizeof operator.
|
|
const size_t bufsize =
|
|
MAX2((size_t)MAXPATHLEN, // for dll_dir & friends.
|
|
(size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
|
|
char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
|
|
|
|
// sysclasspath, java_home, dll_dir
|
|
{
|
|
char *pslash;
|
|
os::jvm_path(buf, bufsize);
|
|
|
|
// Found the full path to libjvm.so.
|
|
// Now cut the path to <java_home>/jre if we can.
|
|
*(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /{client|server|hotspot}.
|
|
}
|
|
Arguments::set_dll_dir(buf);
|
|
|
|
if (pslash != NULL) {
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /lib.
|
|
}
|
|
}
|
|
Arguments::set_java_home(buf);
|
|
set_boot_path('/', ':');
|
|
}
|
|
|
|
// Where to look for native libraries.
|
|
//
|
|
// Note: Due to a legacy implementation, most of the library path
|
|
// is set in the launcher. This was to accomodate linking restrictions
|
|
// on legacy Bsd implementations (which are no longer supported).
|
|
// Eventually, all the library path setting will be done here.
|
|
//
|
|
// However, to prevent the proliferation of improperly built native
|
|
// libraries, the new path component /usr/java/packages is added here.
|
|
// Eventually, all the library path setting will be done here.
|
|
{
|
|
// Get the user setting of LD_LIBRARY_PATH, and prepended it. It
|
|
// should always exist (until the legacy problem cited above is
|
|
// addressed).
|
|
// Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
|
|
// can specify a directory inside an app wrapper
|
|
const char *l = ::getenv("JAVA_LIBRARY_PATH");
|
|
const char *l_colon = ":";
|
|
if (l == NULL) { l = ""; l_colon = ""; }
|
|
|
|
const char *v = ::getenv("DYLD_LIBRARY_PATH");
|
|
const char *v_colon = ":";
|
|
if (v == NULL) { v = ""; v_colon = ""; }
|
|
|
|
// Apple's Java6 has "." at the beginning of java.library.path.
|
|
// OpenJDK on Windows has "." at the end of java.library.path.
|
|
// OpenJDK on Linux and Solaris don't have "." in java.library.path
|
|
// at all. To ease the transition from Apple's Java6 to OpenJDK7,
|
|
// "." is appended to the end of java.library.path. Yes, this
|
|
// could cause a change in behavior, but Apple's Java6 behavior
|
|
// can be achieved by putting "." at the beginning of the
|
|
// JAVA_LIBRARY_PATH environment variable.
|
|
char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
|
|
strlen(v) + 1 + strlen(l) + 1 +
|
|
system_ext_size + 3,
|
|
mtInternal);
|
|
sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
|
|
v, v_colon, l, l_colon, user_home_dir);
|
|
Arguments::set_library_path(ld_library_path);
|
|
FREE_C_HEAP_ARRAY(char, ld_library_path);
|
|
}
|
|
|
|
// Extensions directories.
|
|
//
|
|
// Note that the space for the colon and the trailing null are provided
|
|
// by the nulls included by the sizeof operator (so actually one byte more
|
|
// than necessary is allocated).
|
|
sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
|
|
user_home_dir, Arguments::get_java_home());
|
|
Arguments::set_ext_dirs(buf);
|
|
|
|
FREE_C_HEAP_ARRAY(char, buf);
|
|
|
|
#undef SYS_EXTENSIONS_DIR
|
|
#undef SYS_EXTENSIONS_DIRS
|
|
|
|
#endif // __APPLE__
|
|
|
|
#undef SYS_EXT_DIR
|
|
#undef EXTENSIONS_DIR
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// breakpoint support
|
|
|
|
void os::breakpoint() {
|
|
BREAKPOINT;
|
|
}
|
|
|
|
extern "C" void breakpoint() {
|
|
// use debugger to set breakpoint here
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// signal support
|
|
|
|
debug_only(static bool signal_sets_initialized = false);
|
|
static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
|
|
|
|
bool os::Bsd::is_sig_ignored(int sig) {
|
|
struct sigaction oact;
|
|
sigaction(sig, (struct sigaction*)NULL, &oact);
|
|
void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(void*, oact.sa_handler);
|
|
if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void os::Bsd::signal_sets_init() {
|
|
// Should also have an assertion stating we are still single-threaded.
|
|
assert(!signal_sets_initialized, "Already initialized");
|
|
// Fill in signals that are necessarily unblocked for all threads in
|
|
// the VM. Currently, we unblock the following signals:
|
|
// SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
|
|
// by -Xrs (=ReduceSignalUsage));
|
|
// BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
|
|
// other threads. The "ReduceSignalUsage" boolean tells us not to alter
|
|
// the dispositions or masks wrt these signals.
|
|
// Programs embedding the VM that want to use the above signals for their
|
|
// own purposes must, at this time, use the "-Xrs" option to prevent
|
|
// interference with shutdown hooks and BREAK_SIGNAL thread dumping.
|
|
// (See bug 4345157, and other related bugs).
|
|
// In reality, though, unblocking these signals is really a nop, since
|
|
// these signals are not blocked by default.
|
|
sigemptyset(&unblocked_sigs);
|
|
sigemptyset(&allowdebug_blocked_sigs);
|
|
sigaddset(&unblocked_sigs, SIGILL);
|
|
sigaddset(&unblocked_sigs, SIGSEGV);
|
|
sigaddset(&unblocked_sigs, SIGBUS);
|
|
sigaddset(&unblocked_sigs, SIGFPE);
|
|
sigaddset(&unblocked_sigs, SR_signum);
|
|
|
|
if (!ReduceSignalUsage) {
|
|
if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
|
|
sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
|
|
sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
|
|
}
|
|
if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
|
|
sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
|
|
sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
|
|
}
|
|
if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
|
|
sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
|
|
sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
|
|
}
|
|
}
|
|
// Fill in signals that are blocked by all but the VM thread.
|
|
sigemptyset(&vm_sigs);
|
|
if (!ReduceSignalUsage) {
|
|
sigaddset(&vm_sigs, BREAK_SIGNAL);
|
|
}
|
|
debug_only(signal_sets_initialized = true);
|
|
|
|
}
|
|
|
|
// These are signals that are unblocked while a thread is running Java.
|
|
// (For some reason, they get blocked by default.)
|
|
sigset_t* os::Bsd::unblocked_signals() {
|
|
assert(signal_sets_initialized, "Not initialized");
|
|
return &unblocked_sigs;
|
|
}
|
|
|
|
// These are the signals that are blocked while a (non-VM) thread is
|
|
// running Java. Only the VM thread handles these signals.
|
|
sigset_t* os::Bsd::vm_signals() {
|
|
assert(signal_sets_initialized, "Not initialized");
|
|
return &vm_sigs;
|
|
}
|
|
|
|
// These are signals that are blocked during cond_wait to allow debugger in
|
|
sigset_t* os::Bsd::allowdebug_blocked_signals() {
|
|
assert(signal_sets_initialized, "Not initialized");
|
|
return &allowdebug_blocked_sigs;
|
|
}
|
|
|
|
void os::Bsd::hotspot_sigmask(Thread* thread) {
|
|
|
|
//Save caller's signal mask before setting VM signal mask
|
|
sigset_t caller_sigmask;
|
|
pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
osthread->set_caller_sigmask(caller_sigmask);
|
|
|
|
pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
|
|
|
|
if (!ReduceSignalUsage) {
|
|
if (thread->is_VM_thread()) {
|
|
// Only the VM thread handles BREAK_SIGNAL ...
|
|
pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
|
|
} else {
|
|
// ... all other threads block BREAK_SIGNAL
|
|
pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// create new thread
|
|
|
|
#ifdef __APPLE__
|
|
// library handle for calling objc_registerThreadWithCollector()
|
|
// without static linking to the libobjc library
|
|
#define OBJC_LIB "/usr/lib/libobjc.dylib"
|
|
#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
|
|
typedef void (*objc_registerThreadWithCollector_t)();
|
|
extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
|
|
objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
|
|
#endif
|
|
|
|
#ifdef __APPLE__
|
|
static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
|
|
// Additional thread_id used to correlate threads in SA
|
|
thread_identifier_info_data_t m_ident_info;
|
|
mach_msg_type_number_t count = THREAD_IDENTIFIER_INFO_COUNT;
|
|
|
|
thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
|
|
(thread_info_t) &m_ident_info, &count);
|
|
|
|
return m_ident_info.thread_id;
|
|
}
|
|
#endif
|
|
|
|
// Thread start routine for all newly created threads
|
|
static void *java_start(Thread *thread) {
|
|
// Try to randomize the cache line index of hot stack frames.
|
|
// This helps when threads of the same stack traces evict each other's
|
|
// cache lines. The threads can be either from the same JVM instance, or
|
|
// from different JVM instances. The benefit is especially true for
|
|
// processors with hyperthreading technology.
|
|
static int counter = 0;
|
|
int pid = os::current_process_id();
|
|
alloca(((pid ^ counter++) & 7) * 128);
|
|
|
|
ThreadLocalStorage::set_thread(thread);
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
Monitor* sync = osthread->startThread_lock();
|
|
|
|
osthread->set_thread_id(os::Bsd::gettid());
|
|
|
|
#ifdef __APPLE__
|
|
uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
|
|
guarantee(unique_thread_id != 0, "unique thread id was not found");
|
|
osthread->set_unique_thread_id(unique_thread_id);
|
|
#endif
|
|
// initialize signal mask for this thread
|
|
os::Bsd::hotspot_sigmask(thread);
|
|
|
|
// initialize floating point control register
|
|
os::Bsd::init_thread_fpu_state();
|
|
|
|
#ifdef __APPLE__
|
|
// register thread with objc gc
|
|
if (objc_registerThreadWithCollectorFunction != NULL) {
|
|
objc_registerThreadWithCollectorFunction();
|
|
}
|
|
#endif
|
|
|
|
// handshaking with parent thread
|
|
{
|
|
MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
|
|
|
|
// notify parent thread
|
|
osthread->set_state(INITIALIZED);
|
|
sync->notify_all();
|
|
|
|
// wait until os::start_thread()
|
|
while (osthread->get_state() == INITIALIZED) {
|
|
sync->wait(Mutex::_no_safepoint_check_flag);
|
|
}
|
|
}
|
|
|
|
// call one more level start routine
|
|
thread->run();
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
|
|
assert(thread->osthread() == NULL, "caller responsible");
|
|
|
|
// Allocate the OSThread object
|
|
OSThread* osthread = new OSThread(NULL, NULL);
|
|
if (osthread == NULL) {
|
|
return false;
|
|
}
|
|
|
|
// set the correct thread state
|
|
osthread->set_thread_type(thr_type);
|
|
|
|
// Initial state is ALLOCATED but not INITIALIZED
|
|
osthread->set_state(ALLOCATED);
|
|
|
|
thread->set_osthread(osthread);
|
|
|
|
// init thread attributes
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
|
|
|
// stack size
|
|
if (os::Bsd::supports_variable_stack_size()) {
|
|
// calculate stack size if it's not specified by caller
|
|
if (stack_size == 0) {
|
|
stack_size = os::Bsd::default_stack_size(thr_type);
|
|
|
|
switch (thr_type) {
|
|
case os::java_thread:
|
|
// Java threads use ThreadStackSize which default value can be
|
|
// changed with the flag -Xss
|
|
assert(JavaThread::stack_size_at_create() > 0, "this should be set");
|
|
stack_size = JavaThread::stack_size_at_create();
|
|
break;
|
|
case os::compiler_thread:
|
|
if (CompilerThreadStackSize > 0) {
|
|
stack_size = (size_t)(CompilerThreadStackSize * K);
|
|
break;
|
|
} // else fall through:
|
|
// use VMThreadStackSize if CompilerThreadStackSize is not defined
|
|
case os::vm_thread:
|
|
case os::pgc_thread:
|
|
case os::cgc_thread:
|
|
case os::watcher_thread:
|
|
if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
|
|
break;
|
|
}
|
|
}
|
|
|
|
stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
|
|
pthread_attr_setstacksize(&attr, stack_size);
|
|
} else {
|
|
// let pthread_create() pick the default value.
|
|
}
|
|
|
|
ThreadState state;
|
|
|
|
{
|
|
pthread_t tid;
|
|
int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
|
|
|
|
pthread_attr_destroy(&attr);
|
|
|
|
if (ret != 0) {
|
|
if (PrintMiscellaneous && (Verbose || WizardMode)) {
|
|
perror("pthread_create()");
|
|
}
|
|
// Need to clean up stuff we've allocated so far
|
|
thread->set_osthread(NULL);
|
|
delete osthread;
|
|
return false;
|
|
}
|
|
|
|
// Store pthread info into the OSThread
|
|
osthread->set_pthread_id(tid);
|
|
|
|
// Wait until child thread is either initialized or aborted
|
|
{
|
|
Monitor* sync_with_child = osthread->startThread_lock();
|
|
MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
|
|
while ((state = osthread->get_state()) == ALLOCATED) {
|
|
sync_with_child->wait(Mutex::_no_safepoint_check_flag);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Aborted due to thread limit being reached
|
|
if (state == ZOMBIE) {
|
|
thread->set_osthread(NULL);
|
|
delete osthread;
|
|
return false;
|
|
}
|
|
|
|
// The thread is returned suspended (in state INITIALIZED),
|
|
// and is started higher up in the call chain
|
|
assert(state == INITIALIZED, "race condition");
|
|
return true;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// attach existing thread
|
|
|
|
// bootstrap the main thread
|
|
bool os::create_main_thread(JavaThread* thread) {
|
|
assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
|
|
return create_attached_thread(thread);
|
|
}
|
|
|
|
bool os::create_attached_thread(JavaThread* thread) {
|
|
#ifdef ASSERT
|
|
thread->verify_not_published();
|
|
#endif
|
|
|
|
// Allocate the OSThread object
|
|
OSThread* osthread = new OSThread(NULL, NULL);
|
|
|
|
if (osthread == NULL) {
|
|
return false;
|
|
}
|
|
|
|
osthread->set_thread_id(os::Bsd::gettid());
|
|
|
|
// Store pthread info into the OSThread
|
|
#ifdef __APPLE__
|
|
uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
|
|
guarantee(unique_thread_id != 0, "just checking");
|
|
osthread->set_unique_thread_id(unique_thread_id);
|
|
#endif
|
|
osthread->set_pthread_id(::pthread_self());
|
|
|
|
// initialize floating point control register
|
|
os::Bsd::init_thread_fpu_state();
|
|
|
|
// Initial thread state is RUNNABLE
|
|
osthread->set_state(RUNNABLE);
|
|
|
|
thread->set_osthread(osthread);
|
|
|
|
// initialize signal mask for this thread
|
|
// and save the caller's signal mask
|
|
os::Bsd::hotspot_sigmask(thread);
|
|
|
|
return true;
|
|
}
|
|
|
|
void os::pd_start_thread(Thread* thread) {
|
|
OSThread * osthread = thread->osthread();
|
|
assert(osthread->get_state() != INITIALIZED, "just checking");
|
|
Monitor* sync_with_child = osthread->startThread_lock();
|
|
MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
|
|
sync_with_child->notify();
|
|
}
|
|
|
|
// Free Bsd resources related to the OSThread
|
|
void os::free_thread(OSThread* osthread) {
|
|
assert(osthread != NULL, "osthread not set");
|
|
|
|
if (Thread::current()->osthread() == osthread) {
|
|
// Restore caller's signal mask
|
|
sigset_t sigmask = osthread->caller_sigmask();
|
|
pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
|
|
}
|
|
|
|
delete osthread;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// thread local storage
|
|
|
|
// Restore the thread pointer if the destructor is called. This is in case
|
|
// someone from JNI code sets up a destructor with pthread_key_create to run
|
|
// detachCurrentThread on thread death. Unless we restore the thread pointer we
|
|
// will hang or crash. When detachCurrentThread is called the key will be set
|
|
// to null and we will not be called again. If detachCurrentThread is never
|
|
// called we could loop forever depending on the pthread implementation.
|
|
static void restore_thread_pointer(void* p) {
|
|
Thread* thread = (Thread*) p;
|
|
os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
|
|
}
|
|
|
|
int os::allocate_thread_local_storage() {
|
|
pthread_key_t key;
|
|
int rslt = pthread_key_create(&key, restore_thread_pointer);
|
|
assert(rslt == 0, "cannot allocate thread local storage");
|
|
return (int)key;
|
|
}
|
|
|
|
// Note: This is currently not used by VM, as we don't destroy TLS key
|
|
// on VM exit.
|
|
void os::free_thread_local_storage(int index) {
|
|
int rslt = pthread_key_delete((pthread_key_t)index);
|
|
assert(rslt == 0, "invalid index");
|
|
}
|
|
|
|
void os::thread_local_storage_at_put(int index, void* value) {
|
|
int rslt = pthread_setspecific((pthread_key_t)index, value);
|
|
assert(rslt == 0, "pthread_setspecific failed");
|
|
}
|
|
|
|
extern "C" Thread* get_thread() {
|
|
return ThreadLocalStorage::thread();
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// time support
|
|
|
|
// Time since start-up in seconds to a fine granularity.
|
|
// Used by VMSelfDestructTimer and the MemProfiler.
|
|
double os::elapsedTime() {
|
|
|
|
return ((double)os::elapsed_counter()) / os::elapsed_frequency();
|
|
}
|
|
|
|
jlong os::elapsed_counter() {
|
|
return javaTimeNanos() - initial_time_count;
|
|
}
|
|
|
|
jlong os::elapsed_frequency() {
|
|
return NANOSECS_PER_SEC; // nanosecond resolution
|
|
}
|
|
|
|
bool os::supports_vtime() { return true; }
|
|
bool os::enable_vtime() { return false; }
|
|
bool os::vtime_enabled() { return false; }
|
|
|
|
double os::elapsedVTime() {
|
|
// better than nothing, but not much
|
|
return elapsedTime();
|
|
}
|
|
|
|
jlong os::javaTimeMillis() {
|
|
timeval time;
|
|
int status = gettimeofday(&time, NULL);
|
|
assert(status != -1, "bsd error");
|
|
return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
|
|
}
|
|
|
|
void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
|
|
timeval time;
|
|
int status = gettimeofday(&time, NULL);
|
|
assert(status != -1, "bsd error");
|
|
seconds = jlong(time.tv_sec);
|
|
nanos = jlong(time.tv_usec) * 1000;
|
|
}
|
|
|
|
#ifndef __APPLE__
|
|
#ifndef CLOCK_MONOTONIC
|
|
#define CLOCK_MONOTONIC (1)
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef __APPLE__
|
|
void os::Bsd::clock_init() {
|
|
mach_timebase_info(&_timebase_info);
|
|
}
|
|
#else
|
|
void os::Bsd::clock_init() {
|
|
struct timespec res;
|
|
struct timespec tp;
|
|
if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
|
|
::clock_gettime(CLOCK_MONOTONIC, &tp) == 0) {
|
|
// yes, monotonic clock is supported
|
|
_clock_gettime = ::clock_gettime;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef __APPLE__
|
|
|
|
jlong os::javaTimeNanos() {
|
|
const uint64_t tm = mach_absolute_time();
|
|
const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
|
|
const uint64_t prev = Bsd::_max_abstime;
|
|
if (now <= prev) {
|
|
return prev; // same or retrograde time;
|
|
}
|
|
const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
|
|
assert(obsv >= prev, "invariant"); // Monotonicity
|
|
// If the CAS succeeded then we're done and return "now".
|
|
// If the CAS failed and the observed value "obsv" is >= now then
|
|
// we should return "obsv". If the CAS failed and now > obsv > prv then
|
|
// some other thread raced this thread and installed a new value, in which case
|
|
// we could either (a) retry the entire operation, (b) retry trying to install now
|
|
// or (c) just return obsv. We use (c). No loop is required although in some cases
|
|
// we might discard a higher "now" value in deference to a slightly lower but freshly
|
|
// installed obsv value. That's entirely benign -- it admits no new orderings compared
|
|
// to (a) or (b) -- and greatly reduces coherence traffic.
|
|
// We might also condition (c) on the magnitude of the delta between obsv and now.
|
|
// Avoiding excessive CAS operations to hot RW locations is critical.
|
|
// See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
|
|
return (prev == obsv) ? now : obsv;
|
|
}
|
|
|
|
#else // __APPLE__
|
|
|
|
jlong os::javaTimeNanos() {
|
|
if (os::supports_monotonic_clock()) {
|
|
struct timespec tp;
|
|
int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
|
|
assert(status == 0, "gettime error");
|
|
jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
|
|
return result;
|
|
} else {
|
|
timeval time;
|
|
int status = gettimeofday(&time, NULL);
|
|
assert(status != -1, "bsd error");
|
|
jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
|
|
return 1000 * usecs;
|
|
}
|
|
}
|
|
|
|
#endif // __APPLE__
|
|
|
|
void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
|
|
if (os::supports_monotonic_clock()) {
|
|
info_ptr->max_value = ALL_64_BITS;
|
|
|
|
// CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
|
|
info_ptr->may_skip_backward = false; // not subject to resetting or drifting
|
|
info_ptr->may_skip_forward = false; // not subject to resetting or drifting
|
|
} else {
|
|
// gettimeofday - based on time in seconds since the Epoch thus does not wrap
|
|
info_ptr->max_value = ALL_64_BITS;
|
|
|
|
// gettimeofday is a real time clock so it skips
|
|
info_ptr->may_skip_backward = true;
|
|
info_ptr->may_skip_forward = true;
|
|
}
|
|
|
|
info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
|
|
}
|
|
|
|
// Return the real, user, and system times in seconds from an
|
|
// arbitrary fixed point in the past.
|
|
bool os::getTimesSecs(double* process_real_time,
|
|
double* process_user_time,
|
|
double* process_system_time) {
|
|
struct tms ticks;
|
|
clock_t real_ticks = times(&ticks);
|
|
|
|
if (real_ticks == (clock_t) (-1)) {
|
|
return false;
|
|
} else {
|
|
double ticks_per_second = (double) clock_tics_per_sec;
|
|
*process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
|
|
*process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
|
|
*process_real_time = ((double) real_ticks) / ticks_per_second;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
char * os::local_time_string(char *buf, size_t buflen) {
|
|
struct tm t;
|
|
time_t long_time;
|
|
time(&long_time);
|
|
localtime_r(&long_time, &t);
|
|
jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
|
|
t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
|
|
t.tm_hour, t.tm_min, t.tm_sec);
|
|
return buf;
|
|
}
|
|
|
|
struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
|
|
return localtime_r(clock, res);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// runtime exit support
|
|
|
|
// Note: os::shutdown() might be called very early during initialization, or
|
|
// called from signal handler. Before adding something to os::shutdown(), make
|
|
// sure it is async-safe and can handle partially initialized VM.
|
|
void os::shutdown() {
|
|
|
|
// allow PerfMemory to attempt cleanup of any persistent resources
|
|
perfMemory_exit();
|
|
|
|
// needs to remove object in file system
|
|
AttachListener::abort();
|
|
|
|
// flush buffered output, finish log files
|
|
ostream_abort();
|
|
|
|
// Check for abort hook
|
|
abort_hook_t abort_hook = Arguments::abort_hook();
|
|
if (abort_hook != NULL) {
|
|
abort_hook();
|
|
}
|
|
|
|
}
|
|
|
|
// Note: os::abort() might be called very early during initialization, or
|
|
// called from signal handler. Before adding something to os::abort(), make
|
|
// sure it is async-safe and can handle partially initialized VM.
|
|
void os::abort(bool dump_core, void* siginfo, void* context) {
|
|
os::shutdown();
|
|
if (dump_core) {
|
|
#ifndef PRODUCT
|
|
fdStream out(defaultStream::output_fd());
|
|
out.print_raw("Current thread is ");
|
|
char buf[16];
|
|
jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
|
|
out.print_raw_cr(buf);
|
|
out.print_raw_cr("Dumping core ...");
|
|
#endif
|
|
::abort(); // dump core
|
|
}
|
|
|
|
::exit(1);
|
|
}
|
|
|
|
// Die immediately, no exit hook, no abort hook, no cleanup.
|
|
void os::die() {
|
|
// _exit() on BsdThreads only kills current thread
|
|
::abort();
|
|
}
|
|
|
|
// This method is a copy of JDK's sysGetLastErrorString
|
|
// from src/solaris/hpi/src/system_md.c
|
|
|
|
size_t os::lasterror(char *buf, size_t len) {
|
|
if (errno == 0) return 0;
|
|
|
|
const char *s = ::strerror(errno);
|
|
size_t n = ::strlen(s);
|
|
if (n >= len) {
|
|
n = len - 1;
|
|
}
|
|
::strncpy(buf, s, n);
|
|
buf[n] = '\0';
|
|
return n;
|
|
}
|
|
|
|
// Information of current thread in variety of formats
|
|
pid_t os::Bsd::gettid() {
|
|
int retval = -1;
|
|
|
|
#ifdef __APPLE__ //XNU kernel
|
|
// despite the fact mach port is actually not a thread id use it
|
|
// instead of syscall(SYS_thread_selfid) as it certainly fits to u4
|
|
retval = ::pthread_mach_thread_np(::pthread_self());
|
|
guarantee(retval != 0, "just checking");
|
|
return retval;
|
|
|
|
#else
|
|
#ifdef __FreeBSD__
|
|
retval = syscall(SYS_thr_self);
|
|
#else
|
|
#ifdef __OpenBSD__
|
|
retval = syscall(SYS_getthrid);
|
|
#else
|
|
#ifdef __NetBSD__
|
|
retval = (pid_t) syscall(SYS__lwp_self);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
if (retval == -1) {
|
|
return getpid();
|
|
}
|
|
}
|
|
|
|
intx os::current_thread_id() {
|
|
#ifdef __APPLE__
|
|
return (intx)::pthread_mach_thread_np(::pthread_self());
|
|
#else
|
|
return (intx)::pthread_self();
|
|
#endif
|
|
}
|
|
|
|
int os::current_process_id() {
|
|
|
|
// Under the old bsd thread library, bsd gives each thread
|
|
// its own process id. Because of this each thread will return
|
|
// a different pid if this method were to return the result
|
|
// of getpid(2). Bsd provides no api that returns the pid
|
|
// of the launcher thread for the vm. This implementation
|
|
// returns a unique pid, the pid of the launcher thread
|
|
// that starts the vm 'process'.
|
|
|
|
// Under the NPTL, getpid() returns the same pid as the
|
|
// launcher thread rather than a unique pid per thread.
|
|
// Use gettid() if you want the old pre NPTL behaviour.
|
|
|
|
// if you are looking for the result of a call to getpid() that
|
|
// returns a unique pid for the calling thread, then look at the
|
|
// OSThread::thread_id() method in osThread_bsd.hpp file
|
|
|
|
return (int)(_initial_pid ? _initial_pid : getpid());
|
|
}
|
|
|
|
// DLL functions
|
|
|
|
#define JNI_LIB_PREFIX "lib"
|
|
#ifdef __APPLE__
|
|
#define JNI_LIB_SUFFIX ".dylib"
|
|
#else
|
|
#define JNI_LIB_SUFFIX ".so"
|
|
#endif
|
|
|
|
const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
|
|
|
|
// This must be hard coded because it's the system's temporary
|
|
// directory not the java application's temp directory, ala java.io.tmpdir.
|
|
#ifdef __APPLE__
|
|
// macosx has a secure per-user temporary directory
|
|
char temp_path_storage[PATH_MAX];
|
|
const char* os::get_temp_directory() {
|
|
static char *temp_path = NULL;
|
|
if (temp_path == NULL) {
|
|
int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
|
|
if (pathSize == 0 || pathSize > PATH_MAX) {
|
|
strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
|
|
}
|
|
temp_path = temp_path_storage;
|
|
}
|
|
return temp_path;
|
|
}
|
|
#else // __APPLE__
|
|
const char* os::get_temp_directory() { return "/tmp"; }
|
|
#endif // __APPLE__
|
|
|
|
static bool file_exists(const char* filename) {
|
|
struct stat statbuf;
|
|
if (filename == NULL || strlen(filename) == 0) {
|
|
return false;
|
|
}
|
|
return os::stat(filename, &statbuf) == 0;
|
|
}
|
|
|
|
bool os::dll_build_name(char* buffer, size_t buflen,
|
|
const char* pname, const char* fname) {
|
|
bool retval = false;
|
|
// Copied from libhpi
|
|
const size_t pnamelen = pname ? strlen(pname) : 0;
|
|
|
|
// Return error on buffer overflow.
|
|
if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
|
|
return retval;
|
|
}
|
|
|
|
if (pnamelen == 0) {
|
|
snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
|
|
retval = true;
|
|
} else if (strchr(pname, *os::path_separator()) != NULL) {
|
|
int n;
|
|
char** pelements = split_path(pname, &n);
|
|
if (pelements == NULL) {
|
|
return false;
|
|
}
|
|
for (int i = 0; i < n; i++) {
|
|
// Really shouldn't be NULL, but check can't hurt
|
|
if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
|
|
continue; // skip the empty path values
|
|
}
|
|
snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
|
|
pelements[i], fname);
|
|
if (file_exists(buffer)) {
|
|
retval = true;
|
|
break;
|
|
}
|
|
}
|
|
// release the storage
|
|
for (int i = 0; i < n; i++) {
|
|
if (pelements[i] != NULL) {
|
|
FREE_C_HEAP_ARRAY(char, pelements[i]);
|
|
}
|
|
}
|
|
if (pelements != NULL) {
|
|
FREE_C_HEAP_ARRAY(char*, pelements);
|
|
}
|
|
} else {
|
|
snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
|
|
retval = true;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
// check if addr is inside libjvm.so
|
|
bool os::address_is_in_vm(address addr) {
|
|
static address libjvm_base_addr;
|
|
Dl_info dlinfo;
|
|
|
|
if (libjvm_base_addr == NULL) {
|
|
if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
|
|
libjvm_base_addr = (address)dlinfo.dli_fbase;
|
|
}
|
|
assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
|
|
}
|
|
|
|
if (dladdr((void *)addr, &dlinfo) != 0) {
|
|
if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
#define MACH_MAXSYMLEN 256
|
|
|
|
bool os::dll_address_to_function_name(address addr, char *buf,
|
|
int buflen, int *offset,
|
|
bool demangle) {
|
|
// buf is not optional, but offset is optional
|
|
assert(buf != NULL, "sanity check");
|
|
|
|
Dl_info dlinfo;
|
|
char localbuf[MACH_MAXSYMLEN];
|
|
|
|
if (dladdr((void*)addr, &dlinfo) != 0) {
|
|
// see if we have a matching symbol
|
|
if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
|
|
if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
|
|
jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
|
|
}
|
|
if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
|
|
return true;
|
|
}
|
|
// no matching symbol so try for just file info
|
|
if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
|
|
if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
|
|
buf, buflen, offset, dlinfo.dli_fname, demangle)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Handle non-dynamic manually:
|
|
if (dlinfo.dli_fbase != NULL &&
|
|
Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
|
|
dlinfo.dli_fbase)) {
|
|
if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
|
|
jio_snprintf(buf, buflen, "%s", localbuf);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
buf[0] = '\0';
|
|
if (offset != NULL) *offset = -1;
|
|
return false;
|
|
}
|
|
|
|
// ported from solaris version
|
|
bool os::dll_address_to_library_name(address addr, char* buf,
|
|
int buflen, int* offset) {
|
|
// buf is not optional, but offset is optional
|
|
assert(buf != NULL, "sanity check");
|
|
|
|
Dl_info dlinfo;
|
|
|
|
if (dladdr((void*)addr, &dlinfo) != 0) {
|
|
if (dlinfo.dli_fname != NULL) {
|
|
jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
|
|
}
|
|
if (dlinfo.dli_fbase != NULL && offset != NULL) {
|
|
*offset = addr - (address)dlinfo.dli_fbase;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
buf[0] = '\0';
|
|
if (offset) *offset = -1;
|
|
return false;
|
|
}
|
|
|
|
// Loads .dll/.so and
|
|
// in case of error it checks if .dll/.so was built for the
|
|
// same architecture as Hotspot is running on
|
|
|
|
#ifdef __APPLE__
|
|
void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
|
|
void * result= ::dlopen(filename, RTLD_LAZY);
|
|
if (result != NULL) {
|
|
// Successful loading
|
|
return result;
|
|
}
|
|
|
|
// Read system error message into ebuf
|
|
::strncpy(ebuf, ::dlerror(), ebuflen-1);
|
|
ebuf[ebuflen-1]='\0';
|
|
|
|
return NULL;
|
|
}
|
|
#else
|
|
void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
|
|
void * result= ::dlopen(filename, RTLD_LAZY);
|
|
if (result != NULL) {
|
|
// Successful loading
|
|
return result;
|
|
}
|
|
|
|
Elf32_Ehdr elf_head;
|
|
|
|
// Read system error message into ebuf
|
|
// It may or may not be overwritten below
|
|
::strncpy(ebuf, ::dlerror(), ebuflen-1);
|
|
ebuf[ebuflen-1]='\0';
|
|
int diag_msg_max_length=ebuflen-strlen(ebuf);
|
|
char* diag_msg_buf=ebuf+strlen(ebuf);
|
|
|
|
if (diag_msg_max_length==0) {
|
|
// No more space in ebuf for additional diagnostics message
|
|
return NULL;
|
|
}
|
|
|
|
|
|
int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
|
|
|
|
if (file_descriptor < 0) {
|
|
// Can't open library, report dlerror() message
|
|
return NULL;
|
|
}
|
|
|
|
bool failed_to_read_elf_head=
|
|
(sizeof(elf_head)!=
|
|
(::read(file_descriptor, &elf_head,sizeof(elf_head))));
|
|
|
|
::close(file_descriptor);
|
|
if (failed_to_read_elf_head) {
|
|
// file i/o error - report dlerror() msg
|
|
return NULL;
|
|
}
|
|
|
|
typedef struct {
|
|
Elf32_Half code; // Actual value as defined in elf.h
|
|
Elf32_Half compat_class; // Compatibility of archs at VM's sense
|
|
char elf_class; // 32 or 64 bit
|
|
char endianess; // MSB or LSB
|
|
char* name; // String representation
|
|
} arch_t;
|
|
|
|
#ifndef EM_486
|
|
#define EM_486 6 /* Intel 80486 */
|
|
#endif
|
|
|
|
#ifndef EM_MIPS_RS3_LE
|
|
#define EM_MIPS_RS3_LE 10 /* MIPS */
|
|
#endif
|
|
|
|
#ifndef EM_PPC64
|
|
#define EM_PPC64 21 /* PowerPC64 */
|
|
#endif
|
|
|
|
#ifndef EM_S390
|
|
#define EM_S390 22 /* IBM System/390 */
|
|
#endif
|
|
|
|
#ifndef EM_IA_64
|
|
#define EM_IA_64 50 /* HP/Intel IA-64 */
|
|
#endif
|
|
|
|
#ifndef EM_X86_64
|
|
#define EM_X86_64 62 /* AMD x86-64 */
|
|
#endif
|
|
|
|
static const arch_t arch_array[]={
|
|
{EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
|
|
{EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
|
|
{EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
|
|
{EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
|
|
{EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
|
|
{EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
|
|
{EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
|
|
{EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
|
|
{EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
|
|
{EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
|
|
{EM_S390, EM_S390, ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
|
|
{EM_ALPHA, EM_ALPHA, ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
|
|
{EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
|
|
{EM_MIPS, EM_MIPS, ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
|
|
{EM_PARISC, EM_PARISC, ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
|
|
{EM_68K, EM_68K, ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
|
|
};
|
|
|
|
#if (defined IA32)
|
|
static Elf32_Half running_arch_code=EM_386;
|
|
#elif (defined AMD64)
|
|
static Elf32_Half running_arch_code=EM_X86_64;
|
|
#elif (defined IA64)
|
|
static Elf32_Half running_arch_code=EM_IA_64;
|
|
#elif (defined __sparc) && (defined _LP64)
|
|
static Elf32_Half running_arch_code=EM_SPARCV9;
|
|
#elif (defined __sparc) && (!defined _LP64)
|
|
static Elf32_Half running_arch_code=EM_SPARC;
|
|
#elif (defined __powerpc64__)
|
|
static Elf32_Half running_arch_code=EM_PPC64;
|
|
#elif (defined __powerpc__)
|
|
static Elf32_Half running_arch_code=EM_PPC;
|
|
#elif (defined ARM)
|
|
static Elf32_Half running_arch_code=EM_ARM;
|
|
#elif (defined S390)
|
|
static Elf32_Half running_arch_code=EM_S390;
|
|
#elif (defined ALPHA)
|
|
static Elf32_Half running_arch_code=EM_ALPHA;
|
|
#elif (defined MIPSEL)
|
|
static Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
|
|
#elif (defined PARISC)
|
|
static Elf32_Half running_arch_code=EM_PARISC;
|
|
#elif (defined MIPS)
|
|
static Elf32_Half running_arch_code=EM_MIPS;
|
|
#elif (defined M68K)
|
|
static Elf32_Half running_arch_code=EM_68K;
|
|
#else
|
|
#error Method os::dll_load requires that one of following is defined:\
|
|
IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
|
|
#endif
|
|
|
|
// Identify compatability class for VM's architecture and library's architecture
|
|
// Obtain string descriptions for architectures
|
|
|
|
arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
|
|
int running_arch_index=-1;
|
|
|
|
for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
|
|
if (running_arch_code == arch_array[i].code) {
|
|
running_arch_index = i;
|
|
}
|
|
if (lib_arch.code == arch_array[i].code) {
|
|
lib_arch.compat_class = arch_array[i].compat_class;
|
|
lib_arch.name = arch_array[i].name;
|
|
}
|
|
}
|
|
|
|
assert(running_arch_index != -1,
|
|
"Didn't find running architecture code (running_arch_code) in arch_array");
|
|
if (running_arch_index == -1) {
|
|
// Even though running architecture detection failed
|
|
// we may still continue with reporting dlerror() message
|
|
return NULL;
|
|
}
|
|
|
|
if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
|
|
return NULL;
|
|
}
|
|
|
|
#ifndef S390
|
|
if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
|
|
return NULL;
|
|
}
|
|
#endif // !S390
|
|
|
|
if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
|
|
if (lib_arch.name!=NULL) {
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1,
|
|
" (Possible cause: can't load %s-bit .so on a %s-bit platform)",
|
|
lib_arch.name, arch_array[running_arch_index].name);
|
|
} else {
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1,
|
|
" (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
|
|
lib_arch.code,
|
|
arch_array[running_arch_index].name);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
#endif // !__APPLE__
|
|
|
|
void* os::get_default_process_handle() {
|
|
#ifdef __APPLE__
|
|
// MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
|
|
// to avoid finding unexpected symbols on second (or later)
|
|
// loads of a library.
|
|
return (void*)::dlopen(NULL, RTLD_FIRST);
|
|
#else
|
|
return (void*)::dlopen(NULL, RTLD_LAZY);
|
|
#endif
|
|
}
|
|
|
|
// XXX: Do we need a lock around this as per Linux?
|
|
void* os::dll_lookup(void* handle, const char* name) {
|
|
return dlsym(handle, name);
|
|
}
|
|
|
|
|
|
static bool _print_ascii_file(const char* filename, outputStream* st) {
|
|
int fd = ::open(filename, O_RDONLY);
|
|
if (fd == -1) {
|
|
return false;
|
|
}
|
|
|
|
char buf[32];
|
|
int bytes;
|
|
while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
|
|
st->print_raw(buf, bytes);
|
|
}
|
|
|
|
::close(fd);
|
|
|
|
return true;
|
|
}
|
|
|
|
int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
|
|
outputStream * out = (outputStream *) param;
|
|
out->print_cr(PTR_FORMAT " \t%s", base_address, name);
|
|
return 0;
|
|
}
|
|
|
|
void os::print_dll_info(outputStream *st) {
|
|
st->print_cr("Dynamic libraries:");
|
|
if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
|
|
st->print_cr("Error: Cannot print dynamic libraries.");
|
|
}
|
|
}
|
|
|
|
int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
|
|
#ifdef RTLD_DI_LINKMAP
|
|
Dl_info dli;
|
|
void *handle;
|
|
Link_map *map;
|
|
Link_map *p;
|
|
|
|
if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
|
|
dli.dli_fname == NULL) {
|
|
return 1;
|
|
}
|
|
handle = dlopen(dli.dli_fname, RTLD_LAZY);
|
|
if (handle == NULL) {
|
|
return 1;
|
|
}
|
|
dlinfo(handle, RTLD_DI_LINKMAP, &map);
|
|
if (map == NULL) {
|
|
dlclose(handle);
|
|
return 1;
|
|
}
|
|
|
|
while (map->l_prev != NULL)
|
|
map = map->l_prev;
|
|
|
|
while (map != NULL) {
|
|
// Value for top_address is returned as 0 since we don't have any information about module size
|
|
if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
|
|
dlclose(handle);
|
|
return 1;
|
|
}
|
|
map = map->l_next;
|
|
}
|
|
|
|
dlclose(handle);
|
|
#elif defined(__APPLE__)
|
|
for (uint32_t i = 1; i < _dyld_image_count(); i++) {
|
|
// Value for top_address is returned as 0 since we don't have any information about module size
|
|
if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
#else
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
void os::print_os_info_brief(outputStream* st) {
|
|
st->print("Bsd");
|
|
|
|
os::Posix::print_uname_info(st);
|
|
}
|
|
|
|
void os::print_os_info(outputStream* st) {
|
|
st->print("OS:");
|
|
st->print("Bsd");
|
|
|
|
os::Posix::print_uname_info(st);
|
|
|
|
os::Posix::print_rlimit_info(st);
|
|
|
|
os::Posix::print_load_average(st);
|
|
}
|
|
|
|
void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
|
|
// Nothing to do for now.
|
|
}
|
|
|
|
void os::print_memory_info(outputStream* st) {
|
|
|
|
st->print("Memory:");
|
|
st->print(" %dk page", os::vm_page_size()>>10);
|
|
|
|
st->print(", physical " UINT64_FORMAT "k",
|
|
os::physical_memory() >> 10);
|
|
st->print("(" UINT64_FORMAT "k free)",
|
|
os::available_memory() >> 10);
|
|
st->cr();
|
|
|
|
// meminfo
|
|
st->print("\n/proc/meminfo:\n");
|
|
_print_ascii_file("/proc/meminfo", st);
|
|
st->cr();
|
|
}
|
|
|
|
void os::print_siginfo(outputStream* st, void* siginfo) {
|
|
const siginfo_t* si = (const siginfo_t*)siginfo;
|
|
|
|
os::Posix::print_siginfo_brief(st, si);
|
|
|
|
if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
|
|
UseSharedSpaces) {
|
|
FileMapInfo* mapinfo = FileMapInfo::current_info();
|
|
if (mapinfo->is_in_shared_space(si->si_addr)) {
|
|
st->print("\n\nError accessing class data sharing archive." \
|
|
" Mapped file inaccessible during execution, " \
|
|
" possible disk/network problem.");
|
|
}
|
|
}
|
|
st->cr();
|
|
}
|
|
|
|
|
|
static void print_signal_handler(outputStream* st, int sig,
|
|
char* buf, size_t buflen);
|
|
|
|
void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
|
|
st->print_cr("Signal Handlers:");
|
|
print_signal_handler(st, SIGSEGV, buf, buflen);
|
|
print_signal_handler(st, SIGBUS , buf, buflen);
|
|
print_signal_handler(st, SIGFPE , buf, buflen);
|
|
print_signal_handler(st, SIGPIPE, buf, buflen);
|
|
print_signal_handler(st, SIGXFSZ, buf, buflen);
|
|
print_signal_handler(st, SIGILL , buf, buflen);
|
|
print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
|
|
print_signal_handler(st, SR_signum, buf, buflen);
|
|
print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
|
|
print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
|
|
print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
|
|
print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
|
|
}
|
|
|
|
static char saved_jvm_path[MAXPATHLEN] = {0};
|
|
|
|
// Find the full path to the current module, libjvm
|
|
void os::jvm_path(char *buf, jint buflen) {
|
|
// Error checking.
|
|
if (buflen < MAXPATHLEN) {
|
|
assert(false, "must use a large-enough buffer");
|
|
buf[0] = '\0';
|
|
return;
|
|
}
|
|
// Lazy resolve the path to current module.
|
|
if (saved_jvm_path[0] != 0) {
|
|
strcpy(buf, saved_jvm_path);
|
|
return;
|
|
}
|
|
|
|
char dli_fname[MAXPATHLEN];
|
|
bool ret = dll_address_to_library_name(
|
|
CAST_FROM_FN_PTR(address, os::jvm_path),
|
|
dli_fname, sizeof(dli_fname), NULL);
|
|
assert(ret, "cannot locate libjvm");
|
|
char *rp = NULL;
|
|
if (ret && dli_fname[0] != '\0') {
|
|
rp = realpath(dli_fname, buf);
|
|
}
|
|
if (rp == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (Arguments::sun_java_launcher_is_altjvm()) {
|
|
// Support for the java launcher's '-XXaltjvm=<path>' option. Typical
|
|
// value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
|
|
// or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
|
|
// appears at the right place in the string, then assume we are
|
|
// installed in a JDK and we're done. Otherwise, check for a
|
|
// JAVA_HOME environment variable and construct a path to the JVM
|
|
// being overridden.
|
|
|
|
const char *p = buf + strlen(buf) - 1;
|
|
for (int count = 0; p > buf && count < 5; ++count) {
|
|
for (--p; p > buf && *p != '/'; --p)
|
|
/* empty */ ;
|
|
}
|
|
|
|
if (strncmp(p, "/jre/lib/", 9) != 0) {
|
|
// Look for JAVA_HOME in the environment.
|
|
char* java_home_var = ::getenv("JAVA_HOME");
|
|
if (java_home_var != NULL && java_home_var[0] != 0) {
|
|
char* jrelib_p;
|
|
int len;
|
|
|
|
// Check the current module name "libjvm"
|
|
p = strrchr(buf, '/');
|
|
assert(strstr(p, "/libjvm") == p, "invalid library name");
|
|
|
|
rp = realpath(java_home_var, buf);
|
|
if (rp == NULL) {
|
|
return;
|
|
}
|
|
|
|
// determine if this is a legacy image or modules image
|
|
// modules image doesn't have "jre" subdirectory
|
|
len = strlen(buf);
|
|
assert(len < buflen, "Ran out of buffer space");
|
|
jrelib_p = buf + len;
|
|
|
|
// Add the appropriate library subdir
|
|
snprintf(jrelib_p, buflen-len, "/jre/lib");
|
|
if (0 != access(buf, F_OK)) {
|
|
snprintf(jrelib_p, buflen-len, "/lib");
|
|
}
|
|
|
|
// Add the appropriate client or server subdir
|
|
len = strlen(buf);
|
|
jrelib_p = buf + len;
|
|
snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
|
|
if (0 != access(buf, F_OK)) {
|
|
snprintf(jrelib_p, buflen-len, "%s", "");
|
|
}
|
|
|
|
// If the path exists within JAVA_HOME, add the JVM library name
|
|
// to complete the path to JVM being overridden. Otherwise fallback
|
|
// to the path to the current library.
|
|
if (0 == access(buf, F_OK)) {
|
|
// Use current module name "libjvm"
|
|
len = strlen(buf);
|
|
snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
|
|
} else {
|
|
// Fall back to path of current library
|
|
rp = realpath(dli_fname, buf);
|
|
if (rp == NULL) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
strncpy(saved_jvm_path, buf, MAXPATHLEN);
|
|
saved_jvm_path[MAXPATHLEN - 1] = '\0';
|
|
}
|
|
|
|
void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
|
|
// no prefix required, not even "_"
|
|
}
|
|
|
|
void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
|
|
// no suffix required
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// sun.misc.Signal support
|
|
|
|
static volatile jint sigint_count = 0;
|
|
|
|
static void UserHandler(int sig, void *siginfo, void *context) {
|
|
// 4511530 - sem_post is serialized and handled by the manager thread. When
|
|
// the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
|
|
// don't want to flood the manager thread with sem_post requests.
|
|
if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
|
|
return;
|
|
}
|
|
|
|
// Ctrl-C is pressed during error reporting, likely because the error
|
|
// handler fails to abort. Let VM die immediately.
|
|
if (sig == SIGINT && is_error_reported()) {
|
|
os::die();
|
|
}
|
|
|
|
os::signal_notify(sig);
|
|
}
|
|
|
|
void* os::user_handler() {
|
|
return CAST_FROM_FN_PTR(void*, UserHandler);
|
|
}
|
|
|
|
extern "C" {
|
|
typedef void (*sa_handler_t)(int);
|
|
typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
|
|
}
|
|
|
|
void* os::signal(int signal_number, void* handler) {
|
|
struct sigaction sigAct, oldSigAct;
|
|
|
|
sigfillset(&(sigAct.sa_mask));
|
|
sigAct.sa_flags = SA_RESTART|SA_SIGINFO;
|
|
sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
|
|
|
|
if (sigaction(signal_number, &sigAct, &oldSigAct)) {
|
|
// -1 means registration failed
|
|
return (void *)-1;
|
|
}
|
|
|
|
return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
|
|
}
|
|
|
|
void os::signal_raise(int signal_number) {
|
|
::raise(signal_number);
|
|
}
|
|
|
|
// The following code is moved from os.cpp for making this
|
|
// code platform specific, which it is by its very nature.
|
|
|
|
// Will be modified when max signal is changed to be dynamic
|
|
int os::sigexitnum_pd() {
|
|
return NSIG;
|
|
}
|
|
|
|
// a counter for each possible signal value
|
|
static volatile jint pending_signals[NSIG+1] = { 0 };
|
|
|
|
// Bsd(POSIX) specific hand shaking semaphore.
|
|
#ifdef __APPLE__
|
|
typedef semaphore_t os_semaphore_t;
|
|
|
|
#define SEM_INIT(sem, value) semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
|
|
#define SEM_WAIT(sem) semaphore_wait(sem)
|
|
#define SEM_POST(sem) semaphore_signal(sem)
|
|
#define SEM_DESTROY(sem) semaphore_destroy(mach_task_self(), sem)
|
|
#else
|
|
typedef sem_t os_semaphore_t;
|
|
|
|
#define SEM_INIT(sem, value) sem_init(&sem, 0, value)
|
|
#define SEM_WAIT(sem) sem_wait(&sem)
|
|
#define SEM_POST(sem) sem_post(&sem)
|
|
#define SEM_DESTROY(sem) sem_destroy(&sem)
|
|
#endif
|
|
|
|
class Semaphore : public StackObj {
|
|
public:
|
|
Semaphore();
|
|
~Semaphore();
|
|
void signal();
|
|
void wait();
|
|
bool trywait();
|
|
bool timedwait(unsigned int sec, int nsec);
|
|
private:
|
|
jlong currenttime() const;
|
|
os_semaphore_t _semaphore;
|
|
};
|
|
|
|
Semaphore::Semaphore() : _semaphore(0) {
|
|
SEM_INIT(_semaphore, 0);
|
|
}
|
|
|
|
Semaphore::~Semaphore() {
|
|
SEM_DESTROY(_semaphore);
|
|
}
|
|
|
|
void Semaphore::signal() {
|
|
SEM_POST(_semaphore);
|
|
}
|
|
|
|
void Semaphore::wait() {
|
|
SEM_WAIT(_semaphore);
|
|
}
|
|
|
|
jlong Semaphore::currenttime() const {
|
|
struct timeval tv;
|
|
gettimeofday(&tv, NULL);
|
|
return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
|
|
}
|
|
|
|
#ifdef __APPLE__
|
|
bool Semaphore::trywait() {
|
|
return timedwait(0, 0);
|
|
}
|
|
|
|
bool Semaphore::timedwait(unsigned int sec, int nsec) {
|
|
kern_return_t kr = KERN_ABORTED;
|
|
mach_timespec_t waitspec;
|
|
waitspec.tv_sec = sec;
|
|
waitspec.tv_nsec = nsec;
|
|
|
|
jlong starttime = currenttime();
|
|
|
|
kr = semaphore_timedwait(_semaphore, waitspec);
|
|
while (kr == KERN_ABORTED) {
|
|
jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
|
|
|
|
jlong current = currenttime();
|
|
jlong passedtime = current - starttime;
|
|
|
|
if (passedtime >= totalwait) {
|
|
waitspec.tv_sec = 0;
|
|
waitspec.tv_nsec = 0;
|
|
} else {
|
|
jlong waittime = totalwait - (current - starttime);
|
|
waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
|
|
waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
|
|
}
|
|
|
|
kr = semaphore_timedwait(_semaphore, waitspec);
|
|
}
|
|
|
|
return kr == KERN_SUCCESS;
|
|
}
|
|
|
|
#else
|
|
|
|
bool Semaphore::trywait() {
|
|
return sem_trywait(&_semaphore) == 0;
|
|
}
|
|
|
|
bool Semaphore::timedwait(unsigned int sec, int nsec) {
|
|
struct timespec ts;
|
|
unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
|
|
|
|
while (1) {
|
|
int result = sem_timedwait(&_semaphore, &ts);
|
|
if (result == 0) {
|
|
return true;
|
|
} else if (errno == EINTR) {
|
|
continue;
|
|
} else if (errno == ETIMEDOUT) {
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // __APPLE__
|
|
|
|
static os_semaphore_t sig_sem;
|
|
static Semaphore sr_semaphore;
|
|
|
|
void os::signal_init_pd() {
|
|
// Initialize signal structures
|
|
::memset((void*)pending_signals, 0, sizeof(pending_signals));
|
|
|
|
// Initialize signal semaphore
|
|
::SEM_INIT(sig_sem, 0);
|
|
}
|
|
|
|
void os::signal_notify(int sig) {
|
|
Atomic::inc(&pending_signals[sig]);
|
|
::SEM_POST(sig_sem);
|
|
}
|
|
|
|
static int check_pending_signals(bool wait) {
|
|
Atomic::store(0, &sigint_count);
|
|
for (;;) {
|
|
for (int i = 0; i < NSIG + 1; i++) {
|
|
jint n = pending_signals[i];
|
|
if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
|
|
return i;
|
|
}
|
|
}
|
|
if (!wait) {
|
|
return -1;
|
|
}
|
|
JavaThread *thread = JavaThread::current();
|
|
ThreadBlockInVM tbivm(thread);
|
|
|
|
bool threadIsSuspended;
|
|
do {
|
|
thread->set_suspend_equivalent();
|
|
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
|
|
::SEM_WAIT(sig_sem);
|
|
|
|
// were we externally suspended while we were waiting?
|
|
threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
|
|
if (threadIsSuspended) {
|
|
// The semaphore has been incremented, but while we were waiting
|
|
// another thread suspended us. We don't want to continue running
|
|
// while suspended because that would surprise the thread that
|
|
// suspended us.
|
|
::SEM_POST(sig_sem);
|
|
|
|
thread->java_suspend_self();
|
|
}
|
|
} while (threadIsSuspended);
|
|
}
|
|
}
|
|
|
|
int os::signal_lookup() {
|
|
return check_pending_signals(false);
|
|
}
|
|
|
|
int os::signal_wait() {
|
|
return check_pending_signals(true);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Virtual Memory
|
|
|
|
int os::vm_page_size() {
|
|
// Seems redundant as all get out
|
|
assert(os::Bsd::page_size() != -1, "must call os::init");
|
|
return os::Bsd::page_size();
|
|
}
|
|
|
|
// Solaris allocates memory by pages.
|
|
int os::vm_allocation_granularity() {
|
|
assert(os::Bsd::page_size() != -1, "must call os::init");
|
|
return os::Bsd::page_size();
|
|
}
|
|
|
|
// Rationale behind this function:
|
|
// current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
|
|
// mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
|
|
// samples for JITted code. Here we create private executable mapping over the code cache
|
|
// and then we can use standard (well, almost, as mapping can change) way to provide
|
|
// info for the reporting script by storing timestamp and location of symbol
|
|
void bsd_wrap_code(char* base, size_t size) {
|
|
static volatile jint cnt = 0;
|
|
|
|
if (!UseOprofile) {
|
|
return;
|
|
}
|
|
|
|
char buf[PATH_MAX + 1];
|
|
int num = Atomic::add(1, &cnt);
|
|
|
|
snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
|
|
os::get_temp_directory(), os::current_process_id(), num);
|
|
unlink(buf);
|
|
|
|
int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
|
|
|
|
if (fd != -1) {
|
|
off_t rv = ::lseek(fd, size-2, SEEK_SET);
|
|
if (rv != (off_t)-1) {
|
|
if (::write(fd, "", 1) == 1) {
|
|
mmap(base, size,
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
|
|
}
|
|
}
|
|
::close(fd);
|
|
unlink(buf);
|
|
}
|
|
}
|
|
|
|
static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
|
|
int err) {
|
|
warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
|
|
", %d) failed; error='%s' (errno=%d)", addr, size, exec,
|
|
strerror(err), err);
|
|
}
|
|
|
|
// NOTE: Bsd kernel does not really reserve the pages for us.
|
|
// All it does is to check if there are enough free pages
|
|
// left at the time of mmap(). This could be a potential
|
|
// problem.
|
|
bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
|
|
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
|
|
#ifdef __OpenBSD__
|
|
// XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
|
|
if (::mprotect(addr, size, prot) == 0) {
|
|
return true;
|
|
}
|
|
#else
|
|
uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
|
|
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
|
|
if (res != (uintptr_t) MAP_FAILED) {
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
// Warn about any commit errors we see in non-product builds just
|
|
// in case mmap() doesn't work as described on the man page.
|
|
NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
|
|
|
|
return false;
|
|
}
|
|
|
|
bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
|
|
bool exec) {
|
|
// alignment_hint is ignored on this OS
|
|
return pd_commit_memory(addr, size, exec);
|
|
}
|
|
|
|
void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
|
|
const char* mesg) {
|
|
assert(mesg != NULL, "mesg must be specified");
|
|
if (!pd_commit_memory(addr, size, exec)) {
|
|
// add extra info in product mode for vm_exit_out_of_memory():
|
|
PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
|
|
vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
|
|
}
|
|
}
|
|
|
|
void os::pd_commit_memory_or_exit(char* addr, size_t size,
|
|
size_t alignment_hint, bool exec,
|
|
const char* mesg) {
|
|
// alignment_hint is ignored on this OS
|
|
pd_commit_memory_or_exit(addr, size, exec, mesg);
|
|
}
|
|
|
|
void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
|
|
}
|
|
|
|
void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
|
|
::madvise(addr, bytes, MADV_DONTNEED);
|
|
}
|
|
|
|
void os::numa_make_global(char *addr, size_t bytes) {
|
|
}
|
|
|
|
void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
|
|
}
|
|
|
|
bool os::numa_topology_changed() { return false; }
|
|
|
|
size_t os::numa_get_groups_num() {
|
|
return 1;
|
|
}
|
|
|
|
int os::numa_get_group_id() {
|
|
return 0;
|
|
}
|
|
|
|
size_t os::numa_get_leaf_groups(int *ids, size_t size) {
|
|
if (size > 0) {
|
|
ids[0] = 0;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool os::get_page_info(char *start, page_info* info) {
|
|
return false;
|
|
}
|
|
|
|
char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
|
|
return end;
|
|
}
|
|
|
|
|
|
bool os::pd_uncommit_memory(char* addr, size_t size) {
|
|
#ifdef __OpenBSD__
|
|
// XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
|
|
return ::mprotect(addr, size, PROT_NONE) == 0;
|
|
#else
|
|
uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
|
|
MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
|
|
return res != (uintptr_t) MAP_FAILED;
|
|
#endif
|
|
}
|
|
|
|
bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
|
|
return os::commit_memory(addr, size, !ExecMem);
|
|
}
|
|
|
|
// If this is a growable mapping, remove the guard pages entirely by
|
|
// munmap()ping them. If not, just call uncommit_memory().
|
|
bool os::remove_stack_guard_pages(char* addr, size_t size) {
|
|
return os::uncommit_memory(addr, size);
|
|
}
|
|
|
|
// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
|
|
// at 'requested_addr'. If there are existing memory mappings at the same
|
|
// location, however, they will be overwritten. If 'fixed' is false,
|
|
// 'requested_addr' is only treated as a hint, the return value may or
|
|
// may not start from the requested address. Unlike Bsd mmap(), this
|
|
// function returns NULL to indicate failure.
|
|
static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
|
|
char * addr;
|
|
int flags;
|
|
|
|
flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
|
|
if (fixed) {
|
|
assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
|
|
flags |= MAP_FIXED;
|
|
}
|
|
|
|
// Map reserved/uncommitted pages PROT_NONE so we fail early if we
|
|
// touch an uncommitted page. Otherwise, the read/write might
|
|
// succeed if we have enough swap space to back the physical page.
|
|
addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
|
|
flags, -1, 0);
|
|
|
|
return addr == MAP_FAILED ? NULL : addr;
|
|
}
|
|
|
|
static int anon_munmap(char * addr, size_t size) {
|
|
return ::munmap(addr, size) == 0;
|
|
}
|
|
|
|
char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
|
|
size_t alignment_hint) {
|
|
return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
|
|
}
|
|
|
|
bool os::pd_release_memory(char* addr, size_t size) {
|
|
return anon_munmap(addr, size);
|
|
}
|
|
|
|
static bool bsd_mprotect(char* addr, size_t size, int prot) {
|
|
// Bsd wants the mprotect address argument to be page aligned.
|
|
char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
|
|
|
|
// According to SUSv3, mprotect() should only be used with mappings
|
|
// established by mmap(), and mmap() always maps whole pages. Unaligned
|
|
// 'addr' likely indicates problem in the VM (e.g. trying to change
|
|
// protection of malloc'ed or statically allocated memory). Check the
|
|
// caller if you hit this assert.
|
|
assert(addr == bottom, "sanity check");
|
|
|
|
size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
|
|
return ::mprotect(bottom, size, prot) == 0;
|
|
}
|
|
|
|
// Set protections specified
|
|
bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
|
|
bool is_committed) {
|
|
unsigned int p = 0;
|
|
switch (prot) {
|
|
case MEM_PROT_NONE: p = PROT_NONE; break;
|
|
case MEM_PROT_READ: p = PROT_READ; break;
|
|
case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
|
|
case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
// is_committed is unused.
|
|
return bsd_mprotect(addr, bytes, p);
|
|
}
|
|
|
|
bool os::guard_memory(char* addr, size_t size) {
|
|
return bsd_mprotect(addr, size, PROT_NONE);
|
|
}
|
|
|
|
bool os::unguard_memory(char* addr, size_t size) {
|
|
return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
|
|
}
|
|
|
|
bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
|
|
return false;
|
|
}
|
|
|
|
// Large page support
|
|
|
|
static size_t _large_page_size = 0;
|
|
|
|
void os::large_page_init() {
|
|
}
|
|
|
|
|
|
char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
|
|
fatal("This code is not used or maintained.");
|
|
|
|
// "exec" is passed in but not used. Creating the shared image for
|
|
// the code cache doesn't have an SHM_X executable permission to check.
|
|
assert(UseLargePages && UseSHM, "only for SHM large pages");
|
|
|
|
key_t key = IPC_PRIVATE;
|
|
char *addr;
|
|
|
|
bool warn_on_failure = UseLargePages &&
|
|
(!FLAG_IS_DEFAULT(UseLargePages) ||
|
|
!FLAG_IS_DEFAULT(LargePageSizeInBytes));
|
|
|
|
// Create a large shared memory region to attach to based on size.
|
|
// Currently, size is the total size of the heap
|
|
int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
|
|
if (shmid == -1) {
|
|
// Possible reasons for shmget failure:
|
|
// 1. shmmax is too small for Java heap.
|
|
// > check shmmax value: cat /proc/sys/kernel/shmmax
|
|
// > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
|
|
// 2. not enough large page memory.
|
|
// > check available large pages: cat /proc/meminfo
|
|
// > increase amount of large pages:
|
|
// echo new_value > /proc/sys/vm/nr_hugepages
|
|
// Note 1: different Bsd may use different name for this property,
|
|
// e.g. on Redhat AS-3 it is "hugetlb_pool".
|
|
// Note 2: it's possible there's enough physical memory available but
|
|
// they are so fragmented after a long run that they can't
|
|
// coalesce into large pages. Try to reserve large pages when
|
|
// the system is still "fresh".
|
|
if (warn_on_failure) {
|
|
warning("Failed to reserve shared memory (errno = %d).", errno);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// attach to the region
|
|
addr = (char*)shmat(shmid, req_addr, 0);
|
|
int err = errno;
|
|
|
|
// Remove shmid. If shmat() is successful, the actual shared memory segment
|
|
// will be deleted when it's detached by shmdt() or when the process
|
|
// terminates. If shmat() is not successful this will remove the shared
|
|
// segment immediately.
|
|
shmctl(shmid, IPC_RMID, NULL);
|
|
|
|
if ((intptr_t)addr == -1) {
|
|
if (warn_on_failure) {
|
|
warning("Failed to attach shared memory (errno = %d).", err);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// The memory is committed
|
|
MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
|
|
|
|
return addr;
|
|
}
|
|
|
|
bool os::release_memory_special(char* base, size_t bytes) {
|
|
if (MemTracker::tracking_level() > NMT_minimal) {
|
|
Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
|
|
// detaching the SHM segment will also delete it, see reserve_memory_special()
|
|
int rslt = shmdt(base);
|
|
if (rslt == 0) {
|
|
tkr.record((address)base, bytes);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
return shmdt(base) == 0;
|
|
}
|
|
}
|
|
|
|
size_t os::large_page_size() {
|
|
return _large_page_size;
|
|
}
|
|
|
|
// HugeTLBFS allows application to commit large page memory on demand;
|
|
// with SysV SHM the entire memory region must be allocated as shared
|
|
// memory.
|
|
bool os::can_commit_large_page_memory() {
|
|
return UseHugeTLBFS;
|
|
}
|
|
|
|
bool os::can_execute_large_page_memory() {
|
|
return UseHugeTLBFS;
|
|
}
|
|
|
|
// Reserve memory at an arbitrary address, only if that area is
|
|
// available (and not reserved for something else).
|
|
|
|
char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
|
|
const int max_tries = 10;
|
|
char* base[max_tries];
|
|
size_t size[max_tries];
|
|
const size_t gap = 0x000000;
|
|
|
|
// Assert only that the size is a multiple of the page size, since
|
|
// that's all that mmap requires, and since that's all we really know
|
|
// about at this low abstraction level. If we need higher alignment,
|
|
// we can either pass an alignment to this method or verify alignment
|
|
// in one of the methods further up the call chain. See bug 5044738.
|
|
assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
|
|
|
|
// Repeatedly allocate blocks until the block is allocated at the
|
|
// right spot.
|
|
|
|
// Bsd mmap allows caller to pass an address as hint; give it a try first,
|
|
// if kernel honors the hint then we can return immediately.
|
|
char * addr = anon_mmap(requested_addr, bytes, false);
|
|
if (addr == requested_addr) {
|
|
return requested_addr;
|
|
}
|
|
|
|
if (addr != NULL) {
|
|
// mmap() is successful but it fails to reserve at the requested address
|
|
anon_munmap(addr, bytes);
|
|
}
|
|
|
|
int i;
|
|
for (i = 0; i < max_tries; ++i) {
|
|
base[i] = reserve_memory(bytes);
|
|
|
|
if (base[i] != NULL) {
|
|
// Is this the block we wanted?
|
|
if (base[i] == requested_addr) {
|
|
size[i] = bytes;
|
|
break;
|
|
}
|
|
|
|
// Does this overlap the block we wanted? Give back the overlapped
|
|
// parts and try again.
|
|
|
|
size_t top_overlap = requested_addr + (bytes + gap) - base[i];
|
|
if (top_overlap >= 0 && top_overlap < bytes) {
|
|
unmap_memory(base[i], top_overlap);
|
|
base[i] += top_overlap;
|
|
size[i] = bytes - top_overlap;
|
|
} else {
|
|
size_t bottom_overlap = base[i] + bytes - requested_addr;
|
|
if (bottom_overlap >= 0 && bottom_overlap < bytes) {
|
|
unmap_memory(requested_addr, bottom_overlap);
|
|
size[i] = bytes - bottom_overlap;
|
|
} else {
|
|
size[i] = bytes;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Give back the unused reserved pieces.
|
|
|
|
for (int j = 0; j < i; ++j) {
|
|
if (base[j] != NULL) {
|
|
unmap_memory(base[j], size[j]);
|
|
}
|
|
}
|
|
|
|
if (i < max_tries) {
|
|
return requested_addr;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
size_t os::read(int fd, void *buf, unsigned int nBytes) {
|
|
RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
|
|
}
|
|
|
|
size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
|
|
RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
|
|
}
|
|
|
|
void os::naked_short_sleep(jlong ms) {
|
|
struct timespec req;
|
|
|
|
assert(ms < 1000, "Un-interruptable sleep, short time use only");
|
|
req.tv_sec = 0;
|
|
if (ms > 0) {
|
|
req.tv_nsec = (ms % 1000) * 1000000;
|
|
} else {
|
|
req.tv_nsec = 1;
|
|
}
|
|
|
|
nanosleep(&req, NULL);
|
|
|
|
return;
|
|
}
|
|
|
|
// Sleep forever; naked call to OS-specific sleep; use with CAUTION
|
|
void os::infinite_sleep() {
|
|
while (true) { // sleep forever ...
|
|
::sleep(100); // ... 100 seconds at a time
|
|
}
|
|
}
|
|
|
|
// Used to convert frequent JVM_Yield() to nops
|
|
bool os::dont_yield() {
|
|
return DontYieldALot;
|
|
}
|
|
|
|
void os::naked_yield() {
|
|
sched_yield();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// thread priority support
|
|
|
|
// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
|
|
// only supports dynamic priority, static priority must be zero. For real-time
|
|
// applications, Bsd supports SCHED_RR which allows static priority (1-99).
|
|
// However, for large multi-threaded applications, SCHED_RR is not only slower
|
|
// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
|
|
// of 5 runs - Sep 2005).
|
|
//
|
|
// The following code actually changes the niceness of kernel-thread/LWP. It
|
|
// has an assumption that setpriority() only modifies one kernel-thread/LWP,
|
|
// not the entire user process, and user level threads are 1:1 mapped to kernel
|
|
// threads. It has always been the case, but could change in the future. For
|
|
// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
|
|
// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
|
|
|
|
#if !defined(__APPLE__)
|
|
int os::java_to_os_priority[CriticalPriority + 1] = {
|
|
19, // 0 Entry should never be used
|
|
|
|
0, // 1 MinPriority
|
|
3, // 2
|
|
6, // 3
|
|
|
|
10, // 4
|
|
15, // 5 NormPriority
|
|
18, // 6
|
|
|
|
21, // 7
|
|
25, // 8
|
|
28, // 9 NearMaxPriority
|
|
|
|
31, // 10 MaxPriority
|
|
|
|
31 // 11 CriticalPriority
|
|
};
|
|
#else
|
|
// Using Mach high-level priority assignments
|
|
int os::java_to_os_priority[CriticalPriority + 1] = {
|
|
0, // 0 Entry should never be used (MINPRI_USER)
|
|
|
|
27, // 1 MinPriority
|
|
28, // 2
|
|
29, // 3
|
|
|
|
30, // 4
|
|
31, // 5 NormPriority (BASEPRI_DEFAULT)
|
|
32, // 6
|
|
|
|
33, // 7
|
|
34, // 8
|
|
35, // 9 NearMaxPriority
|
|
|
|
36, // 10 MaxPriority
|
|
|
|
36 // 11 CriticalPriority
|
|
};
|
|
#endif
|
|
|
|
static int prio_init() {
|
|
if (ThreadPriorityPolicy == 1) {
|
|
// Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
|
|
// if effective uid is not root. Perhaps, a more elegant way of doing
|
|
// this is to test CAP_SYS_NICE capability, but that will require libcap.so
|
|
if (geteuid() != 0) {
|
|
if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
|
|
warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
|
|
}
|
|
ThreadPriorityPolicy = 0;
|
|
}
|
|
}
|
|
if (UseCriticalJavaThreadPriority) {
|
|
os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
OSReturn os::set_native_priority(Thread* thread, int newpri) {
|
|
if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
|
|
|
|
#ifdef __OpenBSD__
|
|
// OpenBSD pthread_setprio starves low priority threads
|
|
return OS_OK;
|
|
#elif defined(__FreeBSD__)
|
|
int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
|
|
#elif defined(__APPLE__) || defined(__NetBSD__)
|
|
struct sched_param sp;
|
|
int policy;
|
|
pthread_t self = pthread_self();
|
|
|
|
if (pthread_getschedparam(self, &policy, &sp) != 0) {
|
|
return OS_ERR;
|
|
}
|
|
|
|
sp.sched_priority = newpri;
|
|
if (pthread_setschedparam(self, policy, &sp) != 0) {
|
|
return OS_ERR;
|
|
}
|
|
|
|
return OS_OK;
|
|
#else
|
|
int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
|
|
return (ret == 0) ? OS_OK : OS_ERR;
|
|
#endif
|
|
}
|
|
|
|
OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
|
|
if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
|
|
*priority_ptr = java_to_os_priority[NormPriority];
|
|
return OS_OK;
|
|
}
|
|
|
|
errno = 0;
|
|
#if defined(__OpenBSD__) || defined(__FreeBSD__)
|
|
*priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
|
|
#elif defined(__APPLE__) || defined(__NetBSD__)
|
|
int policy;
|
|
struct sched_param sp;
|
|
|
|
pthread_getschedparam(pthread_self(), &policy, &sp);
|
|
*priority_ptr = sp.sched_priority;
|
|
#else
|
|
*priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
|
|
#endif
|
|
return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
|
|
}
|
|
|
|
// Hint to the underlying OS that a task switch would not be good.
|
|
// Void return because it's a hint and can fail.
|
|
void os::hint_no_preempt() {}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// suspend/resume support
|
|
|
|
// the low-level signal-based suspend/resume support is a remnant from the
|
|
// old VM-suspension that used to be for java-suspension, safepoints etc,
|
|
// within hotspot. Now there is a single use-case for this:
|
|
// - calling get_thread_pc() on the VMThread by the flat-profiler task
|
|
// that runs in the watcher thread.
|
|
// The remaining code is greatly simplified from the more general suspension
|
|
// code that used to be used.
|
|
//
|
|
// The protocol is quite simple:
|
|
// - suspend:
|
|
// - sends a signal to the target thread
|
|
// - polls the suspend state of the osthread using a yield loop
|
|
// - target thread signal handler (SR_handler) sets suspend state
|
|
// and blocks in sigsuspend until continued
|
|
// - resume:
|
|
// - sets target osthread state to continue
|
|
// - sends signal to end the sigsuspend loop in the SR_handler
|
|
//
|
|
// Note that the SR_lock plays no role in this suspend/resume protocol.
|
|
|
|
static void resume_clear_context(OSThread *osthread) {
|
|
osthread->set_ucontext(NULL);
|
|
osthread->set_siginfo(NULL);
|
|
}
|
|
|
|
static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
|
|
osthread->set_ucontext(context);
|
|
osthread->set_siginfo(siginfo);
|
|
}
|
|
|
|
// Handler function invoked when a thread's execution is suspended or
|
|
// resumed. We have to be careful that only async-safe functions are
|
|
// called here (Note: most pthread functions are not async safe and
|
|
// should be avoided.)
|
|
//
|
|
// Note: sigwait() is a more natural fit than sigsuspend() from an
|
|
// interface point of view, but sigwait() prevents the signal hander
|
|
// from being run. libpthread would get very confused by not having
|
|
// its signal handlers run and prevents sigwait()'s use with the
|
|
// mutex granting granting signal.
|
|
//
|
|
// Currently only ever called on the VMThread or JavaThread
|
|
//
|
|
static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
|
|
// Save and restore errno to avoid confusing native code with EINTR
|
|
// after sigsuspend.
|
|
int old_errno = errno;
|
|
|
|
Thread* thread = Thread::current();
|
|
OSThread* osthread = thread->osthread();
|
|
assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
|
|
|
|
os::SuspendResume::State current = osthread->sr.state();
|
|
if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
|
|
suspend_save_context(osthread, siginfo, context);
|
|
|
|
// attempt to switch the state, we assume we had a SUSPEND_REQUEST
|
|
os::SuspendResume::State state = osthread->sr.suspended();
|
|
if (state == os::SuspendResume::SR_SUSPENDED) {
|
|
sigset_t suspend_set; // signals for sigsuspend()
|
|
|
|
// get current set of blocked signals and unblock resume signal
|
|
pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
|
|
sigdelset(&suspend_set, SR_signum);
|
|
|
|
sr_semaphore.signal();
|
|
// wait here until we are resumed
|
|
while (1) {
|
|
sigsuspend(&suspend_set);
|
|
|
|
os::SuspendResume::State result = osthread->sr.running();
|
|
if (result == os::SuspendResume::SR_RUNNING) {
|
|
sr_semaphore.signal();
|
|
break;
|
|
} else if (result != os::SuspendResume::SR_SUSPENDED) {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
} else if (state == os::SuspendResume::SR_RUNNING) {
|
|
// request was cancelled, continue
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
resume_clear_context(osthread);
|
|
} else if (current == os::SuspendResume::SR_RUNNING) {
|
|
// request was cancelled, continue
|
|
} else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
|
|
// ignore
|
|
} else {
|
|
// ignore
|
|
}
|
|
|
|
errno = old_errno;
|
|
}
|
|
|
|
|
|
static int SR_initialize() {
|
|
struct sigaction act;
|
|
char *s;
|
|
// Get signal number to use for suspend/resume
|
|
if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
|
|
int sig = ::strtol(s, 0, 10);
|
|
if (sig > 0 || sig < NSIG) {
|
|
SR_signum = sig;
|
|
}
|
|
}
|
|
|
|
assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
|
|
"SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
|
|
|
|
sigemptyset(&SR_sigset);
|
|
sigaddset(&SR_sigset, SR_signum);
|
|
|
|
// Set up signal handler for suspend/resume
|
|
act.sa_flags = SA_RESTART|SA_SIGINFO;
|
|
act.sa_handler = (void (*)(int)) SR_handler;
|
|
|
|
// SR_signum is blocked by default.
|
|
// 4528190 - We also need to block pthread restart signal (32 on all
|
|
// supported Bsd platforms). Note that BsdThreads need to block
|
|
// this signal for all threads to work properly. So we don't have
|
|
// to use hard-coded signal number when setting up the mask.
|
|
pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
|
|
|
|
if (sigaction(SR_signum, &act, 0) == -1) {
|
|
return -1;
|
|
}
|
|
|
|
// Save signal flag
|
|
os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
|
|
return 0;
|
|
}
|
|
|
|
static int sr_notify(OSThread* osthread) {
|
|
int status = pthread_kill(osthread->pthread_id(), SR_signum);
|
|
assert_status(status == 0, status, "pthread_kill");
|
|
return status;
|
|
}
|
|
|
|
// "Randomly" selected value for how long we want to spin
|
|
// before bailing out on suspending a thread, also how often
|
|
// we send a signal to a thread we want to resume
|
|
static const int RANDOMLY_LARGE_INTEGER = 1000000;
|
|
static const int RANDOMLY_LARGE_INTEGER2 = 100;
|
|
|
|
// returns true on success and false on error - really an error is fatal
|
|
// but this seems the normal response to library errors
|
|
static bool do_suspend(OSThread* osthread) {
|
|
assert(osthread->sr.is_running(), "thread should be running");
|
|
assert(!sr_semaphore.trywait(), "semaphore has invalid state");
|
|
|
|
// mark as suspended and send signal
|
|
if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
|
|
// failed to switch, state wasn't running?
|
|
ShouldNotReachHere();
|
|
return false;
|
|
}
|
|
|
|
if (sr_notify(osthread) != 0) {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
// managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
|
|
while (true) {
|
|
if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
|
|
break;
|
|
} else {
|
|
// timeout
|
|
os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
|
|
if (cancelled == os::SuspendResume::SR_RUNNING) {
|
|
return false;
|
|
} else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
|
|
// make sure that we consume the signal on the semaphore as well
|
|
sr_semaphore.wait();
|
|
break;
|
|
} else {
|
|
ShouldNotReachHere();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
guarantee(osthread->sr.is_suspended(), "Must be suspended");
|
|
return true;
|
|
}
|
|
|
|
static void do_resume(OSThread* osthread) {
|
|
assert(osthread->sr.is_suspended(), "thread should be suspended");
|
|
assert(!sr_semaphore.trywait(), "invalid semaphore state");
|
|
|
|
if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
|
|
// failed to switch to WAKEUP_REQUEST
|
|
ShouldNotReachHere();
|
|
return;
|
|
}
|
|
|
|
while (true) {
|
|
if (sr_notify(osthread) == 0) {
|
|
if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
|
|
if (osthread->sr.is_running()) {
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
guarantee(osthread->sr.is_running(), "Must be running!");
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
// signal handling (except suspend/resume)
|
|
|
|
// This routine may be used by user applications as a "hook" to catch signals.
|
|
// The user-defined signal handler must pass unrecognized signals to this
|
|
// routine, and if it returns true (non-zero), then the signal handler must
|
|
// return immediately. If the flag "abort_if_unrecognized" is true, then this
|
|
// routine will never retun false (zero), but instead will execute a VM panic
|
|
// routine kill the process.
|
|
//
|
|
// If this routine returns false, it is OK to call it again. This allows
|
|
// the user-defined signal handler to perform checks either before or after
|
|
// the VM performs its own checks. Naturally, the user code would be making
|
|
// a serious error if it tried to handle an exception (such as a null check
|
|
// or breakpoint) that the VM was generating for its own correct operation.
|
|
//
|
|
// This routine may recognize any of the following kinds of signals:
|
|
// SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
|
|
// It should be consulted by handlers for any of those signals.
|
|
//
|
|
// The caller of this routine must pass in the three arguments supplied
|
|
// to the function referred to in the "sa_sigaction" (not the "sa_handler")
|
|
// field of the structure passed to sigaction(). This routine assumes that
|
|
// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
|
|
//
|
|
// Note that the VM will print warnings if it detects conflicting signal
|
|
// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
|
|
//
|
|
extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
|
|
void* ucontext,
|
|
int abort_if_unrecognized);
|
|
|
|
void signalHandler(int sig, siginfo_t* info, void* uc) {
|
|
assert(info != NULL && uc != NULL, "it must be old kernel");
|
|
int orig_errno = errno; // Preserve errno value over signal handler.
|
|
JVM_handle_bsd_signal(sig, info, uc, true);
|
|
errno = orig_errno;
|
|
}
|
|
|
|
|
|
// This boolean allows users to forward their own non-matching signals
|
|
// to JVM_handle_bsd_signal, harmlessly.
|
|
bool os::Bsd::signal_handlers_are_installed = false;
|
|
|
|
// For signal-chaining
|
|
struct sigaction os::Bsd::sigact[MAXSIGNUM];
|
|
unsigned int os::Bsd::sigs = 0;
|
|
bool os::Bsd::libjsig_is_loaded = false;
|
|
typedef struct sigaction *(*get_signal_t)(int);
|
|
get_signal_t os::Bsd::get_signal_action = NULL;
|
|
|
|
struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
|
|
struct sigaction *actp = NULL;
|
|
|
|
if (libjsig_is_loaded) {
|
|
// Retrieve the old signal handler from libjsig
|
|
actp = (*get_signal_action)(sig);
|
|
}
|
|
if (actp == NULL) {
|
|
// Retrieve the preinstalled signal handler from jvm
|
|
actp = get_preinstalled_handler(sig);
|
|
}
|
|
|
|
return actp;
|
|
}
|
|
|
|
static bool call_chained_handler(struct sigaction *actp, int sig,
|
|
siginfo_t *siginfo, void *context) {
|
|
// Call the old signal handler
|
|
if (actp->sa_handler == SIG_DFL) {
|
|
// It's more reasonable to let jvm treat it as an unexpected exception
|
|
// instead of taking the default action.
|
|
return false;
|
|
} else if (actp->sa_handler != SIG_IGN) {
|
|
if ((actp->sa_flags & SA_NODEFER) == 0) {
|
|
// automaticlly block the signal
|
|
sigaddset(&(actp->sa_mask), sig);
|
|
}
|
|
|
|
sa_handler_t hand;
|
|
sa_sigaction_t sa;
|
|
bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
|
|
// retrieve the chained handler
|
|
if (siginfo_flag_set) {
|
|
sa = actp->sa_sigaction;
|
|
} else {
|
|
hand = actp->sa_handler;
|
|
}
|
|
|
|
if ((actp->sa_flags & SA_RESETHAND) != 0) {
|
|
actp->sa_handler = SIG_DFL;
|
|
}
|
|
|
|
// try to honor the signal mask
|
|
sigset_t oset;
|
|
pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
|
|
|
|
// call into the chained handler
|
|
if (siginfo_flag_set) {
|
|
(*sa)(sig, siginfo, context);
|
|
} else {
|
|
(*hand)(sig);
|
|
}
|
|
|
|
// restore the signal mask
|
|
pthread_sigmask(SIG_SETMASK, &oset, 0);
|
|
}
|
|
// Tell jvm's signal handler the signal is taken care of.
|
|
return true;
|
|
}
|
|
|
|
bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
|
|
bool chained = false;
|
|
// signal-chaining
|
|
if (UseSignalChaining) {
|
|
struct sigaction *actp = get_chained_signal_action(sig);
|
|
if (actp != NULL) {
|
|
chained = call_chained_handler(actp, sig, siginfo, context);
|
|
}
|
|
}
|
|
return chained;
|
|
}
|
|
|
|
struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
|
|
if ((((unsigned int)1 << sig) & sigs) != 0) {
|
|
return &sigact[sig];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
|
|
assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
|
|
sigact[sig] = oldAct;
|
|
sigs |= (unsigned int)1 << sig;
|
|
}
|
|
|
|
// for diagnostic
|
|
int os::Bsd::sigflags[MAXSIGNUM];
|
|
|
|
int os::Bsd::get_our_sigflags(int sig) {
|
|
assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
|
|
return sigflags[sig];
|
|
}
|
|
|
|
void os::Bsd::set_our_sigflags(int sig, int flags) {
|
|
assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
|
|
sigflags[sig] = flags;
|
|
}
|
|
|
|
void os::Bsd::set_signal_handler(int sig, bool set_installed) {
|
|
// Check for overwrite.
|
|
struct sigaction oldAct;
|
|
sigaction(sig, (struct sigaction*)NULL, &oldAct);
|
|
|
|
void* oldhand = oldAct.sa_sigaction
|
|
? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
|
|
if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
|
|
oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
|
|
oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
|
|
if (AllowUserSignalHandlers || !set_installed) {
|
|
// Do not overwrite; user takes responsibility to forward to us.
|
|
return;
|
|
} else if (UseSignalChaining) {
|
|
// save the old handler in jvm
|
|
save_preinstalled_handler(sig, oldAct);
|
|
// libjsig also interposes the sigaction() call below and saves the
|
|
// old sigaction on it own.
|
|
} else {
|
|
fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
|
|
"%#lx for signal %d.", (long)oldhand, sig));
|
|
}
|
|
}
|
|
|
|
struct sigaction sigAct;
|
|
sigfillset(&(sigAct.sa_mask));
|
|
sigAct.sa_handler = SIG_DFL;
|
|
if (!set_installed) {
|
|
sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
|
|
} else {
|
|
sigAct.sa_sigaction = signalHandler;
|
|
sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
|
|
}
|
|
#ifdef __APPLE__
|
|
// Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
|
|
// (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
|
|
// if the signal handler declares it will handle it on alternate stack.
|
|
// Notice we only declare we will handle it on alt stack, but we are not
|
|
// actually going to use real alt stack - this is just a workaround.
|
|
// Please see ux_exception.c, method catch_mach_exception_raise for details
|
|
// link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
|
|
if (sig == SIGSEGV) {
|
|
sigAct.sa_flags |= SA_ONSTACK;
|
|
}
|
|
#endif
|
|
|
|
// Save flags, which are set by ours
|
|
assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
|
|
sigflags[sig] = sigAct.sa_flags;
|
|
|
|
int ret = sigaction(sig, &sigAct, &oldAct);
|
|
assert(ret == 0, "check");
|
|
|
|
void* oldhand2 = oldAct.sa_sigaction
|
|
? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
|
|
assert(oldhand2 == oldhand, "no concurrent signal handler installation");
|
|
}
|
|
|
|
// install signal handlers for signals that HotSpot needs to
|
|
// handle in order to support Java-level exception handling.
|
|
|
|
void os::Bsd::install_signal_handlers() {
|
|
if (!signal_handlers_are_installed) {
|
|
signal_handlers_are_installed = true;
|
|
|
|
// signal-chaining
|
|
typedef void (*signal_setting_t)();
|
|
signal_setting_t begin_signal_setting = NULL;
|
|
signal_setting_t end_signal_setting = NULL;
|
|
begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
|
|
dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
|
|
if (begin_signal_setting != NULL) {
|
|
end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
|
|
dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
|
|
get_signal_action = CAST_TO_FN_PTR(get_signal_t,
|
|
dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
|
|
libjsig_is_loaded = true;
|
|
assert(UseSignalChaining, "should enable signal-chaining");
|
|
}
|
|
if (libjsig_is_loaded) {
|
|
// Tell libjsig jvm is setting signal handlers
|
|
(*begin_signal_setting)();
|
|
}
|
|
|
|
set_signal_handler(SIGSEGV, true);
|
|
set_signal_handler(SIGPIPE, true);
|
|
set_signal_handler(SIGBUS, true);
|
|
set_signal_handler(SIGILL, true);
|
|
set_signal_handler(SIGFPE, true);
|
|
set_signal_handler(SIGXFSZ, true);
|
|
|
|
#if defined(__APPLE__)
|
|
// In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
|
|
// signals caught and handled by the JVM. To work around this, we reset the mach task
|
|
// signal handler that's placed on our process by CrashReporter. This disables
|
|
// CrashReporter-based reporting.
|
|
//
|
|
// This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
|
|
// on caught fatal signals.
|
|
//
|
|
// Additionally, gdb installs both standard BSD signal handlers, and mach exception
|
|
// handlers. By replacing the existing task exception handler, we disable gdb's mach
|
|
// exception handling, while leaving the standard BSD signal handlers functional.
|
|
kern_return_t kr;
|
|
kr = task_set_exception_ports(mach_task_self(),
|
|
EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
|
|
MACH_PORT_NULL,
|
|
EXCEPTION_STATE_IDENTITY,
|
|
MACHINE_THREAD_STATE);
|
|
|
|
assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
|
|
#endif
|
|
|
|
if (libjsig_is_loaded) {
|
|
// Tell libjsig jvm finishes setting signal handlers
|
|
(*end_signal_setting)();
|
|
}
|
|
|
|
// We don't activate signal checker if libjsig is in place, we trust ourselves
|
|
// and if UserSignalHandler is installed all bets are off
|
|
if (CheckJNICalls) {
|
|
if (libjsig_is_loaded) {
|
|
if (PrintJNIResolving) {
|
|
tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
|
|
}
|
|
check_signals = false;
|
|
}
|
|
if (AllowUserSignalHandlers) {
|
|
if (PrintJNIResolving) {
|
|
tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
|
|
}
|
|
check_signals = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/////
|
|
// glibc on Bsd platform uses non-documented flag
|
|
// to indicate, that some special sort of signal
|
|
// trampoline is used.
|
|
// We will never set this flag, and we should
|
|
// ignore this flag in our diagnostic
|
|
#ifdef SIGNIFICANT_SIGNAL_MASK
|
|
#undef SIGNIFICANT_SIGNAL_MASK
|
|
#endif
|
|
#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
|
|
|
|
static const char* get_signal_handler_name(address handler,
|
|
char* buf, int buflen) {
|
|
int offset;
|
|
bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
|
|
if (found) {
|
|
// skip directory names
|
|
const char *p1, *p2;
|
|
p1 = buf;
|
|
size_t len = strlen(os::file_separator());
|
|
while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
|
|
jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
|
|
} else {
|
|
jio_snprintf(buf, buflen, PTR_FORMAT, handler);
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
static void print_signal_handler(outputStream* st, int sig,
|
|
char* buf, size_t buflen) {
|
|
struct sigaction sa;
|
|
|
|
sigaction(sig, NULL, &sa);
|
|
|
|
// See comment for SIGNIFICANT_SIGNAL_MASK define
|
|
sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
|
|
|
|
st->print("%s: ", os::exception_name(sig, buf, buflen));
|
|
|
|
address handler = (sa.sa_flags & SA_SIGINFO)
|
|
? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(address, sa.sa_handler);
|
|
|
|
if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
|
|
st->print("SIG_DFL");
|
|
} else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
|
|
st->print("SIG_IGN");
|
|
} else {
|
|
st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
|
|
}
|
|
|
|
st->print(", sa_mask[0]=");
|
|
os::Posix::print_signal_set_short(st, &sa.sa_mask);
|
|
|
|
address rh = VMError::get_resetted_sighandler(sig);
|
|
// May be, handler was resetted by VMError?
|
|
if (rh != NULL) {
|
|
handler = rh;
|
|
sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
|
|
}
|
|
|
|
st->print(", sa_flags=");
|
|
os::Posix::print_sa_flags(st, sa.sa_flags);
|
|
|
|
// Check: is it our handler?
|
|
if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
|
|
handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
|
|
// It is our signal handler
|
|
// check for flags, reset system-used one!
|
|
if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
|
|
st->print(
|
|
", flags was changed from " PTR32_FORMAT ", consider using jsig library",
|
|
os::Bsd::get_our_sigflags(sig));
|
|
}
|
|
}
|
|
st->cr();
|
|
}
|
|
|
|
|
|
#define DO_SIGNAL_CHECK(sig) \
|
|
do { \
|
|
if (!sigismember(&check_signal_done, sig)) { \
|
|
os::Bsd::check_signal_handler(sig); \
|
|
} \
|
|
} while (0)
|
|
|
|
// This method is a periodic task to check for misbehaving JNI applications
|
|
// under CheckJNI, we can add any periodic checks here
|
|
|
|
void os::run_periodic_checks() {
|
|
|
|
if (check_signals == false) return;
|
|
|
|
// SEGV and BUS if overridden could potentially prevent
|
|
// generation of hs*.log in the event of a crash, debugging
|
|
// such a case can be very challenging, so we absolutely
|
|
// check the following for a good measure:
|
|
DO_SIGNAL_CHECK(SIGSEGV);
|
|
DO_SIGNAL_CHECK(SIGILL);
|
|
DO_SIGNAL_CHECK(SIGFPE);
|
|
DO_SIGNAL_CHECK(SIGBUS);
|
|
DO_SIGNAL_CHECK(SIGPIPE);
|
|
DO_SIGNAL_CHECK(SIGXFSZ);
|
|
|
|
|
|
// ReduceSignalUsage allows the user to override these handlers
|
|
// see comments at the very top and jvm_solaris.h
|
|
if (!ReduceSignalUsage) {
|
|
DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
|
|
DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
|
|
DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
|
|
DO_SIGNAL_CHECK(BREAK_SIGNAL);
|
|
}
|
|
|
|
DO_SIGNAL_CHECK(SR_signum);
|
|
DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
|
|
}
|
|
|
|
typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
|
|
|
|
static os_sigaction_t os_sigaction = NULL;
|
|
|
|
void os::Bsd::check_signal_handler(int sig) {
|
|
char buf[O_BUFLEN];
|
|
address jvmHandler = NULL;
|
|
|
|
|
|
struct sigaction act;
|
|
if (os_sigaction == NULL) {
|
|
// only trust the default sigaction, in case it has been interposed
|
|
os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
|
|
if (os_sigaction == NULL) return;
|
|
}
|
|
|
|
os_sigaction(sig, (struct sigaction*)NULL, &act);
|
|
|
|
|
|
act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
|
|
|
|
address thisHandler = (act.sa_flags & SA_SIGINFO)
|
|
? CAST_FROM_FN_PTR(address, act.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(address, act.sa_handler);
|
|
|
|
|
|
switch (sig) {
|
|
case SIGSEGV:
|
|
case SIGBUS:
|
|
case SIGFPE:
|
|
case SIGPIPE:
|
|
case SIGILL:
|
|
case SIGXFSZ:
|
|
jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
|
|
break;
|
|
|
|
case SHUTDOWN1_SIGNAL:
|
|
case SHUTDOWN2_SIGNAL:
|
|
case SHUTDOWN3_SIGNAL:
|
|
case BREAK_SIGNAL:
|
|
jvmHandler = (address)user_handler();
|
|
break;
|
|
|
|
case INTERRUPT_SIGNAL:
|
|
jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
|
|
break;
|
|
|
|
default:
|
|
if (sig == SR_signum) {
|
|
jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
|
|
} else {
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (thisHandler != jvmHandler) {
|
|
tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
|
|
tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
|
|
tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
|
|
// No need to check this sig any longer
|
|
sigaddset(&check_signal_done, sig);
|
|
// Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
|
|
if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
|
|
tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
|
|
exception_name(sig, buf, O_BUFLEN));
|
|
}
|
|
} else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
|
|
tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
|
|
tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
|
|
tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
|
|
// No need to check this sig any longer
|
|
sigaddset(&check_signal_done, sig);
|
|
}
|
|
|
|
// Dump all the signal
|
|
if (sigismember(&check_signal_done, sig)) {
|
|
print_signal_handlers(tty, buf, O_BUFLEN);
|
|
}
|
|
}
|
|
|
|
extern void report_error(char* file_name, int line_no, char* title,
|
|
char* format, ...);
|
|
|
|
extern bool signal_name(int signo, char* buf, size_t len);
|
|
|
|
const char* os::exception_name(int exception_code, char* buf, size_t size) {
|
|
if (0 < exception_code && exception_code <= SIGRTMAX) {
|
|
// signal
|
|
if (!signal_name(exception_code, buf, size)) {
|
|
jio_snprintf(buf, size, "SIG%d", exception_code);
|
|
}
|
|
return buf;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// this is called _before_ the most of global arguments have been parsed
|
|
void os::init(void) {
|
|
char dummy; // used to get a guess on initial stack address
|
|
// first_hrtime = gethrtime();
|
|
|
|
// With BsdThreads the JavaMain thread pid (primordial thread)
|
|
// is different than the pid of the java launcher thread.
|
|
// So, on Bsd, the launcher thread pid is passed to the VM
|
|
// via the sun.java.launcher.pid property.
|
|
// Use this property instead of getpid() if it was correctly passed.
|
|
// See bug 6351349.
|
|
pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
|
|
|
|
_initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
|
|
|
|
clock_tics_per_sec = CLK_TCK;
|
|
|
|
init_random(1234567);
|
|
|
|
ThreadCritical::initialize();
|
|
|
|
Bsd::set_page_size(getpagesize());
|
|
if (Bsd::page_size() == -1) {
|
|
fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
|
|
strerror(errno)));
|
|
}
|
|
init_page_sizes((size_t) Bsd::page_size());
|
|
|
|
Bsd::initialize_system_info();
|
|
|
|
// main_thread points to the aboriginal thread
|
|
Bsd::_main_thread = pthread_self();
|
|
|
|
Bsd::clock_init();
|
|
initial_time_count = javaTimeNanos();
|
|
|
|
#ifdef __APPLE__
|
|
// XXXDARWIN
|
|
// Work around the unaligned VM callbacks in hotspot's
|
|
// sharedRuntime. The callbacks don't use SSE2 instructions, and work on
|
|
// Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
|
|
// alignment when doing symbol lookup. To work around this, we force early
|
|
// binding of all symbols now, thus binding when alignment is known-good.
|
|
_dyld_bind_fully_image_containing_address((const void *) &os::init);
|
|
#endif
|
|
}
|
|
|
|
// To install functions for atexit system call
|
|
extern "C" {
|
|
static void perfMemory_exit_helper() {
|
|
perfMemory_exit();
|
|
}
|
|
}
|
|
|
|
// this is called _after_ the global arguments have been parsed
|
|
jint os::init_2(void) {
|
|
// Allocate a single page and mark it as readable for safepoint polling
|
|
address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
|
|
|
|
os::set_polling_page(polling_page);
|
|
|
|
#ifndef PRODUCT
|
|
if (Verbose && PrintMiscellaneous) {
|
|
tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
|
|
(intptr_t)polling_page);
|
|
}
|
|
#endif
|
|
|
|
if (!UseMembar) {
|
|
address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
|
|
os::set_memory_serialize_page(mem_serialize_page);
|
|
|
|
#ifndef PRODUCT
|
|
if (Verbose && PrintMiscellaneous) {
|
|
tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n",
|
|
(intptr_t)mem_serialize_page);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// initialize suspend/resume support - must do this before signal_sets_init()
|
|
if (SR_initialize() != 0) {
|
|
perror("SR_initialize failed");
|
|
return JNI_ERR;
|
|
}
|
|
|
|
Bsd::signal_sets_init();
|
|
Bsd::install_signal_handlers();
|
|
|
|
// Check minimum allowable stack size for thread creation and to initialize
|
|
// the java system classes, including StackOverflowError - depends on page
|
|
// size. Add a page for compiler2 recursion in main thread.
|
|
// Add in 2*BytesPerWord times page size to account for VM stack during
|
|
// class initialization depending on 32 or 64 bit VM.
|
|
os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
|
|
(size_t)(StackYellowPages+StackRedPages+StackShadowPages+
|
|
2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
|
|
|
|
size_t threadStackSizeInBytes = ThreadStackSize * K;
|
|
if (threadStackSizeInBytes != 0 &&
|
|
threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
|
|
tty->print_cr("\nThe stack size specified is too small, "
|
|
"Specify at least %dk",
|
|
os::Bsd::min_stack_allowed/ K);
|
|
return JNI_ERR;
|
|
}
|
|
|
|
// Make the stack size a multiple of the page size so that
|
|
// the yellow/red zones can be guarded.
|
|
JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
|
|
vm_page_size()));
|
|
|
|
if (MaxFDLimit) {
|
|
// set the number of file descriptors to max. print out error
|
|
// if getrlimit/setrlimit fails but continue regardless.
|
|
struct rlimit nbr_files;
|
|
int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
|
|
if (status != 0) {
|
|
if (PrintMiscellaneous && (Verbose || WizardMode)) {
|
|
perror("os::init_2 getrlimit failed");
|
|
}
|
|
} else {
|
|
nbr_files.rlim_cur = nbr_files.rlim_max;
|
|
|
|
#ifdef __APPLE__
|
|
// Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
|
|
// you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
|
|
// be used instead
|
|
nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
|
|
#endif
|
|
|
|
status = setrlimit(RLIMIT_NOFILE, &nbr_files);
|
|
if (status != 0) {
|
|
if (PrintMiscellaneous && (Verbose || WizardMode)) {
|
|
perror("os::init_2 setrlimit failed");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// at-exit methods are called in the reverse order of their registration.
|
|
// atexit functions are called on return from main or as a result of a
|
|
// call to exit(3C). There can be only 32 of these functions registered
|
|
// and atexit() does not set errno.
|
|
|
|
if (PerfAllowAtExitRegistration) {
|
|
// only register atexit functions if PerfAllowAtExitRegistration is set.
|
|
// atexit functions can be delayed until process exit time, which
|
|
// can be problematic for embedded VM situations. Embedded VMs should
|
|
// call DestroyJavaVM() to assure that VM resources are released.
|
|
|
|
// note: perfMemory_exit_helper atexit function may be removed in
|
|
// the future if the appropriate cleanup code can be added to the
|
|
// VM_Exit VMOperation's doit method.
|
|
if (atexit(perfMemory_exit_helper) != 0) {
|
|
warning("os::init2 atexit(perfMemory_exit_helper) failed");
|
|
}
|
|
}
|
|
|
|
// initialize thread priority policy
|
|
prio_init();
|
|
|
|
#ifdef __APPLE__
|
|
// dynamically link to objective c gc registration
|
|
void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
|
|
if (handleLibObjc != NULL) {
|
|
objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
|
|
}
|
|
#endif
|
|
|
|
return JNI_OK;
|
|
}
|
|
|
|
// Mark the polling page as unreadable
|
|
void os::make_polling_page_unreadable(void) {
|
|
if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
|
|
fatal("Could not disable polling page");
|
|
}
|
|
}
|
|
|
|
// Mark the polling page as readable
|
|
void os::make_polling_page_readable(void) {
|
|
if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
|
|
fatal("Could not enable polling page");
|
|
}
|
|
}
|
|
|
|
int os::active_processor_count() {
|
|
return _processor_count;
|
|
}
|
|
|
|
void os::set_native_thread_name(const char *name) {
|
|
#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
|
|
// This is only supported in Snow Leopard and beyond
|
|
if (name != NULL) {
|
|
// Add a "Java: " prefix to the name
|
|
char buf[MAXTHREADNAMESIZE];
|
|
snprintf(buf, sizeof(buf), "Java: %s", name);
|
|
pthread_setname_np(buf);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
bool os::distribute_processes(uint length, uint* distribution) {
|
|
// Not yet implemented.
|
|
return false;
|
|
}
|
|
|
|
bool os::bind_to_processor(uint processor_id) {
|
|
// Not yet implemented.
|
|
return false;
|
|
}
|
|
|
|
void os::SuspendedThreadTask::internal_do_task() {
|
|
if (do_suspend(_thread->osthread())) {
|
|
SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
|
|
do_task(context);
|
|
do_resume(_thread->osthread());
|
|
}
|
|
}
|
|
|
|
///
|
|
class PcFetcher : public os::SuspendedThreadTask {
|
|
public:
|
|
PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
|
|
ExtendedPC result();
|
|
protected:
|
|
void do_task(const os::SuspendedThreadTaskContext& context);
|
|
private:
|
|
ExtendedPC _epc;
|
|
};
|
|
|
|
ExtendedPC PcFetcher::result() {
|
|
guarantee(is_done(), "task is not done yet.");
|
|
return _epc;
|
|
}
|
|
|
|
void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
|
|
Thread* thread = context.thread();
|
|
OSThread* osthread = thread->osthread();
|
|
if (osthread->ucontext() != NULL) {
|
|
_epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
|
|
} else {
|
|
// NULL context is unexpected, double-check this is the VMThread
|
|
guarantee(thread->is_VM_thread(), "can only be called for VMThread");
|
|
}
|
|
}
|
|
|
|
// Suspends the target using the signal mechanism and then grabs the PC before
|
|
// resuming the target. Used by the flat-profiler only
|
|
ExtendedPC os::get_thread_pc(Thread* thread) {
|
|
// Make sure that it is called by the watcher for the VMThread
|
|
assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
|
|
assert(thread->is_VM_thread(), "Can only be called for VMThread");
|
|
|
|
PcFetcher fetcher(thread);
|
|
fetcher.run();
|
|
return fetcher.result();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// debug support
|
|
|
|
bool os::find(address addr, outputStream* st) {
|
|
Dl_info dlinfo;
|
|
memset(&dlinfo, 0, sizeof(dlinfo));
|
|
if (dladdr(addr, &dlinfo) != 0) {
|
|
st->print(PTR_FORMAT ": ", addr);
|
|
if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
|
|
st->print("%s+%#x", dlinfo.dli_sname,
|
|
addr - (intptr_t)dlinfo.dli_saddr);
|
|
} else if (dlinfo.dli_fbase != NULL) {
|
|
st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
|
|
} else {
|
|
st->print("<absolute address>");
|
|
}
|
|
if (dlinfo.dli_fname != NULL) {
|
|
st->print(" in %s", dlinfo.dli_fname);
|
|
}
|
|
if (dlinfo.dli_fbase != NULL) {
|
|
st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
|
|
}
|
|
st->cr();
|
|
|
|
if (Verbose) {
|
|
// decode some bytes around the PC
|
|
address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
|
|
address end = clamp_address_in_page(addr+40, addr, os::vm_page_size());
|
|
address lowest = (address) dlinfo.dli_sname;
|
|
if (!lowest) lowest = (address) dlinfo.dli_fbase;
|
|
if (begin < lowest) begin = lowest;
|
|
Dl_info dlinfo2;
|
|
if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
|
|
&& end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
|
|
end = (address) dlinfo2.dli_saddr;
|
|
}
|
|
Disassembler::decode(begin, end, st);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// misc
|
|
|
|
// This does not do anything on Bsd. This is basically a hook for being
|
|
// able to use structured exception handling (thread-local exception filters)
|
|
// on, e.g., Win32.
|
|
void os::os_exception_wrapper(java_call_t f, JavaValue* value,
|
|
methodHandle* method, JavaCallArguments* args,
|
|
Thread* thread) {
|
|
f(value, method, args, thread);
|
|
}
|
|
|
|
void os::print_statistics() {
|
|
}
|
|
|
|
int os::message_box(const char* title, const char* message) {
|
|
int i;
|
|
fdStream err(defaultStream::error_fd());
|
|
for (i = 0; i < 78; i++) err.print_raw("=");
|
|
err.cr();
|
|
err.print_raw_cr(title);
|
|
for (i = 0; i < 78; i++) err.print_raw("-");
|
|
err.cr();
|
|
err.print_raw_cr(message);
|
|
for (i = 0; i < 78; i++) err.print_raw("=");
|
|
err.cr();
|
|
|
|
char buf[16];
|
|
// Prevent process from exiting upon "read error" without consuming all CPU
|
|
while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
|
|
|
|
return buf[0] == 'y' || buf[0] == 'Y';
|
|
}
|
|
|
|
int os::stat(const char *path, struct stat *sbuf) {
|
|
char pathbuf[MAX_PATH];
|
|
if (strlen(path) > MAX_PATH - 1) {
|
|
errno = ENAMETOOLONG;
|
|
return -1;
|
|
}
|
|
os::native_path(strcpy(pathbuf, path));
|
|
return ::stat(pathbuf, sbuf);
|
|
}
|
|
|
|
bool os::check_heap(bool force) {
|
|
return true;
|
|
}
|
|
|
|
// Is a (classpath) directory empty?
|
|
bool os::dir_is_empty(const char* path) {
|
|
DIR *dir = NULL;
|
|
struct dirent *ptr;
|
|
|
|
dir = opendir(path);
|
|
if (dir == NULL) return true;
|
|
|
|
// Scan the directory
|
|
bool result = true;
|
|
char buf[sizeof(struct dirent) + MAX_PATH];
|
|
while (result && (ptr = ::readdir(dir)) != NULL) {
|
|
if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
|
|
result = false;
|
|
}
|
|
}
|
|
closedir(dir);
|
|
return result;
|
|
}
|
|
|
|
// This code originates from JDK's sysOpen and open64_w
|
|
// from src/solaris/hpi/src/system_md.c
|
|
|
|
int os::open(const char *path, int oflag, int mode) {
|
|
if (strlen(path) > MAX_PATH - 1) {
|
|
errno = ENAMETOOLONG;
|
|
return -1;
|
|
}
|
|
int fd;
|
|
|
|
fd = ::open(path, oflag, mode);
|
|
if (fd == -1) return -1;
|
|
|
|
// If the open succeeded, the file might still be a directory
|
|
{
|
|
struct stat buf;
|
|
int ret = ::fstat(fd, &buf);
|
|
int st_mode = buf.st_mode;
|
|
|
|
if (ret != -1) {
|
|
if ((st_mode & S_IFMT) == S_IFDIR) {
|
|
errno = EISDIR;
|
|
::close(fd);
|
|
return -1;
|
|
}
|
|
} else {
|
|
::close(fd);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// All file descriptors that are opened in the JVM and not
|
|
// specifically destined for a subprocess should have the
|
|
// close-on-exec flag set. If we don't set it, then careless 3rd
|
|
// party native code might fork and exec without closing all
|
|
// appropriate file descriptors (e.g. as we do in closeDescriptors in
|
|
// UNIXProcess.c), and this in turn might:
|
|
//
|
|
// - cause end-of-file to fail to be detected on some file
|
|
// descriptors, resulting in mysterious hangs, or
|
|
//
|
|
// - might cause an fopen in the subprocess to fail on a system
|
|
// suffering from bug 1085341.
|
|
//
|
|
// (Yes, the default setting of the close-on-exec flag is a Unix
|
|
// design flaw)
|
|
//
|
|
// See:
|
|
// 1085341: 32-bit stdio routines should support file descriptors >255
|
|
// 4843136: (process) pipe file descriptor from Runtime.exec not being closed
|
|
// 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
|
|
//
|
|
#ifdef FD_CLOEXEC
|
|
{
|
|
int flags = ::fcntl(fd, F_GETFD);
|
|
if (flags != -1) {
|
|
::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return fd;
|
|
}
|
|
|
|
|
|
// create binary file, rewriting existing file if required
|
|
int os::create_binary_file(const char* path, bool rewrite_existing) {
|
|
int oflags = O_WRONLY | O_CREAT;
|
|
if (!rewrite_existing) {
|
|
oflags |= O_EXCL;
|
|
}
|
|
return ::open(path, oflags, S_IREAD | S_IWRITE);
|
|
}
|
|
|
|
// return current position of file pointer
|
|
jlong os::current_file_offset(int fd) {
|
|
return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
|
|
}
|
|
|
|
// move file pointer to the specified offset
|
|
jlong os::seek_to_file_offset(int fd, jlong offset) {
|
|
return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
|
|
}
|
|
|
|
// This code originates from JDK's sysAvailable
|
|
// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
|
|
|
|
int os::available(int fd, jlong *bytes) {
|
|
jlong cur, end;
|
|
int mode;
|
|
struct stat buf;
|
|
|
|
if (::fstat(fd, &buf) >= 0) {
|
|
mode = buf.st_mode;
|
|
if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
|
|
// XXX: is the following call interruptible? If so, this might
|
|
// need to go through the INTERRUPT_IO() wrapper as for other
|
|
// blocking, interruptible calls in this file.
|
|
int n;
|
|
if (::ioctl(fd, FIONREAD, &n) >= 0) {
|
|
*bytes = n;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
|
|
return 0;
|
|
} else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
|
|
return 0;
|
|
} else if (::lseek(fd, cur, SEEK_SET) == -1) {
|
|
return 0;
|
|
}
|
|
*bytes = end - cur;
|
|
return 1;
|
|
}
|
|
|
|
// Map a block of memory.
|
|
char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
|
|
char *addr, size_t bytes, bool read_only,
|
|
bool allow_exec) {
|
|
int prot;
|
|
int flags;
|
|
|
|
if (read_only) {
|
|
prot = PROT_READ;
|
|
flags = MAP_SHARED;
|
|
} else {
|
|
prot = PROT_READ | PROT_WRITE;
|
|
flags = MAP_PRIVATE;
|
|
}
|
|
|
|
if (allow_exec) {
|
|
prot |= PROT_EXEC;
|
|
}
|
|
|
|
if (addr != NULL) {
|
|
flags |= MAP_FIXED;
|
|
}
|
|
|
|
char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
|
|
fd, file_offset);
|
|
if (mapped_address == MAP_FAILED) {
|
|
return NULL;
|
|
}
|
|
return mapped_address;
|
|
}
|
|
|
|
|
|
// Remap a block of memory.
|
|
char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
|
|
char *addr, size_t bytes, bool read_only,
|
|
bool allow_exec) {
|
|
// same as map_memory() on this OS
|
|
return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
|
|
allow_exec);
|
|
}
|
|
|
|
|
|
// Unmap a block of memory.
|
|
bool os::pd_unmap_memory(char* addr, size_t bytes) {
|
|
return munmap(addr, bytes) == 0;
|
|
}
|
|
|
|
// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
|
|
// are used by JVM M&M and JVMTI to get user+sys or user CPU time
|
|
// of a thread.
|
|
//
|
|
// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
|
|
// the fast estimate available on the platform.
|
|
|
|
jlong os::current_thread_cpu_time() {
|
|
#ifdef __APPLE__
|
|
return os::thread_cpu_time(Thread::current(), true /* user + sys */);
|
|
#else
|
|
Unimplemented();
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
jlong os::thread_cpu_time(Thread* thread) {
|
|
#ifdef __APPLE__
|
|
return os::thread_cpu_time(thread, true /* user + sys */);
|
|
#else
|
|
Unimplemented();
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
|
|
#ifdef __APPLE__
|
|
return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
|
|
#else
|
|
Unimplemented();
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
|
|
#ifdef __APPLE__
|
|
struct thread_basic_info tinfo;
|
|
mach_msg_type_number_t tcount = THREAD_INFO_MAX;
|
|
kern_return_t kr;
|
|
thread_t mach_thread;
|
|
|
|
mach_thread = thread->osthread()->thread_id();
|
|
kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
|
|
if (kr != KERN_SUCCESS) {
|
|
return -1;
|
|
}
|
|
|
|
if (user_sys_cpu_time) {
|
|
jlong nanos;
|
|
nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
|
|
nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
|
|
return nanos;
|
|
} else {
|
|
return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
|
|
}
|
|
#else
|
|
Unimplemented();
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
|
|
info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
|
|
info_ptr->may_skip_backward = false; // elapsed time not wall time
|
|
info_ptr->may_skip_forward = false; // elapsed time not wall time
|
|
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
|
|
}
|
|
|
|
void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
|
|
info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
|
|
info_ptr->may_skip_backward = false; // elapsed time not wall time
|
|
info_ptr->may_skip_forward = false; // elapsed time not wall time
|
|
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
|
|
}
|
|
|
|
bool os::is_thread_cpu_time_supported() {
|
|
#ifdef __APPLE__
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// System loadavg support. Returns -1 if load average cannot be obtained.
|
|
// Bsd doesn't yet have a (official) notion of processor sets,
|
|
// so just return the system wide load average.
|
|
int os::loadavg(double loadavg[], int nelem) {
|
|
return ::getloadavg(loadavg, nelem);
|
|
}
|
|
|
|
void os::pause() {
|
|
char filename[MAX_PATH];
|
|
if (PauseAtStartupFile && PauseAtStartupFile[0]) {
|
|
jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
|
|
} else {
|
|
jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
|
|
}
|
|
|
|
int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
|
|
if (fd != -1) {
|
|
struct stat buf;
|
|
::close(fd);
|
|
while (::stat(filename, &buf) == 0) {
|
|
(void)::poll(NULL, 0, 100);
|
|
}
|
|
} else {
|
|
jio_fprintf(stderr,
|
|
"Could not open pause file '%s', continuing immediately.\n", filename);
|
|
}
|
|
}
|
|
|
|
|
|
// Refer to the comments in os_solaris.cpp park-unpark. The next two
|
|
// comment paragraphs are worth repeating here:
|
|
//
|
|
// Assumption:
|
|
// Only one parker can exist on an event, which is why we allocate
|
|
// them per-thread. Multiple unparkers can coexist.
|
|
//
|
|
// _Event serves as a restricted-range semaphore.
|
|
// -1 : thread is blocked, i.e. there is a waiter
|
|
// 0 : neutral: thread is running or ready,
|
|
// could have been signaled after a wait started
|
|
// 1 : signaled - thread is running or ready
|
|
//
|
|
// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
|
|
// hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
|
|
// For specifics regarding the bug see GLIBC BUGID 261237 :
|
|
// http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
|
|
// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
|
|
// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
|
|
// is used. (The simple C test-case provided in the GLIBC bug report manifests the
|
|
// hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
|
|
// and monitorenter when we're using 1-0 locking. All those operations may result in
|
|
// calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
|
|
// of libpthread avoids the problem, but isn't practical.
|
|
//
|
|
// Possible remedies:
|
|
//
|
|
// 1. Establish a minimum relative wait time. 50 to 100 msecs seems to work.
|
|
// This is palliative and probabilistic, however. If the thread is preempted
|
|
// between the call to compute_abstime() and pthread_cond_timedwait(), more
|
|
// than the minimum period may have passed, and the abstime may be stale (in the
|
|
// past) resultin in a hang. Using this technique reduces the odds of a hang
|
|
// but the JVM is still vulnerable, particularly on heavily loaded systems.
|
|
//
|
|
// 2. Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
|
|
// of the usual flag-condvar-mutex idiom. The write side of the pipe is set
|
|
// NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
|
|
// reduces to poll()+read(). This works well, but consumes 2 FDs per extant
|
|
// thread.
|
|
//
|
|
// 3. Embargo pthread_cond_timedwait() and implement a native "chron" thread
|
|
// that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
|
|
// a timeout request to the chron thread and then blocking via pthread_cond_wait().
|
|
// This also works well. In fact it avoids kernel-level scalability impediments
|
|
// on certain platforms that don't handle lots of active pthread_cond_timedwait()
|
|
// timers in a graceful fashion.
|
|
//
|
|
// 4. When the abstime value is in the past it appears that control returns
|
|
// correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
|
|
// Subsequent timedwait/wait calls may hang indefinitely. Given that, we
|
|
// can avoid the problem by reinitializing the condvar -- by cond_destroy()
|
|
// followed by cond_init() -- after all calls to pthread_cond_timedwait().
|
|
// It may be possible to avoid reinitialization by checking the return
|
|
// value from pthread_cond_timedwait(). In addition to reinitializing the
|
|
// condvar we must establish the invariant that cond_signal() is only called
|
|
// within critical sections protected by the adjunct mutex. This prevents
|
|
// cond_signal() from "seeing" a condvar that's in the midst of being
|
|
// reinitialized or that is corrupt. Sadly, this invariant obviates the
|
|
// desirable signal-after-unlock optimization that avoids futile context switching.
|
|
//
|
|
// I'm also concerned that some versions of NTPL might allocate an auxilliary
|
|
// structure when a condvar is used or initialized. cond_destroy() would
|
|
// release the helper structure. Our reinitialize-after-timedwait fix
|
|
// put excessive stress on malloc/free and locks protecting the c-heap.
|
|
//
|
|
// We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
|
|
// It may be possible to refine (4) by checking the kernel and NTPL verisons
|
|
// and only enabling the work-around for vulnerable environments.
|
|
|
|
// utility to compute the abstime argument to timedwait:
|
|
// millis is the relative timeout time
|
|
// abstime will be the absolute timeout time
|
|
// TODO: replace compute_abstime() with unpackTime()
|
|
|
|
static struct timespec* compute_abstime(struct timespec* abstime,
|
|
jlong millis) {
|
|
if (millis < 0) millis = 0;
|
|
struct timeval now;
|
|
int status = gettimeofday(&now, NULL);
|
|
assert(status == 0, "gettimeofday");
|
|
jlong seconds = millis / 1000;
|
|
millis %= 1000;
|
|
if (seconds > 50000000) { // see man cond_timedwait(3T)
|
|
seconds = 50000000;
|
|
}
|
|
abstime->tv_sec = now.tv_sec + seconds;
|
|
long usec = now.tv_usec + millis * 1000;
|
|
if (usec >= 1000000) {
|
|
abstime->tv_sec += 1;
|
|
usec -= 1000000;
|
|
}
|
|
abstime->tv_nsec = usec * 1000;
|
|
return abstime;
|
|
}
|
|
|
|
void os::PlatformEvent::park() { // AKA "down()"
|
|
// Transitions for _Event:
|
|
// -1 => -1 : illegal
|
|
// 1 => 0 : pass - return immediately
|
|
// 0 => -1 : block; then set _Event to 0 before returning
|
|
|
|
// Invariant: Only the thread associated with the Event/PlatformEvent
|
|
// may call park().
|
|
// TODO: assert that _Assoc != NULL or _Assoc == Self
|
|
assert(_nParked == 0, "invariant");
|
|
|
|
int v;
|
|
for (;;) {
|
|
v = _Event;
|
|
if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
|
|
}
|
|
guarantee(v >= 0, "invariant");
|
|
if (v == 0) {
|
|
// Do this the hard way by blocking ...
|
|
int status = pthread_mutex_lock(_mutex);
|
|
assert_status(status == 0, status, "mutex_lock");
|
|
guarantee(_nParked == 0, "invariant");
|
|
++_nParked;
|
|
while (_Event < 0) {
|
|
status = pthread_cond_wait(_cond, _mutex);
|
|
// for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
|
|
// Treat this the same as if the wait was interrupted
|
|
if (status == ETIMEDOUT) { status = EINTR; }
|
|
assert_status(status == 0 || status == EINTR, status, "cond_wait");
|
|
}
|
|
--_nParked;
|
|
|
|
_Event = 0;
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "mutex_unlock");
|
|
// Paranoia to ensure our locked and lock-free paths interact
|
|
// correctly with each other.
|
|
OrderAccess::fence();
|
|
}
|
|
guarantee(_Event >= 0, "invariant");
|
|
}
|
|
|
|
int os::PlatformEvent::park(jlong millis) {
|
|
// Transitions for _Event:
|
|
// -1 => -1 : illegal
|
|
// 1 => 0 : pass - return immediately
|
|
// 0 => -1 : block; then set _Event to 0 before returning
|
|
|
|
guarantee(_nParked == 0, "invariant");
|
|
|
|
int v;
|
|
for (;;) {
|
|
v = _Event;
|
|
if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
|
|
}
|
|
guarantee(v >= 0, "invariant");
|
|
if (v != 0) return OS_OK;
|
|
|
|
// We do this the hard way, by blocking the thread.
|
|
// Consider enforcing a minimum timeout value.
|
|
struct timespec abst;
|
|
compute_abstime(&abst, millis);
|
|
|
|
int ret = OS_TIMEOUT;
|
|
int status = pthread_mutex_lock(_mutex);
|
|
assert_status(status == 0, status, "mutex_lock");
|
|
guarantee(_nParked == 0, "invariant");
|
|
++_nParked;
|
|
|
|
// Object.wait(timo) will return because of
|
|
// (a) notification
|
|
// (b) timeout
|
|
// (c) thread.interrupt
|
|
//
|
|
// Thread.interrupt and object.notify{All} both call Event::set.
|
|
// That is, we treat thread.interrupt as a special case of notification.
|
|
// We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
|
|
// We assume all ETIME returns are valid.
|
|
//
|
|
// TODO: properly differentiate simultaneous notify+interrupt.
|
|
// In that case, we should propagate the notify to another waiter.
|
|
|
|
while (_Event < 0) {
|
|
status = pthread_cond_timedwait(_cond, _mutex, &abst);
|
|
if (status != 0 && WorkAroundNPTLTimedWaitHang) {
|
|
pthread_cond_destroy(_cond);
|
|
pthread_cond_init(_cond, NULL);
|
|
}
|
|
assert_status(status == 0 || status == EINTR ||
|
|
status == ETIMEDOUT,
|
|
status, "cond_timedwait");
|
|
if (!FilterSpuriousWakeups) break; // previous semantics
|
|
if (status == ETIMEDOUT) break;
|
|
// We consume and ignore EINTR and spurious wakeups.
|
|
}
|
|
--_nParked;
|
|
if (_Event >= 0) {
|
|
ret = OS_OK;
|
|
}
|
|
_Event = 0;
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "mutex_unlock");
|
|
assert(_nParked == 0, "invariant");
|
|
// Paranoia to ensure our locked and lock-free paths interact
|
|
// correctly with each other.
|
|
OrderAccess::fence();
|
|
return ret;
|
|
}
|
|
|
|
void os::PlatformEvent::unpark() {
|
|
// Transitions for _Event:
|
|
// 0 => 1 : just return
|
|
// 1 => 1 : just return
|
|
// -1 => either 0 or 1; must signal target thread
|
|
// That is, we can safely transition _Event from -1 to either
|
|
// 0 or 1.
|
|
// See also: "Semaphores in Plan 9" by Mullender & Cox
|
|
//
|
|
// Note: Forcing a transition from "-1" to "1" on an unpark() means
|
|
// that it will take two back-to-back park() calls for the owning
|
|
// thread to block. This has the benefit of forcing a spurious return
|
|
// from the first park() call after an unpark() call which will help
|
|
// shake out uses of park() and unpark() without condition variables.
|
|
|
|
if (Atomic::xchg(1, &_Event) >= 0) return;
|
|
|
|
// Wait for the thread associated with the event to vacate
|
|
int status = pthread_mutex_lock(_mutex);
|
|
assert_status(status == 0, status, "mutex_lock");
|
|
int AnyWaiters = _nParked;
|
|
assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
|
|
if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
|
|
AnyWaiters = 0;
|
|
pthread_cond_signal(_cond);
|
|
}
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "mutex_unlock");
|
|
if (AnyWaiters != 0) {
|
|
// Note that we signal() *after* dropping the lock for "immortal" Events.
|
|
// This is safe and avoids a common class of futile wakeups. In rare
|
|
// circumstances this can cause a thread to return prematurely from
|
|
// cond_{timed}wait() but the spurious wakeup is benign and the victim
|
|
// will simply re-test the condition and re-park itself.
|
|
// This provides particular benefit if the underlying platform does not
|
|
// provide wait morphing.
|
|
status = pthread_cond_signal(_cond);
|
|
assert_status(status == 0, status, "cond_signal");
|
|
}
|
|
}
|
|
|
|
|
|
// JSR166
|
|
// -------------------------------------------------------
|
|
|
|
// The solaris and bsd implementations of park/unpark are fairly
|
|
// conservative for now, but can be improved. They currently use a
|
|
// mutex/condvar pair, plus a a count.
|
|
// Park decrements count if > 0, else does a condvar wait. Unpark
|
|
// sets count to 1 and signals condvar. Only one thread ever waits
|
|
// on the condvar. Contention seen when trying to park implies that someone
|
|
// is unparking you, so don't wait. And spurious returns are fine, so there
|
|
// is no need to track notifications.
|
|
|
|
#define MAX_SECS 100000000
|
|
|
|
// This code is common to bsd and solaris and will be moved to a
|
|
// common place in dolphin.
|
|
//
|
|
// The passed in time value is either a relative time in nanoseconds
|
|
// or an absolute time in milliseconds. Either way it has to be unpacked
|
|
// into suitable seconds and nanoseconds components and stored in the
|
|
// given timespec structure.
|
|
// Given time is a 64-bit value and the time_t used in the timespec is only
|
|
// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
|
|
// overflow if times way in the future are given. Further on Solaris versions
|
|
// prior to 10 there is a restriction (see cond_timedwait) that the specified
|
|
// number of seconds, in abstime, is less than current_time + 100,000,000.
|
|
// As it will be 28 years before "now + 100000000" will overflow we can
|
|
// ignore overflow and just impose a hard-limit on seconds using the value
|
|
// of "now + 100,000,000". This places a limit on the timeout of about 3.17
|
|
// years from "now".
|
|
|
|
static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
|
|
assert(time > 0, "convertTime");
|
|
|
|
struct timeval now;
|
|
int status = gettimeofday(&now, NULL);
|
|
assert(status == 0, "gettimeofday");
|
|
|
|
time_t max_secs = now.tv_sec + MAX_SECS;
|
|
|
|
if (isAbsolute) {
|
|
jlong secs = time / 1000;
|
|
if (secs > max_secs) {
|
|
absTime->tv_sec = max_secs;
|
|
} else {
|
|
absTime->tv_sec = secs;
|
|
}
|
|
absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
|
|
} else {
|
|
jlong secs = time / NANOSECS_PER_SEC;
|
|
if (secs >= MAX_SECS) {
|
|
absTime->tv_sec = max_secs;
|
|
absTime->tv_nsec = 0;
|
|
} else {
|
|
absTime->tv_sec = now.tv_sec + secs;
|
|
absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
|
|
if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
|
|
absTime->tv_nsec -= NANOSECS_PER_SEC;
|
|
++absTime->tv_sec; // note: this must be <= max_secs
|
|
}
|
|
}
|
|
}
|
|
assert(absTime->tv_sec >= 0, "tv_sec < 0");
|
|
assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
|
|
assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
|
|
assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
|
|
}
|
|
|
|
void Parker::park(bool isAbsolute, jlong time) {
|
|
// Ideally we'd do something useful while spinning, such
|
|
// as calling unpackTime().
|
|
|
|
// Optional fast-path check:
|
|
// Return immediately if a permit is available.
|
|
// We depend on Atomic::xchg() having full barrier semantics
|
|
// since we are doing a lock-free update to _counter.
|
|
if (Atomic::xchg(0, &_counter) > 0) return;
|
|
|
|
Thread* thread = Thread::current();
|
|
assert(thread->is_Java_thread(), "Must be JavaThread");
|
|
JavaThread *jt = (JavaThread *)thread;
|
|
|
|
// Optional optimization -- avoid state transitions if there's an interrupt pending.
|
|
// Check interrupt before trying to wait
|
|
if (Thread::is_interrupted(thread, false)) {
|
|
return;
|
|
}
|
|
|
|
// Next, demultiplex/decode time arguments
|
|
struct timespec absTime;
|
|
if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
|
|
return;
|
|
}
|
|
if (time > 0) {
|
|
unpackTime(&absTime, isAbsolute, time);
|
|
}
|
|
|
|
|
|
// Enter safepoint region
|
|
// Beware of deadlocks such as 6317397.
|
|
// The per-thread Parker:: mutex is a classic leaf-lock.
|
|
// In particular a thread must never block on the Threads_lock while
|
|
// holding the Parker:: mutex. If safepoints are pending both the
|
|
// the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
|
|
ThreadBlockInVM tbivm(jt);
|
|
|
|
// Don't wait if cannot get lock since interference arises from
|
|
// unblocking. Also. check interrupt before trying wait
|
|
if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
|
|
return;
|
|
}
|
|
|
|
int status;
|
|
if (_counter > 0) { // no wait needed
|
|
_counter = 0;
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert(status == 0, "invariant");
|
|
// Paranoia to ensure our locked and lock-free paths interact
|
|
// correctly with each other and Java-level accesses.
|
|
OrderAccess::fence();
|
|
return;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// Don't catch signals while blocked; let the running threads have the signals.
|
|
// (This allows a debugger to break into the running thread.)
|
|
sigset_t oldsigs;
|
|
sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
|
|
pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
|
|
#endif
|
|
|
|
OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
|
|
jt->set_suspend_equivalent();
|
|
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
|
|
|
|
if (time == 0) {
|
|
status = pthread_cond_wait(_cond, _mutex);
|
|
} else {
|
|
status = pthread_cond_timedwait(_cond, _mutex, &absTime);
|
|
if (status != 0 && WorkAroundNPTLTimedWaitHang) {
|
|
pthread_cond_destroy(_cond);
|
|
pthread_cond_init(_cond, NULL);
|
|
}
|
|
}
|
|
assert_status(status == 0 || status == EINTR ||
|
|
status == ETIMEDOUT,
|
|
status, "cond_timedwait");
|
|
|
|
#ifdef ASSERT
|
|
pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
|
|
#endif
|
|
|
|
_counter = 0;
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "invariant");
|
|
// Paranoia to ensure our locked and lock-free paths interact
|
|
// correctly with each other and Java-level accesses.
|
|
OrderAccess::fence();
|
|
|
|
// If externally suspended while waiting, re-suspend
|
|
if (jt->handle_special_suspend_equivalent_condition()) {
|
|
jt->java_suspend_self();
|
|
}
|
|
}
|
|
|
|
void Parker::unpark() {
|
|
int status = pthread_mutex_lock(_mutex);
|
|
assert(status == 0, "invariant");
|
|
const int s = _counter;
|
|
_counter = 1;
|
|
if (s < 1) {
|
|
if (WorkAroundNPTLTimedWaitHang) {
|
|
status = pthread_cond_signal(_cond);
|
|
assert(status == 0, "invariant");
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert(status == 0, "invariant");
|
|
} else {
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert(status == 0, "invariant");
|
|
status = pthread_cond_signal(_cond);
|
|
assert(status == 0, "invariant");
|
|
}
|
|
} else {
|
|
pthread_mutex_unlock(_mutex);
|
|
assert(status == 0, "invariant");
|
|
}
|
|
}
|
|
|
|
|
|
// Darwin has no "environ" in a dynamic library.
|
|
#ifdef __APPLE__
|
|
#include <crt_externs.h>
|
|
#define environ (*_NSGetEnviron())
|
|
#else
|
|
extern char** environ;
|
|
#endif
|
|
|
|
// Run the specified command in a separate process. Return its exit value,
|
|
// or -1 on failure (e.g. can't fork a new process).
|
|
// Unlike system(), this function can be called from signal handler. It
|
|
// doesn't block SIGINT et al.
|
|
int os::fork_and_exec(char* cmd) {
|
|
const char * argv[4] = {"sh", "-c", cmd, NULL};
|
|
|
|
// fork() in BsdThreads/NPTL is not async-safe. It needs to run
|
|
// pthread_atfork handlers and reset pthread library. All we need is a
|
|
// separate process to execve. Make a direct syscall to fork process.
|
|
// On IA64 there's no fork syscall, we have to use fork() and hope for
|
|
// the best...
|
|
pid_t pid = fork();
|
|
|
|
if (pid < 0) {
|
|
// fork failed
|
|
return -1;
|
|
|
|
} else if (pid == 0) {
|
|
// child process
|
|
|
|
// execve() in BsdThreads will call pthread_kill_other_threads_np()
|
|
// first to kill every thread on the thread list. Because this list is
|
|
// not reset by fork() (see notes above), execve() will instead kill
|
|
// every thread in the parent process. We know this is the only thread
|
|
// in the new process, so make a system call directly.
|
|
// IA64 should use normal execve() from glibc to match the glibc fork()
|
|
// above.
|
|
execve("/bin/sh", (char* const*)argv, environ);
|
|
|
|
// execve failed
|
|
_exit(-1);
|
|
|
|
} else {
|
|
// copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
|
|
// care about the actual exit code, for now.
|
|
|
|
int status;
|
|
|
|
// Wait for the child process to exit. This returns immediately if
|
|
// the child has already exited. */
|
|
while (waitpid(pid, &status, 0) < 0) {
|
|
switch (errno) {
|
|
case ECHILD: return 0;
|
|
case EINTR: break;
|
|
default: return -1;
|
|
}
|
|
}
|
|
|
|
if (WIFEXITED(status)) {
|
|
// The child exited normally; get its exit code.
|
|
return WEXITSTATUS(status);
|
|
} else if (WIFSIGNALED(status)) {
|
|
// The child exited because of a signal
|
|
// The best value to return is 0x80 + signal number,
|
|
// because that is what all Unix shells do, and because
|
|
// it allows callers to distinguish between process exit and
|
|
// process death by signal.
|
|
return 0x80 + WTERMSIG(status);
|
|
} else {
|
|
// Unknown exit code; pass it through
|
|
return status;
|
|
}
|
|
}
|
|
}
|
|
|
|
// is_headless_jre()
|
|
//
|
|
// Test for the existence of xawt/libmawt.so or libawt_xawt.so
|
|
// in order to report if we are running in a headless jre
|
|
//
|
|
// Since JDK8 xawt/libmawt.so was moved into the same directory
|
|
// as libawt.so, and renamed libawt_xawt.so
|
|
//
|
|
bool os::is_headless_jre() {
|
|
#ifdef __APPLE__
|
|
// We no longer build headless-only on Mac OS X
|
|
return false;
|
|
#else
|
|
struct stat statbuf;
|
|
char buf[MAXPATHLEN];
|
|
char libmawtpath[MAXPATHLEN];
|
|
const char *xawtstr = "/xawt/libmawt" JNI_LIB_SUFFIX;
|
|
const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
|
|
char *p;
|
|
|
|
// Get path to libjvm.so
|
|
os::jvm_path(buf, sizeof(buf));
|
|
|
|
// Get rid of libjvm.so
|
|
p = strrchr(buf, '/');
|
|
if (p == NULL) {
|
|
return false;
|
|
} else {
|
|
*p = '\0';
|
|
}
|
|
|
|
// Get rid of client or server
|
|
p = strrchr(buf, '/');
|
|
if (p == NULL) {
|
|
return false;
|
|
} else {
|
|
*p = '\0';
|
|
}
|
|
|
|
// check xawt/libmawt.so
|
|
strcpy(libmawtpath, buf);
|
|
strcat(libmawtpath, xawtstr);
|
|
if (::stat(libmawtpath, &statbuf) == 0) return false;
|
|
|
|
// check libawt_xawt.so
|
|
strcpy(libmawtpath, buf);
|
|
strcat(libmawtpath, new_xawtstr);
|
|
if (::stat(libmawtpath, &statbuf) == 0) return false;
|
|
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
// Get the default path to the core file
|
|
// Returns the length of the string
|
|
int os::get_core_path(char* buffer, size_t bufferSize) {
|
|
int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
|
|
|
|
// Truncate if theoretical string was longer than bufferSize
|
|
n = MIN2(n, (int)bufferSize);
|
|
|
|
return n;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void TestReserveMemorySpecial_test() {
|
|
// No tests available for this platform
|
|
}
|
|
#endif
|