mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-28 15:24:43 +02:00
185 lines
7.3 KiB
Java
185 lines
7.3 KiB
Java
/*
|
|
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package sun.security.ssl;
|
|
|
|
import java.security.NoSuchAlgorithmException;
|
|
import java.security.InvalidKeyException;
|
|
import javax.crypto.Mac;
|
|
import javax.crypto.SecretKey;
|
|
import javax.crypto.ShortBufferException;
|
|
import javax.crypto.spec.SecretKeySpec;
|
|
import java.util.Objects;
|
|
|
|
/**
|
|
* An implementation of the HKDF key derivation algorithm outlined in RFC 5869,
|
|
* specific to the needs of TLS 1.3 key derivation in JSSE. This is not a
|
|
* general purpose HKDF implementation and is suited only to single-key output
|
|
* derivations.
|
|
*
|
|
* HKDF objects are created by specifying a message digest algorithm. That
|
|
* digest algorithm will be used by the HMAC function as part of the HKDF
|
|
* derivation process.
|
|
*/
|
|
final class HKDF {
|
|
private final Mac hmacObj;
|
|
private final int hmacLen;
|
|
|
|
/**
|
|
* Create an HDKF object, specifying the underlying message digest
|
|
* algorithm.
|
|
*
|
|
* @param hashAlg a standard name corresponding to a supported message
|
|
* digest algorithm.
|
|
*
|
|
* @throws NoSuchAlgorithmException if that message digest algorithm does
|
|
* not have an HMAC variant supported on any available provider.
|
|
*/
|
|
HKDF(String hashAlg) throws NoSuchAlgorithmException {
|
|
Objects.requireNonNull(hashAlg,
|
|
"Must provide underlying HKDF Digest algorithm.");
|
|
String hmacAlg = "Hmac" + hashAlg.replace("-", "");
|
|
hmacObj = Mac.getInstance(hmacAlg);
|
|
hmacLen = hmacObj.getMacLength();
|
|
}
|
|
|
|
/**
|
|
* Perform the HMAC-Extract derivation.
|
|
*
|
|
* @param salt a salt value, implemented as a {@code SecretKey}. A
|
|
* {@code null} value is allowed, which will internally use an array of
|
|
* zero bytes the same size as the underlying hash output length.
|
|
* @param inputKey the input keying material provided as a
|
|
* {@code SecretKey}.
|
|
* @param keyAlg the algorithm name assigned to the resulting
|
|
* {@code SecretKey} object.
|
|
*
|
|
* @return a {@code SecretKey} that is the result of the HKDF extract
|
|
* operation.
|
|
*
|
|
* @throws InvalidKeyException if the {@code salt} parameter cannot be
|
|
* used to initialize the underlying HMAC.
|
|
*/
|
|
SecretKey extract(SecretKey salt, SecretKey inputKey, String keyAlg)
|
|
throws InvalidKeyException {
|
|
if (salt == null) {
|
|
salt = new SecretKeySpec(new byte[hmacLen], "HKDF-Salt");
|
|
}
|
|
hmacObj.init(salt);
|
|
|
|
return new SecretKeySpec(hmacObj.doFinal(inputKey.getEncoded()),
|
|
keyAlg);
|
|
}
|
|
|
|
/**
|
|
* Perform the HMAC-Extract derivation.
|
|
*
|
|
* @param salt a salt value as cleartext bytes. A {@code null} value is
|
|
* allowed, which will internally use an array of zero bytes the same
|
|
* size as the underlying hash output length.
|
|
* @param inputKey the input keying material provided as a
|
|
* {@code SecretKey}.
|
|
* @param keyAlg the algorithm name assigned to the resulting
|
|
* {@code SecretKey} object.
|
|
*
|
|
* @return a {@code SecretKey} that is the result of the HKDF extract
|
|
* operation.
|
|
*
|
|
* @throws InvalidKeyException if the {@code salt} parameter cannot be
|
|
* used to initialize the underlying HMAC.
|
|
*/
|
|
SecretKey extract(byte[] salt, SecretKey inputKey, String keyAlg)
|
|
throws InvalidKeyException {
|
|
if (salt == null) {
|
|
salt = new byte[hmacLen];
|
|
}
|
|
return extract(new SecretKeySpec(salt, "HKDF-Salt"), inputKey, keyAlg);
|
|
}
|
|
|
|
/**
|
|
* Perform the HKDF-Expand derivation for a single-key output.
|
|
*
|
|
* @param pseudoRandKey the pseudo random key (PRK).
|
|
* @param info optional context-specific info. A {@code null} value is
|
|
* allowed in which case a zero-length byte array will be used.
|
|
* @param outLen the length of the resulting {@code SecretKey}
|
|
* @param keyAlg the algorithm name applied to the resulting
|
|
* {@code SecretKey}
|
|
*
|
|
* @return the resulting key derivation as a {@code SecretKey} object
|
|
*
|
|
* @throws InvalidKeyException if the underlying HMAC operation cannot
|
|
* be initialized using the provided {@code pseudoRandKey} object.
|
|
*/
|
|
SecretKey expand(SecretKey pseudoRandKey, byte[] info, int outLen,
|
|
String keyAlg) throws InvalidKeyException {
|
|
byte[] kdfOutput;
|
|
|
|
// Calculate the number of rounds of HMAC that are needed to
|
|
// meet the requested data. Then set up the buffers we will need.
|
|
Objects.requireNonNull(pseudoRandKey, "A null PRK is not allowed.");
|
|
|
|
// Output from the expand operation must be <= 255 * hmac length
|
|
if (outLen > 255 * hmacLen) {
|
|
throw new IllegalArgumentException("Requested output length " +
|
|
"exceeds maximum length allowed for HKDF expansion");
|
|
}
|
|
hmacObj.init(pseudoRandKey);
|
|
if (info == null) {
|
|
info = new byte[0];
|
|
}
|
|
int rounds = (outLen + hmacLen - 1) / hmacLen;
|
|
kdfOutput = new byte[rounds * hmacLen];
|
|
int offset = 0;
|
|
int tLength = 0;
|
|
|
|
for (int i = 0; i < rounds ; i++) {
|
|
|
|
// Calculate this round
|
|
try {
|
|
// Add T(i). This will be an empty string on the first
|
|
// iteration since tLength starts at zero. After the first
|
|
// iteration, tLength is changed to the HMAC length for the
|
|
// rest of the loop.
|
|
hmacObj.update(kdfOutput,
|
|
Math.max(0, offset - hmacLen), tLength);
|
|
hmacObj.update(info); // Add info
|
|
hmacObj.update((byte)(i + 1)); // Add round number
|
|
hmacObj.doFinal(kdfOutput, offset);
|
|
|
|
tLength = hmacLen;
|
|
offset += hmacLen; // For next iteration
|
|
} catch (ShortBufferException sbe) {
|
|
// This really shouldn't happen given that we've
|
|
// sized the buffers to their largest possible size up-front,
|
|
// but just in case...
|
|
throw new RuntimeException(sbe);
|
|
}
|
|
}
|
|
|
|
return new SecretKeySpec(kdfOutput, 0, outLen, keyAlg);
|
|
}
|
|
}
|
|
|