mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-27 06:45:07 +02:00
378 lines
15 KiB
C++
378 lines
15 KiB
C++
/*
|
|
* Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP
|
|
#define SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP
|
|
|
|
#include "gc/shared/modRefBarrierSet.hpp"
|
|
#include "utilities/align.hpp"
|
|
|
|
// This kind of "BarrierSet" allows a "CollectedHeap" to detect and
|
|
// enumerate ref fields that have been modified (since the last
|
|
// enumeration.)
|
|
|
|
// As it currently stands, this barrier is *imprecise*: when a ref field in
|
|
// an object "o" is modified, the card table entry for the card containing
|
|
// the head of "o" is dirtied, not necessarily the card containing the
|
|
// modified field itself. For object arrays, however, the barrier *is*
|
|
// precise; only the card containing the modified element is dirtied.
|
|
// Closures used to scan dirty cards should take these
|
|
// considerations into account.
|
|
|
|
class CardTableModRefBS: public ModRefBarrierSet {
|
|
// Some classes get to look at some private stuff.
|
|
friend class VMStructs;
|
|
protected:
|
|
|
|
enum CardValues {
|
|
clean_card = -1,
|
|
// The mask contains zeros in places for all other values.
|
|
clean_card_mask = clean_card - 31,
|
|
|
|
dirty_card = 0,
|
|
precleaned_card = 1,
|
|
claimed_card = 2,
|
|
deferred_card = 4,
|
|
last_card = 8,
|
|
CT_MR_BS_last_reserved = 16
|
|
};
|
|
|
|
// Used in support of ReduceInitialCardMarks; only consulted if COMPILER2
|
|
// or INCLUDE_JVMCI is being used
|
|
bool _defer_initial_card_mark;
|
|
|
|
// a word's worth (row) of clean card values
|
|
static const intptr_t clean_card_row = (intptr_t)(-1);
|
|
|
|
// The declaration order of these const fields is important; see the
|
|
// constructor before changing.
|
|
const MemRegion _whole_heap; // the region covered by the card table
|
|
size_t _guard_index; // index of very last element in the card
|
|
// table; it is set to a guard value
|
|
// (last_card) and should never be modified
|
|
size_t _last_valid_index; // index of the last valid element
|
|
const size_t _page_size; // page size used when mapping _byte_map
|
|
size_t _byte_map_size; // in bytes
|
|
jbyte* _byte_map; // the card marking array
|
|
|
|
// Some barrier sets create tables whose elements correspond to parts of
|
|
// the heap; the CardTableModRefBS is an example. Such barrier sets will
|
|
// normally reserve space for such tables, and commit parts of the table
|
|
// "covering" parts of the heap that are committed. At most one covered
|
|
// region per generation is needed.
|
|
static const int _max_covered_regions = 2;
|
|
|
|
int _cur_covered_regions;
|
|
|
|
// The covered regions should be in address order.
|
|
MemRegion* _covered;
|
|
// The committed regions correspond one-to-one to the covered regions.
|
|
// They represent the card-table memory that has been committed to service
|
|
// the corresponding covered region. It may be that committed region for
|
|
// one covered region corresponds to a larger region because of page-size
|
|
// roundings. Thus, a committed region for one covered region may
|
|
// actually extend onto the card-table space for the next covered region.
|
|
MemRegion* _committed;
|
|
|
|
// The last card is a guard card, and we commit the page for it so
|
|
// we can use the card for verification purposes. We make sure we never
|
|
// uncommit the MemRegion for that page.
|
|
MemRegion _guard_region;
|
|
|
|
inline size_t compute_byte_map_size();
|
|
|
|
// Finds and return the index of the region, if any, to which the given
|
|
// region would be contiguous. If none exists, assign a new region and
|
|
// returns its index. Requires that no more than the maximum number of
|
|
// covered regions defined in the constructor are ever in use.
|
|
int find_covering_region_by_base(HeapWord* base);
|
|
|
|
// Same as above, but finds the region containing the given address
|
|
// instead of starting at a given base address.
|
|
int find_covering_region_containing(HeapWord* addr);
|
|
|
|
// Resize one of the regions covered by the remembered set.
|
|
virtual void resize_covered_region(MemRegion new_region);
|
|
|
|
// Returns the leftmost end of a committed region corresponding to a
|
|
// covered region before covered region "ind", or else "NULL" if "ind" is
|
|
// the first covered region.
|
|
HeapWord* largest_prev_committed_end(int ind) const;
|
|
|
|
// Returns the part of the region mr that doesn't intersect with
|
|
// any committed region other than self. Used to prevent uncommitting
|
|
// regions that are also committed by other regions. Also protects
|
|
// against uncommitting the guard region.
|
|
MemRegion committed_unique_to_self(int self, MemRegion mr) const;
|
|
|
|
// Mapping from address to card marking array entry
|
|
jbyte* byte_for(const void* p) const {
|
|
assert(_whole_heap.contains(p),
|
|
"Attempt to access p = " PTR_FORMAT " out of bounds of "
|
|
" card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
|
|
p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
|
|
jbyte* result = &byte_map_base[uintptr_t(p) >> card_shift];
|
|
assert(result >= _byte_map && result < _byte_map + _byte_map_size,
|
|
"out of bounds accessor for card marking array");
|
|
return result;
|
|
}
|
|
|
|
// The card table byte one after the card marking array
|
|
// entry for argument address. Typically used for higher bounds
|
|
// for loops iterating through the card table.
|
|
jbyte* byte_after(const void* p) const {
|
|
return byte_for(p) + 1;
|
|
}
|
|
|
|
// Dirty the bytes corresponding to "mr" (not all of which must be
|
|
// covered.)
|
|
void dirty_MemRegion(MemRegion mr);
|
|
|
|
// Clear (to clean_card) the bytes entirely contained within "mr" (not
|
|
// all of which must be covered.)
|
|
void clear_MemRegion(MemRegion mr);
|
|
|
|
public:
|
|
// Constants
|
|
enum SomePublicConstants {
|
|
card_shift = 9,
|
|
card_size = 1 << card_shift,
|
|
card_size_in_words = card_size / sizeof(HeapWord)
|
|
};
|
|
|
|
static int clean_card_val() { return clean_card; }
|
|
static int clean_card_mask_val() { return clean_card_mask; }
|
|
static int dirty_card_val() { return dirty_card; }
|
|
static int claimed_card_val() { return claimed_card; }
|
|
static int precleaned_card_val() { return precleaned_card; }
|
|
static int deferred_card_val() { return deferred_card; }
|
|
|
|
virtual void initialize();
|
|
|
|
// *** Barrier set functions.
|
|
|
|
// Initialization utilities; covered_words is the size of the covered region
|
|
// in, um, words.
|
|
inline size_t cards_required(size_t covered_words) {
|
|
// Add one for a guard card, used to detect errors.
|
|
const size_t words = align_up(covered_words, card_size_in_words);
|
|
return words / card_size_in_words + 1;
|
|
}
|
|
|
|
protected:
|
|
CardTableModRefBS(MemRegion whole_heap, const BarrierSet::FakeRtti& fake_rtti);
|
|
~CardTableModRefBS();
|
|
|
|
public:
|
|
void write_region(MemRegion mr) {
|
|
dirty_MemRegion(mr);
|
|
}
|
|
|
|
protected:
|
|
void write_ref_array_work(MemRegion mr) {
|
|
dirty_MemRegion(mr);
|
|
}
|
|
|
|
public:
|
|
bool is_aligned(HeapWord* addr) {
|
|
return is_card_aligned(addr);
|
|
}
|
|
|
|
// *** Card-table-barrier-specific things.
|
|
|
|
// Record a reference update. Note that these versions are precise!
|
|
// The scanning code has to handle the fact that the write barrier may be
|
|
// either precise or imprecise. We make non-virtual inline variants of
|
|
// these functions here for performance.
|
|
template <DecoratorSet decorators, typename T>
|
|
void write_ref_field_post(T* field, oop newVal);
|
|
|
|
// These are used by G1, when it uses the card table as a temporary data
|
|
// structure for card claiming.
|
|
bool is_card_dirty(size_t card_index) {
|
|
return _byte_map[card_index] == dirty_card_val();
|
|
}
|
|
|
|
void mark_card_dirty(size_t card_index) {
|
|
_byte_map[card_index] = dirty_card_val();
|
|
}
|
|
|
|
bool is_card_clean(size_t card_index) {
|
|
return _byte_map[card_index] == clean_card_val();
|
|
}
|
|
|
|
// Card marking array base (adjusted for heap low boundary)
|
|
// This would be the 0th element of _byte_map, if the heap started at 0x0.
|
|
// But since the heap starts at some higher address, this points to somewhere
|
|
// before the beginning of the actual _byte_map.
|
|
jbyte* byte_map_base;
|
|
|
|
// Return true if "p" is at the start of a card.
|
|
bool is_card_aligned(HeapWord* p) {
|
|
jbyte* pcard = byte_for(p);
|
|
return (addr_for(pcard) == p);
|
|
}
|
|
|
|
HeapWord* align_to_card_boundary(HeapWord* p) {
|
|
jbyte* pcard = byte_for(p + card_size_in_words - 1);
|
|
return addr_for(pcard);
|
|
}
|
|
|
|
// The kinds of precision a CardTableModRefBS may offer.
|
|
enum PrecisionStyle {
|
|
Precise,
|
|
ObjHeadPreciseArray
|
|
};
|
|
|
|
// Tells what style of precision this card table offers.
|
|
PrecisionStyle precision() {
|
|
return ObjHeadPreciseArray; // Only one supported for now.
|
|
}
|
|
|
|
// ModRefBS functions.
|
|
virtual void invalidate(MemRegion mr);
|
|
void clear(MemRegion mr);
|
|
void dirty(MemRegion mr);
|
|
|
|
// *** Card-table-RemSet-specific things.
|
|
|
|
static uintx ct_max_alignment_constraint();
|
|
|
|
// Apply closure "cl" to the dirty cards containing some part of
|
|
// MemRegion "mr".
|
|
void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl);
|
|
|
|
// Return the MemRegion corresponding to the first maximal run
|
|
// of dirty cards lying completely within MemRegion mr.
|
|
// If reset is "true", then sets those card table entries to the given
|
|
// value.
|
|
MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset,
|
|
int reset_val);
|
|
|
|
// Provide read-only access to the card table array.
|
|
const jbyte* byte_for_const(const void* p) const {
|
|
return byte_for(p);
|
|
}
|
|
const jbyte* byte_after_const(const void* p) const {
|
|
return byte_after(p);
|
|
}
|
|
|
|
// Mapping from card marking array entry to address of first word
|
|
HeapWord* addr_for(const jbyte* p) const {
|
|
assert(p >= _byte_map && p < _byte_map + _byte_map_size,
|
|
"out of bounds access to card marking array. p: " PTR_FORMAT
|
|
" _byte_map: " PTR_FORMAT " _byte_map + _byte_map_size: " PTR_FORMAT,
|
|
p2i(p), p2i(_byte_map), p2i(_byte_map + _byte_map_size));
|
|
size_t delta = pointer_delta(p, byte_map_base, sizeof(jbyte));
|
|
HeapWord* result = (HeapWord*) (delta << card_shift);
|
|
assert(_whole_heap.contains(result),
|
|
"Returning result = " PTR_FORMAT " out of bounds of "
|
|
" card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
|
|
p2i(result), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
|
|
return result;
|
|
}
|
|
|
|
// Mapping from address to card marking array index.
|
|
size_t index_for(void* p) {
|
|
assert(_whole_heap.contains(p),
|
|
"Attempt to access p = " PTR_FORMAT " out of bounds of "
|
|
" card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
|
|
p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
|
|
return byte_for(p) - _byte_map;
|
|
}
|
|
|
|
const jbyte* byte_for_index(const size_t card_index) const {
|
|
return _byte_map + card_index;
|
|
}
|
|
|
|
// Print a description of the memory for the barrier set
|
|
virtual void print_on(outputStream* st) const;
|
|
|
|
void verify();
|
|
void verify_guard();
|
|
|
|
// val_equals -> it will check that all cards covered by mr equal val
|
|
// !val_equals -> it will check that all cards covered by mr do not equal val
|
|
void verify_region(MemRegion mr, jbyte val, bool val_equals) PRODUCT_RETURN;
|
|
void verify_not_dirty_region(MemRegion mr) PRODUCT_RETURN;
|
|
void verify_dirty_region(MemRegion mr) PRODUCT_RETURN;
|
|
|
|
// ReduceInitialCardMarks
|
|
void initialize_deferred_card_mark_barriers();
|
|
|
|
// If the CollectedHeap was asked to defer a store barrier above,
|
|
// this informs it to flush such a deferred store barrier to the
|
|
// remembered set.
|
|
void flush_deferred_card_mark_barrier(JavaThread* thread);
|
|
|
|
// Can a compiler initialize a new object without store barriers?
|
|
// This permission only extends from the creation of a new object
|
|
// via a TLAB up to the first subsequent safepoint. If such permission
|
|
// is granted for this heap type, the compiler promises to call
|
|
// defer_store_barrier() below on any slow path allocation of
|
|
// a new object for which such initializing store barriers will
|
|
// have been elided. G1, like CMS, allows this, but should be
|
|
// ready to provide a compensating write barrier as necessary
|
|
// if that storage came out of a non-young region. The efficiency
|
|
// of this implementation depends crucially on being able to
|
|
// answer very efficiently in constant time whether a piece of
|
|
// storage in the heap comes from a young region or not.
|
|
// See ReduceInitialCardMarks.
|
|
virtual bool can_elide_tlab_store_barriers() const {
|
|
return true;
|
|
}
|
|
|
|
// If a compiler is eliding store barriers for TLAB-allocated objects,
|
|
// we will be informed of a slow-path allocation by a call
|
|
// to on_slowpath_allocation_exit() below. Such a call precedes the
|
|
// initialization of the object itself, and no post-store-barriers will
|
|
// be issued. Some heap types require that the barrier strictly follows
|
|
// the initializing stores. (This is currently implemented by deferring the
|
|
// barrier until the next slow-path allocation or gc-related safepoint.)
|
|
// This interface answers whether a particular barrier type needs the card
|
|
// mark to be thus strictly sequenced after the stores.
|
|
virtual bool card_mark_must_follow_store() const = 0;
|
|
|
|
virtual bool is_in_young(oop obj) const = 0;
|
|
|
|
virtual void on_slowpath_allocation_exit(JavaThread* thread, oop new_obj);
|
|
virtual void flush_deferred_barriers(JavaThread* thread);
|
|
|
|
virtual void make_parsable(JavaThread* thread) { flush_deferred_card_mark_barrier(thread); }
|
|
|
|
template <DecoratorSet decorators, typename BarrierSetT = CardTableModRefBS>
|
|
class AccessBarrier: public ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT> {};
|
|
};
|
|
|
|
template<>
|
|
struct BarrierSet::GetName<CardTableModRefBS> {
|
|
static const BarrierSet::Name value = BarrierSet::CardTableModRef;
|
|
};
|
|
|
|
template<>
|
|
struct BarrierSet::GetType<BarrierSet::CardTableModRef> {
|
|
typedef CardTableModRefBS type;
|
|
};
|
|
|
|
#endif // SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP
|