mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-16 00:54:38 +02:00

Co-authored-by: Thomas Stuefe <thomas.stuefe@gmail.com> Reviewed-by: dholmes, kbarrett, stuefe
917 lines
33 KiB
C++
917 lines
33 KiB
C++
/*
|
|
* Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
// no precompiled headers
|
|
#include "jvm.h"
|
|
#include "asm/macroAssembler.hpp"
|
|
#include "classfile/classLoader.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "os_share_linux.hpp"
|
|
#include "prims/jniFastGetField.hpp"
|
|
#include "prims/jvm_misc.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/extendedPC.hpp"
|
|
#include "runtime/frame.inline.hpp"
|
|
#include "runtime/interfaceSupport.inline.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/javaCalls.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "runtime/osThread.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "runtime/timer.hpp"
|
|
#include "services/memTracker.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "utilities/debug.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/vmError.hpp"
|
|
|
|
// put OS-includes here
|
|
# include <sys/types.h>
|
|
# include <sys/mman.h>
|
|
# include <pthread.h>
|
|
# include <signal.h>
|
|
# include <errno.h>
|
|
# include <dlfcn.h>
|
|
# include <stdlib.h>
|
|
# include <stdio.h>
|
|
# include <unistd.h>
|
|
# include <sys/resource.h>
|
|
# include <pthread.h>
|
|
# include <sys/stat.h>
|
|
# include <sys/time.h>
|
|
# include <sys/utsname.h>
|
|
# include <sys/socket.h>
|
|
# include <sys/wait.h>
|
|
# include <pwd.h>
|
|
# include <poll.h>
|
|
# include <ucontext.h>
|
|
#ifndef AMD64
|
|
# include <fpu_control.h>
|
|
#endif
|
|
|
|
#ifdef AMD64
|
|
#define REG_SP REG_RSP
|
|
#define REG_PC REG_RIP
|
|
#define REG_FP REG_RBP
|
|
#define SPELL_REG_SP "rsp"
|
|
#define SPELL_REG_FP "rbp"
|
|
#else
|
|
#define REG_SP REG_UESP
|
|
#define REG_PC REG_EIP
|
|
#define REG_FP REG_EBP
|
|
#define SPELL_REG_SP "esp"
|
|
#define SPELL_REG_FP "ebp"
|
|
#endif // AMD64
|
|
|
|
address os::current_stack_pointer() {
|
|
#ifdef SPARC_WORKS
|
|
register void *esp;
|
|
__asm__("mov %%" SPELL_REG_SP ", %0":"=r"(esp));
|
|
return (address) ((char*)esp + sizeof(long)*2);
|
|
#elif defined(__clang__)
|
|
intptr_t* esp;
|
|
__asm__ __volatile__ ("mov %%" SPELL_REG_SP ", %0":"=r"(esp):);
|
|
return (address) esp;
|
|
#else
|
|
register void *esp __asm__ (SPELL_REG_SP);
|
|
return (address) esp;
|
|
#endif
|
|
}
|
|
|
|
char* os::non_memory_address_word() {
|
|
// Must never look like an address returned by reserve_memory,
|
|
// even in its subfields (as defined by the CPU immediate fields,
|
|
// if the CPU splits constants across multiple instructions).
|
|
|
|
return (char*) -1;
|
|
}
|
|
|
|
void os::initialize_thread(Thread* thr) {
|
|
// Nothing to do.
|
|
}
|
|
|
|
address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
|
|
return (address)uc->uc_mcontext.gregs[REG_PC];
|
|
}
|
|
|
|
void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
|
|
uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
|
|
}
|
|
|
|
intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
|
|
return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
|
|
}
|
|
|
|
intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
|
|
return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
|
|
}
|
|
|
|
// For Forte Analyzer AsyncGetCallTrace profiling support - thread
|
|
// is currently interrupted by SIGPROF.
|
|
// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
|
|
// frames. Currently we don't do that on Linux, so it's the same as
|
|
// os::fetch_frame_from_context().
|
|
// This method is also used for stack overflow signal handling.
|
|
ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
|
|
const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
|
|
|
|
assert(thread != NULL, "just checking");
|
|
assert(ret_sp != NULL, "just checking");
|
|
assert(ret_fp != NULL, "just checking");
|
|
|
|
return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
|
|
}
|
|
|
|
ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
|
|
intptr_t** ret_sp, intptr_t** ret_fp) {
|
|
|
|
ExtendedPC epc;
|
|
const ucontext_t* uc = (const ucontext_t*)ucVoid;
|
|
|
|
if (uc != NULL) {
|
|
epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
|
|
if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
|
|
if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
|
|
} else {
|
|
// construct empty ExtendedPC for return value checking
|
|
epc = ExtendedPC(NULL);
|
|
if (ret_sp) *ret_sp = (intptr_t *)NULL;
|
|
if (ret_fp) *ret_fp = (intptr_t *)NULL;
|
|
}
|
|
|
|
return epc;
|
|
}
|
|
|
|
frame os::fetch_frame_from_context(const void* ucVoid) {
|
|
intptr_t* sp;
|
|
intptr_t* fp;
|
|
ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
|
|
return frame(sp, fp, epc.pc());
|
|
}
|
|
|
|
frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
|
|
intptr_t* sp;
|
|
intptr_t* fp;
|
|
ExtendedPC epc = os::Linux::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
|
|
return frame(sp, fp, epc.pc());
|
|
}
|
|
|
|
bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
|
|
address pc = (address) os::Linux::ucontext_get_pc(uc);
|
|
if (Interpreter::contains(pc)) {
|
|
// interpreter performs stack banging after the fixed frame header has
|
|
// been generated while the compilers perform it before. To maintain
|
|
// semantic consistency between interpreted and compiled frames, the
|
|
// method returns the Java sender of the current frame.
|
|
*fr = os::fetch_frame_from_ucontext(thread, uc);
|
|
if (!fr->is_first_java_frame()) {
|
|
// get_frame_at_stack_banging_point() is only called when we
|
|
// have well defined stacks so java_sender() calls do not need
|
|
// to assert safe_for_sender() first.
|
|
*fr = fr->java_sender();
|
|
}
|
|
} else {
|
|
// more complex code with compiled code
|
|
assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
|
|
CodeBlob* cb = CodeCache::find_blob(pc);
|
|
if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
|
|
// Not sure where the pc points to, fallback to default
|
|
// stack overflow handling
|
|
return false;
|
|
} else {
|
|
// in compiled code, the stack banging is performed just after the return pc
|
|
// has been pushed on the stack
|
|
intptr_t* fp = os::Linux::ucontext_get_fp(uc);
|
|
intptr_t* sp = os::Linux::ucontext_get_sp(uc);
|
|
*fr = frame(sp + 1, fp, (address)*sp);
|
|
if (!fr->is_java_frame()) {
|
|
assert(!fr->is_first_frame(), "Safety check");
|
|
// See java_sender() comment above.
|
|
*fr = fr->java_sender();
|
|
}
|
|
}
|
|
}
|
|
assert(fr->is_java_frame(), "Safety check");
|
|
return true;
|
|
}
|
|
|
|
// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
|
|
// turned off by -fomit-frame-pointer,
|
|
frame os::get_sender_for_C_frame(frame* fr) {
|
|
return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
|
|
}
|
|
|
|
intptr_t* _get_previous_fp() {
|
|
#ifdef SPARC_WORKS
|
|
register intptr_t **ebp;
|
|
__asm__("mov %%" SPELL_REG_FP ", %0":"=r"(ebp));
|
|
#elif defined(__clang__)
|
|
intptr_t **ebp;
|
|
__asm__ __volatile__ ("mov %%" SPELL_REG_FP ", %0":"=r"(ebp):);
|
|
#else
|
|
register intptr_t **ebp __asm__ (SPELL_REG_FP);
|
|
#endif
|
|
// ebp is for this frame (_get_previous_fp). We want the ebp for the
|
|
// caller of os::current_frame*(), so go up two frames. However, for
|
|
// optimized builds, _get_previous_fp() will be inlined, so only go
|
|
// up 1 frame in that case.
|
|
#ifdef _NMT_NOINLINE_
|
|
return **(intptr_t***)ebp;
|
|
#else
|
|
return *ebp;
|
|
#endif
|
|
}
|
|
|
|
|
|
frame os::current_frame() {
|
|
intptr_t* fp = _get_previous_fp();
|
|
frame myframe((intptr_t*)os::current_stack_pointer(),
|
|
(intptr_t*)fp,
|
|
CAST_FROM_FN_PTR(address, os::current_frame));
|
|
if (os::is_first_C_frame(&myframe)) {
|
|
// stack is not walkable
|
|
return frame();
|
|
} else {
|
|
return os::get_sender_for_C_frame(&myframe);
|
|
}
|
|
}
|
|
|
|
// Utility functions
|
|
|
|
// From IA32 System Programming Guide
|
|
enum {
|
|
trap_page_fault = 0xE
|
|
};
|
|
|
|
extern "C" JNIEXPORT int
|
|
JVM_handle_linux_signal(int sig,
|
|
siginfo_t* info,
|
|
void* ucVoid,
|
|
int abort_if_unrecognized) {
|
|
ucontext_t* uc = (ucontext_t*) ucVoid;
|
|
|
|
Thread* t = Thread::current_or_null_safe();
|
|
|
|
// Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
|
|
// (no destructors can be run)
|
|
os::ThreadCrashProtection::check_crash_protection(sig, t);
|
|
|
|
SignalHandlerMark shm(t);
|
|
|
|
// Note: it's not uncommon that JNI code uses signal/sigset to install
|
|
// then restore certain signal handler (e.g. to temporarily block SIGPIPE,
|
|
// or have a SIGILL handler when detecting CPU type). When that happens,
|
|
// JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
|
|
// avoid unnecessary crash when libjsig is not preloaded, try handle signals
|
|
// that do not require siginfo/ucontext first.
|
|
|
|
if (sig == SIGPIPE || sig == SIGXFSZ) {
|
|
// allow chained handler to go first
|
|
if (os::Linux::chained_handler(sig, info, ucVoid)) {
|
|
return true;
|
|
} else {
|
|
// Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
|
|
return true;
|
|
}
|
|
}
|
|
|
|
#ifdef CAN_SHOW_REGISTERS_ON_ASSERT
|
|
if ((sig == SIGSEGV || sig == SIGBUS) && info != NULL && info->si_addr == g_assert_poison) {
|
|
handle_assert_poison_fault(ucVoid, info->si_addr);
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
JavaThread* thread = NULL;
|
|
VMThread* vmthread = NULL;
|
|
if (os::Linux::signal_handlers_are_installed) {
|
|
if (t != NULL ){
|
|
if(t->is_Java_thread()) {
|
|
thread = (JavaThread*)t;
|
|
}
|
|
else if(t->is_VM_thread()){
|
|
vmthread = (VMThread *)t;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
NOTE: does not seem to work on linux.
|
|
if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
|
|
// can't decode this kind of signal
|
|
info = NULL;
|
|
} else {
|
|
assert(sig == info->si_signo, "bad siginfo");
|
|
}
|
|
*/
|
|
// decide if this trap can be handled by a stub
|
|
address stub = NULL;
|
|
|
|
address pc = NULL;
|
|
|
|
//%note os_trap_1
|
|
if (info != NULL && uc != NULL && thread != NULL) {
|
|
pc = (address) os::Linux::ucontext_get_pc(uc);
|
|
|
|
if (StubRoutines::is_safefetch_fault(pc)) {
|
|
os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
|
|
return 1;
|
|
}
|
|
|
|
#ifndef AMD64
|
|
// Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
|
|
// This can happen in any running code (currently more frequently in
|
|
// interpreter code but has been seen in compiled code)
|
|
if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
|
|
fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
|
|
"to unstable signal handling in this distribution.");
|
|
}
|
|
#endif // AMD64
|
|
|
|
// Handle ALL stack overflow variations here
|
|
if (sig == SIGSEGV) {
|
|
address addr = (address) info->si_addr;
|
|
|
|
// check if fault address is within thread stack
|
|
if (thread->on_local_stack(addr)) {
|
|
// stack overflow
|
|
if (thread->in_stack_yellow_reserved_zone(addr)) {
|
|
if (thread->thread_state() == _thread_in_Java) {
|
|
if (thread->in_stack_reserved_zone(addr)) {
|
|
frame fr;
|
|
if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
|
|
assert(fr.is_java_frame(), "Must be a Java frame");
|
|
frame activation =
|
|
SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
|
|
if (activation.sp() != NULL) {
|
|
thread->disable_stack_reserved_zone();
|
|
if (activation.is_interpreted_frame()) {
|
|
thread->set_reserved_stack_activation((address)(
|
|
activation.fp() + frame::interpreter_frame_initial_sp_offset));
|
|
} else {
|
|
thread->set_reserved_stack_activation((address)activation.unextended_sp());
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
// Throw a stack overflow exception. Guard pages will be reenabled
|
|
// while unwinding the stack.
|
|
thread->disable_stack_yellow_reserved_zone();
|
|
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
|
|
} else {
|
|
// Thread was in the vm or native code. Return and try to finish.
|
|
thread->disable_stack_yellow_reserved_zone();
|
|
return 1;
|
|
}
|
|
} else if (thread->in_stack_red_zone(addr)) {
|
|
// Fatal red zone violation. Disable the guard pages and fall through
|
|
// to handle_unexpected_exception way down below.
|
|
thread->disable_stack_red_zone();
|
|
tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
|
|
|
|
// This is a likely cause, but hard to verify. Let's just print
|
|
// it as a hint.
|
|
tty->print_raw_cr("Please check if any of your loaded .so files has "
|
|
"enabled executable stack (see man page execstack(8))");
|
|
} else {
|
|
// Accessing stack address below sp may cause SEGV if current
|
|
// thread has MAP_GROWSDOWN stack. This should only happen when
|
|
// current thread was created by user code with MAP_GROWSDOWN flag
|
|
// and then attached to VM. See notes in os_linux.cpp.
|
|
if (thread->osthread()->expanding_stack() == 0) {
|
|
thread->osthread()->set_expanding_stack();
|
|
if (os::Linux::manually_expand_stack(thread, addr)) {
|
|
thread->osthread()->clear_expanding_stack();
|
|
return 1;
|
|
}
|
|
thread->osthread()->clear_expanding_stack();
|
|
} else {
|
|
fatal("recursive segv. expanding stack.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
|
|
// Verify that OS save/restore AVX registers.
|
|
stub = VM_Version::cpuinfo_cont_addr();
|
|
}
|
|
|
|
if (thread->thread_state() == _thread_in_Java) {
|
|
// Java thread running in Java code => find exception handler if any
|
|
// a fault inside compiled code, the interpreter, or a stub
|
|
|
|
if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
|
|
stub = SharedRuntime::get_poll_stub(pc);
|
|
} else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
|
|
// BugId 4454115: A read from a MappedByteBuffer can fault
|
|
// here if the underlying file has been truncated.
|
|
// Do not crash the VM in such a case.
|
|
CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
|
|
CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
|
|
if (nm != NULL && nm->has_unsafe_access()) {
|
|
address next_pc = Assembler::locate_next_instruction(pc);
|
|
stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
|
|
}
|
|
}
|
|
else
|
|
|
|
#ifdef AMD64
|
|
if (sig == SIGFPE &&
|
|
(info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
|
|
stub =
|
|
SharedRuntime::
|
|
continuation_for_implicit_exception(thread,
|
|
pc,
|
|
SharedRuntime::
|
|
IMPLICIT_DIVIDE_BY_ZERO);
|
|
#else
|
|
if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
|
|
// HACK: si_code does not work on linux 2.2.12-20!!!
|
|
int op = pc[0];
|
|
if (op == 0xDB) {
|
|
// FIST
|
|
// TODO: The encoding of D2I in i486.ad can cause an exception
|
|
// prior to the fist instruction if there was an invalid operation
|
|
// pending. We want to dismiss that exception. From the win_32
|
|
// side it also seems that if it really was the fist causing
|
|
// the exception that we do the d2i by hand with different
|
|
// rounding. Seems kind of weird.
|
|
// NOTE: that we take the exception at the NEXT floating point instruction.
|
|
assert(pc[0] == 0xDB, "not a FIST opcode");
|
|
assert(pc[1] == 0x14, "not a FIST opcode");
|
|
assert(pc[2] == 0x24, "not a FIST opcode");
|
|
return true;
|
|
} else if (op == 0xF7) {
|
|
// IDIV
|
|
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
|
|
} else {
|
|
// TODO: handle more cases if we are using other x86 instructions
|
|
// that can generate SIGFPE signal on linux.
|
|
tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
|
|
fatal("please update this code.");
|
|
}
|
|
#endif // AMD64
|
|
} else if (sig == SIGSEGV &&
|
|
!MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
|
|
// Determination of interpreter/vtable stub/compiled code null exception
|
|
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
|
|
}
|
|
} else if (thread->thread_state() == _thread_in_vm &&
|
|
sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
|
|
thread->doing_unsafe_access()) {
|
|
address next_pc = Assembler::locate_next_instruction(pc);
|
|
stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
|
|
}
|
|
|
|
// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
|
|
// and the heap gets shrunk before the field access.
|
|
if ((sig == SIGSEGV) || (sig == SIGBUS)) {
|
|
address addr = JNI_FastGetField::find_slowcase_pc(pc);
|
|
if (addr != (address)-1) {
|
|
stub = addr;
|
|
}
|
|
}
|
|
|
|
// Check to see if we caught the safepoint code in the
|
|
// process of write protecting the memory serialization page.
|
|
// It write enables the page immediately after protecting it
|
|
// so we can just return to retry the write.
|
|
if ((sig == SIGSEGV) &&
|
|
os::is_memory_serialize_page(thread, (address) info->si_addr)) {
|
|
// Block current thread until the memory serialize page permission restored.
|
|
os::block_on_serialize_page_trap();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
#ifndef AMD64
|
|
// Execution protection violation
|
|
//
|
|
// This should be kept as the last step in the triage. We don't
|
|
// have a dedicated trap number for a no-execute fault, so be
|
|
// conservative and allow other handlers the first shot.
|
|
//
|
|
// Note: We don't test that info->si_code == SEGV_ACCERR here.
|
|
// this si_code is so generic that it is almost meaningless; and
|
|
// the si_code for this condition may change in the future.
|
|
// Furthermore, a false-positive should be harmless.
|
|
if (UnguardOnExecutionViolation > 0 &&
|
|
(sig == SIGSEGV || sig == SIGBUS) &&
|
|
uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
|
|
int page_size = os::vm_page_size();
|
|
address addr = (address) info->si_addr;
|
|
address pc = os::Linux::ucontext_get_pc(uc);
|
|
// Make sure the pc and the faulting address are sane.
|
|
//
|
|
// If an instruction spans a page boundary, and the page containing
|
|
// the beginning of the instruction is executable but the following
|
|
// page is not, the pc and the faulting address might be slightly
|
|
// different - we still want to unguard the 2nd page in this case.
|
|
//
|
|
// 15 bytes seems to be a (very) safe value for max instruction size.
|
|
bool pc_is_near_addr =
|
|
(pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
|
|
bool instr_spans_page_boundary =
|
|
(align_down((intptr_t) pc ^ (intptr_t) addr,
|
|
(intptr_t) page_size) > 0);
|
|
|
|
if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
|
|
static volatile address last_addr =
|
|
(address) os::non_memory_address_word();
|
|
|
|
// In conservative mode, don't unguard unless the address is in the VM
|
|
if (addr != last_addr &&
|
|
(UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
|
|
|
|
// Set memory to RWX and retry
|
|
address page_start = align_down(addr, page_size);
|
|
bool res = os::protect_memory((char*) page_start, page_size,
|
|
os::MEM_PROT_RWX);
|
|
|
|
log_debug(os)("Execution protection violation "
|
|
"at " INTPTR_FORMAT
|
|
", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
|
|
p2i(page_start), (res ? "success" : "failed"), errno);
|
|
stub = pc;
|
|
|
|
// Set last_addr so if we fault again at the same address, we don't end
|
|
// up in an endless loop.
|
|
//
|
|
// There are two potential complications here. Two threads trapping at
|
|
// the same address at the same time could cause one of the threads to
|
|
// think it already unguarded, and abort the VM. Likely very rare.
|
|
//
|
|
// The other race involves two threads alternately trapping at
|
|
// different addresses and failing to unguard the page, resulting in
|
|
// an endless loop. This condition is probably even more unlikely than
|
|
// the first.
|
|
//
|
|
// Although both cases could be avoided by using locks or thread local
|
|
// last_addr, these solutions are unnecessary complication: this
|
|
// handler is a best-effort safety net, not a complete solution. It is
|
|
// disabled by default and should only be used as a workaround in case
|
|
// we missed any no-execute-unsafe VM code.
|
|
|
|
last_addr = addr;
|
|
}
|
|
}
|
|
}
|
|
#endif // !AMD64
|
|
|
|
if (stub != NULL) {
|
|
// save all thread context in case we need to restore it
|
|
if (thread != NULL) thread->set_saved_exception_pc(pc);
|
|
|
|
os::Linux::ucontext_set_pc(uc, stub);
|
|
return true;
|
|
}
|
|
|
|
// signal-chaining
|
|
if (os::Linux::chained_handler(sig, info, ucVoid)) {
|
|
return true;
|
|
}
|
|
|
|
if (!abort_if_unrecognized) {
|
|
// caller wants another chance, so give it to him
|
|
return false;
|
|
}
|
|
|
|
if (pc == NULL && uc != NULL) {
|
|
pc = os::Linux::ucontext_get_pc(uc);
|
|
}
|
|
|
|
// unmask current signal
|
|
sigset_t newset;
|
|
sigemptyset(&newset);
|
|
sigaddset(&newset, sig);
|
|
sigprocmask(SIG_UNBLOCK, &newset, NULL);
|
|
|
|
VMError::report_and_die(t, sig, pc, info, ucVoid);
|
|
|
|
ShouldNotReachHere();
|
|
return true; // Mute compiler
|
|
}
|
|
|
|
void os::Linux::init_thread_fpu_state(void) {
|
|
#ifndef AMD64
|
|
// set fpu to 53 bit precision
|
|
set_fpu_control_word(0x27f);
|
|
#endif // !AMD64
|
|
}
|
|
|
|
int os::Linux::get_fpu_control_word(void) {
|
|
#ifdef AMD64
|
|
return 0;
|
|
#else
|
|
int fpu_control;
|
|
_FPU_GETCW(fpu_control);
|
|
return fpu_control & 0xffff;
|
|
#endif // AMD64
|
|
}
|
|
|
|
void os::Linux::set_fpu_control_word(int fpu_control) {
|
|
#ifndef AMD64
|
|
_FPU_SETCW(fpu_control);
|
|
#endif // !AMD64
|
|
}
|
|
|
|
// Check that the linux kernel version is 2.4 or higher since earlier
|
|
// versions do not support SSE without patches.
|
|
bool os::supports_sse() {
|
|
#ifdef AMD64
|
|
return true;
|
|
#else
|
|
struct utsname uts;
|
|
if( uname(&uts) != 0 ) return false; // uname fails?
|
|
char *minor_string;
|
|
int major = strtol(uts.release,&minor_string,10);
|
|
int minor = strtol(minor_string+1,NULL,10);
|
|
bool result = (major > 2 || (major==2 && minor >= 4));
|
|
log_info(os)("OS version is %d.%d, which %s support SSE/SSE2",
|
|
major,minor, result ? "DOES" : "does NOT");
|
|
return result;
|
|
#endif // AMD64
|
|
}
|
|
|
|
bool os::is_allocatable(size_t bytes) {
|
|
#ifdef AMD64
|
|
// unused on amd64?
|
|
return true;
|
|
#else
|
|
|
|
if (bytes < 2 * G) {
|
|
return true;
|
|
}
|
|
|
|
char* addr = reserve_memory(bytes, NULL);
|
|
|
|
if (addr != NULL) {
|
|
release_memory(addr, bytes);
|
|
}
|
|
|
|
return addr != NULL;
|
|
#endif // AMD64
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// thread stack
|
|
|
|
// Minimum usable stack sizes required to get to user code. Space for
|
|
// HotSpot guard pages is added later.
|
|
size_t os::Posix::_compiler_thread_min_stack_allowed = 48 * K;
|
|
size_t os::Posix::_java_thread_min_stack_allowed = 40 * K;
|
|
#ifdef _LP64
|
|
size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
|
|
#else
|
|
size_t os::Posix::_vm_internal_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
|
|
#endif // _LP64
|
|
|
|
// return default stack size for thr_type
|
|
size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
|
|
// default stack size (compiler thread needs larger stack)
|
|
#ifdef AMD64
|
|
size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
|
|
#else
|
|
size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
|
|
#endif // AMD64
|
|
return s;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// helper functions for fatal error handler
|
|
|
|
void os::print_context(outputStream *st, const void *context) {
|
|
if (context == NULL) return;
|
|
|
|
const ucontext_t *uc = (const ucontext_t*)context;
|
|
st->print_cr("Registers:");
|
|
#ifdef AMD64
|
|
st->print( "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
|
|
st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
|
|
st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
|
|
st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
|
|
st->cr();
|
|
st->print( "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
|
|
st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
|
|
st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
|
|
st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
|
|
st->cr();
|
|
st->print( "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
|
|
st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
|
|
st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
|
|
st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
|
|
st->cr();
|
|
st->print( "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
|
|
st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
|
|
st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
|
|
st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
|
|
st->cr();
|
|
st->print( "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
|
|
st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
|
|
st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
|
|
st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
|
|
st->cr();
|
|
st->print(" TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
|
|
#else
|
|
st->print( "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
|
|
st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
|
|
st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
|
|
st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
|
|
st->cr();
|
|
st->print( "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
|
|
st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
|
|
st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
|
|
st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
|
|
st->cr();
|
|
st->print( "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
|
|
st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
|
|
st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2);
|
|
#endif // AMD64
|
|
st->cr();
|
|
st->cr();
|
|
|
|
intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
|
|
st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
|
|
print_hex_dump(st, (address)sp, (address)(sp + 8), sizeof(intptr_t));
|
|
st->cr();
|
|
|
|
// Note: it may be unsafe to inspect memory near pc. For example, pc may
|
|
// point to garbage if entry point in an nmethod is corrupted. Leave
|
|
// this at the end, and hope for the best.
|
|
address pc = os::Linux::ucontext_get_pc(uc);
|
|
st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
|
|
print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
|
|
}
|
|
|
|
void os::print_register_info(outputStream *st, const void *context) {
|
|
if (context == NULL) return;
|
|
|
|
const ucontext_t *uc = (const ucontext_t*)context;
|
|
|
|
st->print_cr("Register to memory mapping:");
|
|
st->cr();
|
|
|
|
// this is horrendously verbose but the layout of the registers in the
|
|
// context does not match how we defined our abstract Register set, so
|
|
// we can't just iterate through the gregs area
|
|
|
|
// this is only for the "general purpose" registers
|
|
|
|
#ifdef AMD64
|
|
st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
|
|
st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
|
|
st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
|
|
st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
|
|
st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
|
|
st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
|
|
st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
|
|
st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
|
|
st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
|
|
st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
|
|
st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
|
|
st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
|
|
st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
|
|
st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
|
|
st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
|
|
st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
|
|
#else
|
|
st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
|
|
st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
|
|
st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
|
|
st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
|
|
st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
|
|
st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
|
|
st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
|
|
st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
|
|
#endif // AMD64
|
|
|
|
st->cr();
|
|
}
|
|
|
|
void os::setup_fpu() {
|
|
#ifndef AMD64
|
|
address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
|
|
__asm__ volatile ( "fldcw (%0)" :
|
|
: "r" (fpu_cntrl) : "memory");
|
|
#endif // !AMD64
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void os::verify_stack_alignment() {
|
|
#ifdef AMD64
|
|
assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
|
|
* updates (JDK-8023956).
|
|
*/
|
|
void os::workaround_expand_exec_shield_cs_limit() {
|
|
#if defined(IA32)
|
|
size_t page_size = os::vm_page_size();
|
|
|
|
/*
|
|
* JDK-8197429
|
|
*
|
|
* Expand the stack mapping to the end of the initial stack before
|
|
* attempting to install the codebuf. This is needed because newer
|
|
* Linux kernels impose a distance of a megabyte between stack
|
|
* memory and other memory regions. If we try to install the
|
|
* codebuf before expanding the stack the installation will appear
|
|
* to succeed but we'll get a segfault later if we expand the stack
|
|
* in Java code.
|
|
*
|
|
*/
|
|
if (os::is_primordial_thread()) {
|
|
address limit = Linux::initial_thread_stack_bottom();
|
|
if (! DisablePrimordialThreadGuardPages) {
|
|
limit += JavaThread::stack_red_zone_size() +
|
|
JavaThread::stack_yellow_zone_size();
|
|
}
|
|
os::Linux::expand_stack_to(limit);
|
|
}
|
|
|
|
/*
|
|
* Take the highest VA the OS will give us and exec
|
|
*
|
|
* Although using -(pagesz) as mmap hint works on newer kernel as you would
|
|
* think, older variants affected by this work-around don't (search forward only).
|
|
*
|
|
* On the affected distributions, we understand the memory layout to be:
|
|
*
|
|
* TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
|
|
*
|
|
* A few pages south main stack will do it.
|
|
*
|
|
* If we are embedded in an app other than launcher (initial != main stack),
|
|
* we don't have much control or understanding of the address space, just let it slide.
|
|
*/
|
|
char* hint = (char*)(Linux::initial_thread_stack_bottom() -
|
|
(JavaThread::stack_guard_zone_size() + page_size));
|
|
char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
|
|
|
|
if (codebuf == NULL) {
|
|
// JDK-8197429: There may be a stack gap of one megabyte between
|
|
// the limit of the stack and the nearest memory region: this is a
|
|
// Linux kernel workaround for CVE-2017-1000364. If we failed to
|
|
// map our codebuf, try again at an address one megabyte lower.
|
|
hint -= 1 * M;
|
|
codebuf = os::attempt_reserve_memory_at(page_size, hint);
|
|
}
|
|
|
|
if ((codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true))) {
|
|
return; // No matter, we tried, best effort.
|
|
}
|
|
|
|
MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
|
|
|
|
log_info(os)("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
|
|
|
|
// Some code to exec: the 'ret' instruction
|
|
codebuf[0] = 0xC3;
|
|
|
|
// Call the code in the codebuf
|
|
__asm__ volatile("call *%0" : : "r"(codebuf));
|
|
|
|
// keep the page mapped so CS limit isn't reduced.
|
|
#endif
|
|
}
|
|
|
|
int os::extra_bang_size_in_bytes() {
|
|
// JDK-8050147 requires the full cache line bang for x86.
|
|
return VM_Version::L1_line_size();
|
|
}
|