mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-21 03:24:38 +02:00
873 lines
35 KiB
C++
873 lines
35 KiB
C++
/*
|
|
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc/g1/c2/g1BarrierSetC2.hpp"
|
|
#include "gc/g1/g1BarrierSet.hpp"
|
|
#include "gc/g1/g1BarrierSetRuntime.hpp"
|
|
#include "gc/g1/g1CardTable.hpp"
|
|
#include "gc/g1/g1ThreadLocalData.hpp"
|
|
#include "gc/g1/heapRegion.hpp"
|
|
#include "opto/arraycopynode.hpp"
|
|
#include "opto/compile.hpp"
|
|
#include "opto/escape.hpp"
|
|
#include "opto/graphKit.hpp"
|
|
#include "opto/idealKit.hpp"
|
|
#include "opto/macro.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
#include "opto/type.hpp"
|
|
#include "utilities/macros.hpp"
|
|
|
|
const TypeFunc *G1BarrierSetC2::write_ref_field_pre_entry_Type() {
|
|
const Type **fields = TypeTuple::fields(2);
|
|
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
|
|
fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(0);
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc *G1BarrierSetC2::write_ref_field_post_entry_Type() {
|
|
const Type **fields = TypeTuple::fields(2);
|
|
fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr
|
|
fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(0);
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
#define __ ideal.
|
|
/*
|
|
* Determine if the G1 pre-barrier can be removed. The pre-barrier is
|
|
* required by SATB to make sure all objects live at the start of the
|
|
* marking are kept alive, all reference updates need to any previous
|
|
* reference stored before writing.
|
|
*
|
|
* If the previous value is NULL there is no need to save the old value.
|
|
* References that are NULL are filtered during runtime by the barrier
|
|
* code to avoid unnecessary queuing.
|
|
*
|
|
* However in the case of newly allocated objects it might be possible to
|
|
* prove that the reference about to be overwritten is NULL during compile
|
|
* time and avoid adding the barrier code completely.
|
|
*
|
|
* The compiler needs to determine that the object in which a field is about
|
|
* to be written is newly allocated, and that no prior store to the same field
|
|
* has happened since the allocation.
|
|
*
|
|
* Returns true if the pre-barrier can be removed
|
|
*/
|
|
bool G1BarrierSetC2::g1_can_remove_pre_barrier(GraphKit* kit,
|
|
PhaseTransform* phase,
|
|
Node* adr,
|
|
BasicType bt,
|
|
uint adr_idx) const {
|
|
intptr_t offset = 0;
|
|
Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
|
|
AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
|
|
|
|
if (offset == Type::OffsetBot) {
|
|
return false; // cannot unalias unless there are precise offsets
|
|
}
|
|
|
|
if (alloc == NULL) {
|
|
return false; // No allocation found
|
|
}
|
|
|
|
intptr_t size_in_bytes = type2aelembytes(bt);
|
|
|
|
Node* mem = kit->memory(adr_idx); // start searching here...
|
|
|
|
for (int cnt = 0; cnt < 50; cnt++) {
|
|
|
|
if (mem->is_Store()) {
|
|
|
|
Node* st_adr = mem->in(MemNode::Address);
|
|
intptr_t st_offset = 0;
|
|
Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
|
|
|
|
if (st_base == NULL) {
|
|
break; // inscrutable pointer
|
|
}
|
|
|
|
// Break we have found a store with same base and offset as ours so break
|
|
if (st_base == base && st_offset == offset) {
|
|
break;
|
|
}
|
|
|
|
if (st_offset != offset && st_offset != Type::OffsetBot) {
|
|
const int MAX_STORE = BytesPerLong;
|
|
if (st_offset >= offset + size_in_bytes ||
|
|
st_offset <= offset - MAX_STORE ||
|
|
st_offset <= offset - mem->as_Store()->memory_size()) {
|
|
// Success: The offsets are provably independent.
|
|
// (You may ask, why not just test st_offset != offset and be done?
|
|
// The answer is that stores of different sizes can co-exist
|
|
// in the same sequence of RawMem effects. We sometimes initialize
|
|
// a whole 'tile' of array elements with a single jint or jlong.)
|
|
mem = mem->in(MemNode::Memory);
|
|
continue; // advance through independent store memory
|
|
}
|
|
}
|
|
|
|
if (st_base != base
|
|
&& MemNode::detect_ptr_independence(base, alloc, st_base,
|
|
AllocateNode::Ideal_allocation(st_base, phase),
|
|
phase)) {
|
|
// Success: The bases are provably independent.
|
|
mem = mem->in(MemNode::Memory);
|
|
continue; // advance through independent store memory
|
|
}
|
|
} else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
|
|
|
|
InitializeNode* st_init = mem->in(0)->as_Initialize();
|
|
AllocateNode* st_alloc = st_init->allocation();
|
|
|
|
// Make sure that we are looking at the same allocation site.
|
|
// The alloc variable is guaranteed to not be null here from earlier check.
|
|
if (alloc == st_alloc) {
|
|
// Check that the initialization is storing NULL so that no previous store
|
|
// has been moved up and directly write a reference
|
|
Node* captured_store = st_init->find_captured_store(offset,
|
|
type2aelembytes(T_OBJECT),
|
|
phase);
|
|
if (captured_store == NULL || captured_store == st_init->zero_memory()) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Unless there is an explicit 'continue', we must bail out here,
|
|
// because 'mem' is an inscrutable memory state (e.g., a call).
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// G1 pre/post barriers
|
|
void G1BarrierSetC2::pre_barrier(GraphKit* kit,
|
|
bool do_load,
|
|
Node* ctl,
|
|
Node* obj,
|
|
Node* adr,
|
|
uint alias_idx,
|
|
Node* val,
|
|
const TypeOopPtr* val_type,
|
|
Node* pre_val,
|
|
BasicType bt) const {
|
|
// Some sanity checks
|
|
// Note: val is unused in this routine.
|
|
|
|
if (do_load) {
|
|
// We need to generate the load of the previous value
|
|
assert(obj != NULL, "must have a base");
|
|
assert(adr != NULL, "where are loading from?");
|
|
assert(pre_val == NULL, "loaded already?");
|
|
assert(val_type != NULL, "need a type");
|
|
|
|
if (use_ReduceInitialCardMarks()
|
|
&& g1_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
|
|
return;
|
|
}
|
|
|
|
} else {
|
|
// In this case both val_type and alias_idx are unused.
|
|
assert(pre_val != NULL, "must be loaded already");
|
|
// Nothing to be done if pre_val is null.
|
|
if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
|
|
assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
|
|
}
|
|
assert(bt == T_OBJECT, "or we shouldn't be here");
|
|
|
|
IdealKit ideal(kit, true);
|
|
|
|
Node* tls = __ thread(); // ThreadLocalStorage
|
|
|
|
Node* no_base = __ top();
|
|
Node* zero = __ ConI(0);
|
|
Node* zeroX = __ ConX(0);
|
|
|
|
float likely = PROB_LIKELY(0.999);
|
|
float unlikely = PROB_UNLIKELY(0.999);
|
|
|
|
BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
|
|
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
|
|
|
|
// Offsets into the thread
|
|
const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
|
|
const int index_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
|
|
const int buffer_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
|
|
|
|
// Now the actual pointers into the thread
|
|
Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
|
|
Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
|
|
Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset));
|
|
|
|
// Now some of the values
|
|
Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
|
|
|
|
// if (!marking)
|
|
__ if_then(marking, BoolTest::ne, zero, unlikely); {
|
|
BasicType index_bt = TypeX_X->basic_type();
|
|
assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
|
|
Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
|
|
|
|
if (do_load) {
|
|
// load original value
|
|
// alias_idx correct??
|
|
pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
|
|
}
|
|
|
|
// if (pre_val != NULL)
|
|
__ if_then(pre_val, BoolTest::ne, kit->null()); {
|
|
Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
|
|
|
|
// is the queue for this thread full?
|
|
__ if_then(index, BoolTest::ne, zeroX, likely); {
|
|
|
|
// decrement the index
|
|
Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
|
|
|
|
// Now get the buffer location we will log the previous value into and store it
|
|
Node *log_addr = __ AddP(no_base, buffer, next_index);
|
|
__ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
|
|
// update the index
|
|
__ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
|
|
|
|
} __ else_(); {
|
|
|
|
// logging buffer is full, call the runtime
|
|
const TypeFunc *tf = write_ref_field_pre_entry_Type();
|
|
__ make_leaf_call(tf, CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_pre_entry), "write_ref_field_pre_entry", pre_val, tls);
|
|
} __ end_if(); // (!index)
|
|
} __ end_if(); // (pre_val != NULL)
|
|
} __ end_if(); // (!marking)
|
|
|
|
// Final sync IdealKit and GraphKit.
|
|
kit->final_sync(ideal);
|
|
}
|
|
|
|
/*
|
|
* G1 similar to any GC with a Young Generation requires a way to keep track of
|
|
* references from Old Generation to Young Generation to make sure all live
|
|
* objects are found. G1 also requires to keep track of object references
|
|
* between different regions to enable evacuation of old regions, which is done
|
|
* as part of mixed collections. References are tracked in remembered sets and
|
|
* is continuously updated as reference are written to with the help of the
|
|
* post-barrier.
|
|
*
|
|
* To reduce the number of updates to the remembered set the post-barrier
|
|
* filters updates to fields in objects located in the Young Generation,
|
|
* the same region as the reference, when the NULL is being written or
|
|
* if the card is already marked as dirty by an earlier write.
|
|
*
|
|
* Under certain circumstances it is possible to avoid generating the
|
|
* post-barrier completely if it is possible during compile time to prove
|
|
* the object is newly allocated and that no safepoint exists between the
|
|
* allocation and the store.
|
|
*
|
|
* In the case of slow allocation the allocation code must handle the barrier
|
|
* as part of the allocation in the case the allocated object is not located
|
|
* in the nursery, this would happen for humongous objects. This is similar to
|
|
* how CMS is required to handle this case, see the comments for the method
|
|
* CollectedHeap::new_deferred_store_barrier and OptoRuntime::new_deferred_store_barrier.
|
|
* A deferred card mark is required for these objects and handled in the above
|
|
* mentioned methods.
|
|
*
|
|
* Returns true if the post barrier can be removed
|
|
*/
|
|
bool G1BarrierSetC2::g1_can_remove_post_barrier(GraphKit* kit,
|
|
PhaseTransform* phase, Node* store,
|
|
Node* adr) const {
|
|
intptr_t offset = 0;
|
|
Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
|
|
AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
|
|
|
|
if (offset == Type::OffsetBot) {
|
|
return false; // cannot unalias unless there are precise offsets
|
|
}
|
|
|
|
if (alloc == NULL) {
|
|
return false; // No allocation found
|
|
}
|
|
|
|
// Start search from Store node
|
|
Node* mem = store->in(MemNode::Control);
|
|
if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
|
|
|
|
InitializeNode* st_init = mem->in(0)->as_Initialize();
|
|
AllocateNode* st_alloc = st_init->allocation();
|
|
|
|
// Make sure we are looking at the same allocation
|
|
if (alloc == st_alloc) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// Update the card table and add card address to the queue
|
|
//
|
|
void G1BarrierSetC2::g1_mark_card(GraphKit* kit,
|
|
IdealKit& ideal,
|
|
Node* card_adr,
|
|
Node* oop_store,
|
|
uint oop_alias_idx,
|
|
Node* index,
|
|
Node* index_adr,
|
|
Node* buffer,
|
|
const TypeFunc* tf) const {
|
|
Node* zero = __ ConI(0);
|
|
Node* zeroX = __ ConX(0);
|
|
Node* no_base = __ top();
|
|
BasicType card_bt = T_BYTE;
|
|
// Smash zero into card. MUST BE ORDERED WRT TO STORE
|
|
__ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
|
|
|
|
// Now do the queue work
|
|
__ if_then(index, BoolTest::ne, zeroX); {
|
|
|
|
Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
|
|
Node* log_addr = __ AddP(no_base, buffer, next_index);
|
|
|
|
// Order, see storeCM.
|
|
__ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
|
|
__ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
|
|
|
|
} __ else_(); {
|
|
__ make_leaf_call(tf, CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_post_entry), "write_ref_field_post_entry", card_adr, __ thread());
|
|
} __ end_if();
|
|
|
|
}
|
|
|
|
void G1BarrierSetC2::post_barrier(GraphKit* kit,
|
|
Node* ctl,
|
|
Node* oop_store,
|
|
Node* obj,
|
|
Node* adr,
|
|
uint alias_idx,
|
|
Node* val,
|
|
BasicType bt,
|
|
bool use_precise) const {
|
|
// If we are writing a NULL then we need no post barrier
|
|
|
|
if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
|
|
// Must be NULL
|
|
const Type* t = val->bottom_type();
|
|
assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
|
|
// No post barrier if writing NULLx
|
|
return;
|
|
}
|
|
|
|
if (use_ReduceInitialCardMarks() && obj == kit->just_allocated_object(kit->control())) {
|
|
// We can skip marks on a freshly-allocated object in Eden.
|
|
// Keep this code in sync with new_deferred_store_barrier() in runtime.cpp.
|
|
// That routine informs GC to take appropriate compensating steps,
|
|
// upon a slow-path allocation, so as to make this card-mark
|
|
// elision safe.
|
|
return;
|
|
}
|
|
|
|
if (use_ReduceInitialCardMarks()
|
|
&& g1_can_remove_post_barrier(kit, &kit->gvn(), oop_store, adr)) {
|
|
return;
|
|
}
|
|
|
|
if (!use_precise) {
|
|
// All card marks for a (non-array) instance are in one place:
|
|
adr = obj;
|
|
}
|
|
// (Else it's an array (or unknown), and we want more precise card marks.)
|
|
assert(adr != NULL, "");
|
|
|
|
IdealKit ideal(kit, true);
|
|
|
|
Node* tls = __ thread(); // ThreadLocalStorage
|
|
|
|
Node* no_base = __ top();
|
|
float likely = PROB_LIKELY_MAG(3);
|
|
float unlikely = PROB_UNLIKELY_MAG(3);
|
|
Node* young_card = __ ConI((jint)G1CardTable::g1_young_card_val());
|
|
Node* dirty_card = __ ConI((jint)G1CardTable::dirty_card_val());
|
|
Node* zeroX = __ ConX(0);
|
|
|
|
const TypeFunc *tf = write_ref_field_post_entry_Type();
|
|
|
|
// Offsets into the thread
|
|
const int index_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset());
|
|
const int buffer_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset());
|
|
|
|
// Pointers into the thread
|
|
|
|
Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
|
|
Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset));
|
|
|
|
// Now some values
|
|
// Use ctrl to avoid hoisting these values past a safepoint, which could
|
|
// potentially reset these fields in the JavaThread.
|
|
Node* index = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
|
|
Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
|
|
|
|
// Convert the store obj pointer to an int prior to doing math on it
|
|
// Must use ctrl to prevent "integerized oop" existing across safepoint
|
|
Node* cast = __ CastPX(__ ctrl(), adr);
|
|
|
|
// Divide pointer by card size
|
|
Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift) );
|
|
|
|
// Combine card table base and card offset
|
|
Node* card_adr = __ AddP(no_base, byte_map_base_node(kit), card_offset );
|
|
|
|
// If we know the value being stored does it cross regions?
|
|
|
|
if (val != NULL) {
|
|
// Does the store cause us to cross regions?
|
|
|
|
// Should be able to do an unsigned compare of region_size instead of
|
|
// and extra shift. Do we have an unsigned compare??
|
|
// Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
|
|
Node* xor_res = __ URShiftX ( __ XorX( cast, __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
|
|
|
|
// if (xor_res == 0) same region so skip
|
|
__ if_then(xor_res, BoolTest::ne, zeroX, likely); {
|
|
|
|
// No barrier if we are storing a NULL
|
|
__ if_then(val, BoolTest::ne, kit->null(), likely); {
|
|
|
|
// Ok must mark the card if not already dirty
|
|
|
|
// load the original value of the card
|
|
Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
|
|
|
|
__ if_then(card_val, BoolTest::ne, young_card, unlikely); {
|
|
kit->sync_kit(ideal);
|
|
kit->insert_mem_bar(Op_MemBarVolatile, oop_store);
|
|
__ sync_kit(kit);
|
|
|
|
Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
|
|
__ if_then(card_val_reload, BoolTest::ne, dirty_card); {
|
|
g1_mark_card(kit, ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
|
|
} __ end_if();
|
|
} __ end_if();
|
|
} __ end_if();
|
|
} __ end_if();
|
|
} else {
|
|
// The Object.clone() intrinsic uses this path if !ReduceInitialCardMarks.
|
|
// We don't need a barrier here if the destination is a newly allocated object
|
|
// in Eden. Otherwise, GC verification breaks because we assume that cards in Eden
|
|
// are set to 'g1_young_gen' (see G1CardTable::verify_g1_young_region()).
|
|
assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
|
|
Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
|
|
__ if_then(card_val, BoolTest::ne, young_card); {
|
|
g1_mark_card(kit, ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
|
|
} __ end_if();
|
|
}
|
|
|
|
// Final sync IdealKit and GraphKit.
|
|
kit->final_sync(ideal);
|
|
}
|
|
|
|
// Helper that guards and inserts a pre-barrier.
|
|
void G1BarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
|
|
Node* pre_val, bool need_mem_bar) const {
|
|
// We could be accessing the referent field of a reference object. If so, when G1
|
|
// is enabled, we need to log the value in the referent field in an SATB buffer.
|
|
// This routine performs some compile time filters and generates suitable
|
|
// runtime filters that guard the pre-barrier code.
|
|
// Also add memory barrier for non volatile load from the referent field
|
|
// to prevent commoning of loads across safepoint.
|
|
|
|
// Some compile time checks.
|
|
|
|
// If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
|
|
const TypeX* otype = offset->find_intptr_t_type();
|
|
if (otype != NULL && otype->is_con() &&
|
|
otype->get_con() != java_lang_ref_Reference::referent_offset) {
|
|
// Constant offset but not the reference_offset so just return
|
|
return;
|
|
}
|
|
|
|
// We only need to generate the runtime guards for instances.
|
|
const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
|
|
if (btype != NULL) {
|
|
if (btype->isa_aryptr()) {
|
|
// Array type so nothing to do
|
|
return;
|
|
}
|
|
|
|
const TypeInstPtr* itype = btype->isa_instptr();
|
|
if (itype != NULL) {
|
|
// Can the klass of base_oop be statically determined to be
|
|
// _not_ a sub-class of Reference and _not_ Object?
|
|
ciKlass* klass = itype->klass();
|
|
if ( klass->is_loaded() &&
|
|
!klass->is_subtype_of(kit->env()->Reference_klass()) &&
|
|
!kit->env()->Object_klass()->is_subtype_of(klass)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The compile time filters did not reject base_oop/offset so
|
|
// we need to generate the following runtime filters
|
|
//
|
|
// if (offset == java_lang_ref_Reference::_reference_offset) {
|
|
// if (instance_of(base, java.lang.ref.Reference)) {
|
|
// pre_barrier(_, pre_val, ...);
|
|
// }
|
|
// }
|
|
|
|
float likely = PROB_LIKELY( 0.999);
|
|
float unlikely = PROB_UNLIKELY(0.999);
|
|
|
|
IdealKit ideal(kit);
|
|
|
|
Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
|
|
|
|
__ if_then(offset, BoolTest::eq, referent_off, unlikely); {
|
|
// Update graphKit memory and control from IdealKit.
|
|
kit->sync_kit(ideal);
|
|
|
|
Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
|
|
Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
|
|
|
|
// Update IdealKit memory and control from graphKit.
|
|
__ sync_kit(kit);
|
|
|
|
Node* one = __ ConI(1);
|
|
// is_instof == 0 if base_oop == NULL
|
|
__ if_then(is_instof, BoolTest::eq, one, unlikely); {
|
|
|
|
// Update graphKit from IdeakKit.
|
|
kit->sync_kit(ideal);
|
|
|
|
// Use the pre-barrier to record the value in the referent field
|
|
pre_barrier(kit, false /* do_load */,
|
|
__ ctrl(),
|
|
NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
|
|
pre_val /* pre_val */,
|
|
T_OBJECT);
|
|
if (need_mem_bar) {
|
|
// Add memory barrier to prevent commoning reads from this field
|
|
// across safepoint since GC can change its value.
|
|
kit->insert_mem_bar(Op_MemBarCPUOrder);
|
|
}
|
|
// Update IdealKit from graphKit.
|
|
__ sync_kit(kit);
|
|
|
|
} __ end_if(); // _ref_type != ref_none
|
|
} __ end_if(); // offset == referent_offset
|
|
|
|
// Final sync IdealKit and GraphKit.
|
|
kit->final_sync(ideal);
|
|
}
|
|
|
|
#undef __
|
|
|
|
Node* G1BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
|
|
DecoratorSet decorators = access.decorators();
|
|
Node* adr = access.addr().node();
|
|
Node* obj = access.base();
|
|
|
|
bool mismatched = (decorators & C2_MISMATCHED) != 0;
|
|
bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
|
|
bool in_heap = (decorators & IN_HEAP) != 0;
|
|
bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
|
|
bool is_unordered = (decorators & MO_UNORDERED) != 0;
|
|
bool need_cpu_mem_bar = !is_unordered || mismatched || !in_heap;
|
|
|
|
Node* top = Compile::current()->top();
|
|
Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
|
|
Node* load = CardTableBarrierSetC2::load_at_resolved(access, val_type);
|
|
|
|
// If we are reading the value of the referent field of a Reference
|
|
// object (either by using Unsafe directly or through reflection)
|
|
// then, if G1 is enabled, we need to record the referent in an
|
|
// SATB log buffer using the pre-barrier mechanism.
|
|
// Also we need to add memory barrier to prevent commoning reads
|
|
// from this field across safepoint since GC can change its value.
|
|
bool need_read_barrier = in_heap && (on_weak ||
|
|
(unknown && offset != top && obj != top));
|
|
|
|
if (!access.is_oop() || !need_read_barrier) {
|
|
return load;
|
|
}
|
|
|
|
assert(access.is_parse_access(), "entry not supported at optimization time");
|
|
C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
|
|
GraphKit* kit = parse_access.kit();
|
|
|
|
if (on_weak) {
|
|
// Use the pre-barrier to record the value in the referent field
|
|
pre_barrier(kit, false /* do_load */,
|
|
kit->control(),
|
|
NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
|
|
load /* pre_val */, T_OBJECT);
|
|
// Add memory barrier to prevent commoning reads from this field
|
|
// across safepoint since GC can change its value.
|
|
kit->insert_mem_bar(Op_MemBarCPUOrder);
|
|
} else if (unknown) {
|
|
// We do not require a mem bar inside pre_barrier if need_mem_bar
|
|
// is set: the barriers would be emitted by us.
|
|
insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
|
|
}
|
|
|
|
return load;
|
|
}
|
|
|
|
bool G1BarrierSetC2::is_gc_barrier_node(Node* node) const {
|
|
if (CardTableBarrierSetC2::is_gc_barrier_node(node)) {
|
|
return true;
|
|
}
|
|
if (node->Opcode() != Op_CallLeaf) {
|
|
return false;
|
|
}
|
|
CallLeafNode *call = node->as_CallLeaf();
|
|
if (call->_name == NULL) {
|
|
return false;
|
|
}
|
|
|
|
return strcmp(call->_name, "write_ref_field_pre_entry") == 0 || strcmp(call->_name, "write_ref_field_post_entry") == 0;
|
|
}
|
|
|
|
void G1BarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const {
|
|
assert(node->Opcode() == Op_CastP2X, "ConvP2XNode required");
|
|
assert(node->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
|
|
// It could be only one user, URShift node, in Object.clone() intrinsic
|
|
// but the new allocation is passed to arraycopy stub and it could not
|
|
// be scalar replaced. So we don't check the case.
|
|
|
|
// An other case of only one user (Xor) is when the value check for NULL
|
|
// in G1 post barrier is folded after CCP so the code which used URShift
|
|
// is removed.
|
|
|
|
// Take Region node before eliminating post barrier since it also
|
|
// eliminates CastP2X node when it has only one user.
|
|
Node* this_region = node->in(0);
|
|
assert(this_region != NULL, "");
|
|
|
|
// Remove G1 post barrier.
|
|
|
|
// Search for CastP2X->Xor->URShift->Cmp path which
|
|
// checks if the store done to a different from the value's region.
|
|
// And replace Cmp with #0 (false) to collapse G1 post barrier.
|
|
Node* xorx = node->find_out_with(Op_XorX);
|
|
if (xorx != NULL) {
|
|
Node* shift = xorx->unique_out();
|
|
Node* cmpx = shift->unique_out();
|
|
assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
|
|
cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
|
|
"missing region check in G1 post barrier");
|
|
macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
|
|
|
|
// Remove G1 pre barrier.
|
|
|
|
// Search "if (marking != 0)" check and set it to "false".
|
|
// There is no G1 pre barrier if previous stored value is NULL
|
|
// (for example, after initialization).
|
|
if (this_region->is_Region() && this_region->req() == 3) {
|
|
int ind = 1;
|
|
if (!this_region->in(ind)->is_IfFalse()) {
|
|
ind = 2;
|
|
}
|
|
if (this_region->in(ind)->is_IfFalse() &&
|
|
this_region->in(ind)->in(0)->Opcode() == Op_If) {
|
|
Node* bol = this_region->in(ind)->in(0)->in(1);
|
|
assert(bol->is_Bool(), "");
|
|
cmpx = bol->in(1);
|
|
if (bol->as_Bool()->_test._test == BoolTest::ne &&
|
|
cmpx->is_Cmp() && cmpx->in(2) == macro->intcon(0) &&
|
|
cmpx->in(1)->is_Load()) {
|
|
Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
|
|
const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
|
|
if (adr->is_AddP() && adr->in(AddPNode::Base) == macro->top() &&
|
|
adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
|
|
adr->in(AddPNode::Offset) == macro->MakeConX(marking_offset)) {
|
|
macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
|
|
// This is a G1 post barrier emitted by the Object.clone() intrinsic.
|
|
// Search for the CastP2X->URShiftX->AddP->LoadB->Cmp path which checks if the card
|
|
// is marked as young_gen and replace the Cmp with 0 (false) to collapse the barrier.
|
|
Node* shift = node->find_out_with(Op_URShiftX);
|
|
assert(shift != NULL, "missing G1 post barrier");
|
|
Node* addp = shift->unique_out();
|
|
Node* load = addp->find_out_with(Op_LoadB);
|
|
assert(load != NULL, "missing G1 post barrier");
|
|
Node* cmpx = load->unique_out();
|
|
assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
|
|
cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
|
|
"missing card value check in G1 post barrier");
|
|
macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
|
|
// There is no G1 pre barrier in this case
|
|
}
|
|
// Now CastP2X can be removed since it is used only on dead path
|
|
// which currently still alive until igvn optimize it.
|
|
assert(node->outcnt() == 0 || node->unique_out()->Opcode() == Op_URShiftX, "");
|
|
macro->replace_node(node, macro->top());
|
|
}
|
|
|
|
Node* G1BarrierSetC2::step_over_gc_barrier(Node* c) const {
|
|
if (!use_ReduceInitialCardMarks() &&
|
|
c != NULL && c->is_Region() && c->req() == 3) {
|
|
for (uint i = 1; i < c->req(); i++) {
|
|
if (c->in(i) != NULL && c->in(i)->is_Region() &&
|
|
c->in(i)->req() == 3) {
|
|
Node* r = c->in(i);
|
|
for (uint j = 1; j < r->req(); j++) {
|
|
if (r->in(j) != NULL && r->in(j)->is_Proj() &&
|
|
r->in(j)->in(0) != NULL &&
|
|
r->in(j)->in(0)->Opcode() == Op_CallLeaf &&
|
|
r->in(j)->in(0)->as_Call()->entry_point() == CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_post_entry)) {
|
|
Node* call = r->in(j)->in(0);
|
|
c = c->in(i == 1 ? 2 : 1);
|
|
if (c != NULL) {
|
|
c = c->in(0);
|
|
if (c != NULL) {
|
|
c = c->in(0);
|
|
assert(call->in(0) == NULL ||
|
|
call->in(0)->in(0) == NULL ||
|
|
call->in(0)->in(0)->in(0) == NULL ||
|
|
call->in(0)->in(0)->in(0)->in(0) == NULL ||
|
|
call->in(0)->in(0)->in(0)->in(0)->in(0) == NULL ||
|
|
c == call->in(0)->in(0)->in(0)->in(0)->in(0), "bad barrier shape");
|
|
return c;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void G1BarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
|
|
if (phase != BarrierSetC2::BeforeCodeGen) {
|
|
return;
|
|
}
|
|
// Verify G1 pre-barriers
|
|
const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
|
|
|
|
ResourceArea *area = Thread::current()->resource_area();
|
|
Unique_Node_List visited(area);
|
|
Node_List worklist(area);
|
|
// We're going to walk control flow backwards starting from the Root
|
|
worklist.push(compile->root());
|
|
while (worklist.size() > 0) {
|
|
Node* x = worklist.pop();
|
|
if (x == NULL || x == compile->top()) continue;
|
|
if (visited.member(x)) {
|
|
continue;
|
|
} else {
|
|
visited.push(x);
|
|
}
|
|
|
|
if (x->is_Region()) {
|
|
for (uint i = 1; i < x->req(); i++) {
|
|
worklist.push(x->in(i));
|
|
}
|
|
} else {
|
|
worklist.push(x->in(0));
|
|
// We are looking for the pattern:
|
|
// /->ThreadLocal
|
|
// If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
|
|
// \->ConI(0)
|
|
// We want to verify that the If and the LoadB have the same control
|
|
// See GraphKit::g1_write_barrier_pre()
|
|
if (x->is_If()) {
|
|
IfNode *iff = x->as_If();
|
|
if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
|
|
CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
|
|
if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
|
|
&& cmp->in(1)->is_Load()) {
|
|
LoadNode* load = cmp->in(1)->as_Load();
|
|
if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
|
|
&& load->in(2)->in(3)->is_Con()
|
|
&& load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
|
|
|
|
Node* if_ctrl = iff->in(0);
|
|
Node* load_ctrl = load->in(0);
|
|
|
|
if (if_ctrl != load_ctrl) {
|
|
// Skip possible CProj->NeverBranch in infinite loops
|
|
if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
|
|
&& (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
|
|
if_ctrl = if_ctrl->in(0)->in(0);
|
|
}
|
|
}
|
|
assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
bool G1BarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const {
|
|
if (opcode == Op_StoreP) {
|
|
Node* adr = n->in(MemNode::Address);
|
|
const Type* adr_type = gvn->type(adr);
|
|
// Pointer stores in G1 barriers looks like unsafe access.
|
|
// Ignore such stores to be able scalar replace non-escaping
|
|
// allocations.
|
|
if (adr_type->isa_rawptr() && adr->is_AddP()) {
|
|
Node* base = conn_graph->get_addp_base(adr);
|
|
if (base->Opcode() == Op_LoadP &&
|
|
base->in(MemNode::Address)->is_AddP()) {
|
|
adr = base->in(MemNode::Address);
|
|
Node* tls = conn_graph->get_addp_base(adr);
|
|
if (tls->Opcode() == Op_ThreadLocal) {
|
|
int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
|
|
const int buf_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
|
|
if (offs == buf_offset) {
|
|
return true; // G1 pre barrier previous oop value store.
|
|
}
|
|
if (offs == in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset())) {
|
|
return true; // G1 post barrier card address store.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|