mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-17 17:44:40 +02:00
733 lines
28 KiB
C++
733 lines
28 KiB
C++
/*
|
|
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc/shared/c2/barrierSetC2.hpp"
|
|
#include "opto/arraycopynode.hpp"
|
|
#include "opto/convertnode.hpp"
|
|
#include "opto/graphKit.hpp"
|
|
#include "opto/idealKit.hpp"
|
|
#include "opto/macro.hpp"
|
|
#include "opto/narrowptrnode.hpp"
|
|
#include "utilities/macros.hpp"
|
|
|
|
// By default this is a no-op.
|
|
void BarrierSetC2::resolve_address(C2Access& access) const { }
|
|
|
|
void* C2Access::barrier_set_state() const {
|
|
return _kit->barrier_set_state();
|
|
}
|
|
|
|
bool C2Access::needs_cpu_membar() const {
|
|
bool mismatched = (_decorators & C2_MISMATCHED) != 0;
|
|
bool is_unordered = (_decorators & MO_UNORDERED) != 0;
|
|
bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0;
|
|
bool in_heap = (_decorators & IN_HEAP) != 0;
|
|
|
|
bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
|
|
bool is_read = (_decorators & C2_READ_ACCESS) != 0;
|
|
bool is_atomic = is_read && is_write;
|
|
|
|
if (is_atomic) {
|
|
// Atomics always need to be wrapped in CPU membars
|
|
return true;
|
|
}
|
|
|
|
if (anonymous) {
|
|
// We will need memory barriers unless we can determine a unique
|
|
// alias category for this reference. (Note: If for some reason
|
|
// the barriers get omitted and the unsafe reference begins to "pollute"
|
|
// the alias analysis of the rest of the graph, either Compile::can_alias
|
|
// or Compile::must_alias will throw a diagnostic assert.)
|
|
if (!in_heap || !is_unordered || (mismatched && !_addr.type()->isa_aryptr())) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Node* BarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
|
|
DecoratorSet decorators = access.decorators();
|
|
GraphKit* kit = access.kit();
|
|
|
|
bool mismatched = (decorators & C2_MISMATCHED) != 0;
|
|
bool unaligned = (decorators & C2_UNALIGNED) != 0;
|
|
bool requires_atomic_access = (decorators & MO_UNORDERED) == 0;
|
|
|
|
bool in_native = (decorators & IN_NATIVE) != 0;
|
|
assert(!in_native, "not supported yet");
|
|
|
|
if (access.type() == T_DOUBLE) {
|
|
Node* new_val = kit->dstore_rounding(val.node());
|
|
val.set_node(new_val);
|
|
}
|
|
|
|
MemNode::MemOrd mo = access.mem_node_mo();
|
|
|
|
Node* store = kit->store_to_memory(kit->control(), access.addr().node(), val.node(), access.type(),
|
|
access.addr().type(), mo, requires_atomic_access, unaligned, mismatched);
|
|
access.set_raw_access(store);
|
|
return store;
|
|
}
|
|
|
|
Node* BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
|
|
DecoratorSet decorators = access.decorators();
|
|
GraphKit* kit = access.kit();
|
|
|
|
Node* adr = access.addr().node();
|
|
const TypePtr* adr_type = access.addr().type();
|
|
|
|
bool mismatched = (decorators & C2_MISMATCHED) != 0;
|
|
bool requires_atomic_access = (decorators & MO_UNORDERED) == 0;
|
|
bool unaligned = (decorators & C2_UNALIGNED) != 0;
|
|
bool control_dependent = (decorators & C2_CONTROL_DEPENDENT_LOAD) != 0;
|
|
bool pinned = (decorators & C2_PINNED_LOAD) != 0;
|
|
|
|
bool in_native = (decorators & IN_NATIVE) != 0;
|
|
|
|
MemNode::MemOrd mo = access.mem_node_mo();
|
|
LoadNode::ControlDependency dep = pinned ? LoadNode::Pinned : LoadNode::DependsOnlyOnTest;
|
|
Node* control = control_dependent ? kit->control() : NULL;
|
|
|
|
Node* load;
|
|
if (in_native) {
|
|
load = kit->make_load(control, adr, val_type, access.type(), mo);
|
|
} else {
|
|
load = kit->make_load(control, adr, val_type, access.type(), adr_type, mo,
|
|
dep, requires_atomic_access, unaligned, mismatched);
|
|
}
|
|
access.set_raw_access(load);
|
|
|
|
return load;
|
|
}
|
|
|
|
class C2AccessFence: public StackObj {
|
|
C2Access& _access;
|
|
Node* _leading_membar;
|
|
|
|
public:
|
|
C2AccessFence(C2Access& access) :
|
|
_access(access), _leading_membar(NULL) {
|
|
GraphKit* kit = access.kit();
|
|
DecoratorSet decorators = access.decorators();
|
|
|
|
bool is_write = (decorators & C2_WRITE_ACCESS) != 0;
|
|
bool is_read = (decorators & C2_READ_ACCESS) != 0;
|
|
bool is_atomic = is_read && is_write;
|
|
|
|
bool is_volatile = (decorators & MO_SEQ_CST) != 0;
|
|
bool is_release = (decorators & MO_RELEASE) != 0;
|
|
|
|
if (is_atomic) {
|
|
// Memory-model-wise, a LoadStore acts like a little synchronized
|
|
// block, so needs barriers on each side. These don't translate
|
|
// into actual barriers on most machines, but we still need rest of
|
|
// compiler to respect ordering.
|
|
if (is_release) {
|
|
_leading_membar = kit->insert_mem_bar(Op_MemBarRelease);
|
|
} else if (is_volatile) {
|
|
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
|
|
_leading_membar = kit->insert_mem_bar(Op_MemBarVolatile);
|
|
} else {
|
|
_leading_membar = kit->insert_mem_bar(Op_MemBarRelease);
|
|
}
|
|
}
|
|
} else if (is_write) {
|
|
// If reference is volatile, prevent following memory ops from
|
|
// floating down past the volatile write. Also prevents commoning
|
|
// another volatile read.
|
|
if (is_volatile || is_release) {
|
|
_leading_membar = kit->insert_mem_bar(Op_MemBarRelease);
|
|
}
|
|
} else {
|
|
// Memory barrier to prevent normal and 'unsafe' accesses from
|
|
// bypassing each other. Happens after null checks, so the
|
|
// exception paths do not take memory state from the memory barrier,
|
|
// so there's no problems making a strong assert about mixing users
|
|
// of safe & unsafe memory.
|
|
if (is_volatile && support_IRIW_for_not_multiple_copy_atomic_cpu) {
|
|
_leading_membar = kit->insert_mem_bar(Op_MemBarVolatile);
|
|
}
|
|
}
|
|
|
|
if (access.needs_cpu_membar()) {
|
|
kit->insert_mem_bar(Op_MemBarCPUOrder);
|
|
}
|
|
|
|
if (is_atomic) {
|
|
// 4984716: MemBars must be inserted before this
|
|
// memory node in order to avoid a false
|
|
// dependency which will confuse the scheduler.
|
|
access.set_memory();
|
|
}
|
|
}
|
|
|
|
~C2AccessFence() {
|
|
GraphKit* kit = _access.kit();
|
|
DecoratorSet decorators = _access.decorators();
|
|
|
|
bool is_write = (decorators & C2_WRITE_ACCESS) != 0;
|
|
bool is_read = (decorators & C2_READ_ACCESS) != 0;
|
|
bool is_atomic = is_read && is_write;
|
|
|
|
bool is_volatile = (decorators & MO_SEQ_CST) != 0;
|
|
bool is_acquire = (decorators & MO_ACQUIRE) != 0;
|
|
|
|
// If reference is volatile, prevent following volatiles ops from
|
|
// floating up before the volatile access.
|
|
if (_access.needs_cpu_membar()) {
|
|
kit->insert_mem_bar(Op_MemBarCPUOrder);
|
|
}
|
|
|
|
if (is_atomic) {
|
|
if (is_acquire || is_volatile) {
|
|
Node* n = _access.raw_access();
|
|
Node* mb = kit->insert_mem_bar(Op_MemBarAcquire, n);
|
|
if (_leading_membar != NULL) {
|
|
MemBarNode::set_load_store_pair(_leading_membar->as_MemBar(), mb->as_MemBar());
|
|
}
|
|
}
|
|
} else if (is_write) {
|
|
// If not multiple copy atomic, we do the MemBarVolatile before the load.
|
|
if (is_volatile && !support_IRIW_for_not_multiple_copy_atomic_cpu) {
|
|
Node* n = _access.raw_access();
|
|
Node* mb = kit->insert_mem_bar(Op_MemBarVolatile, n); // Use fat membar
|
|
if (_leading_membar != NULL) {
|
|
MemBarNode::set_store_pair(_leading_membar->as_MemBar(), mb->as_MemBar());
|
|
}
|
|
}
|
|
} else {
|
|
if (is_volatile || is_acquire) {
|
|
Node* n = _access.raw_access();
|
|
assert(_leading_membar == NULL || support_IRIW_for_not_multiple_copy_atomic_cpu, "no leading membar expected");
|
|
Node* mb = kit->insert_mem_bar(Op_MemBarAcquire, n);
|
|
mb->as_MemBar()->set_trailing_load();
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
Node* BarrierSetC2::store_at(C2Access& access, C2AccessValue& val) const {
|
|
C2AccessFence fence(access);
|
|
resolve_address(access);
|
|
return store_at_resolved(access, val);
|
|
}
|
|
|
|
Node* BarrierSetC2::load_at(C2Access& access, const Type* val_type) const {
|
|
C2AccessFence fence(access);
|
|
resolve_address(access);
|
|
return load_at_resolved(access, val_type);
|
|
}
|
|
|
|
MemNode::MemOrd C2Access::mem_node_mo() const {
|
|
bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
|
|
bool is_read = (_decorators & C2_READ_ACCESS) != 0;
|
|
if ((_decorators & MO_SEQ_CST) != 0) {
|
|
if (is_write && is_read) {
|
|
// For atomic operations
|
|
return MemNode::seqcst;
|
|
} else if (is_write) {
|
|
return MemNode::release;
|
|
} else {
|
|
assert(is_read, "what else?");
|
|
return MemNode::acquire;
|
|
}
|
|
} else if ((_decorators & MO_RELEASE) != 0) {
|
|
return MemNode::release;
|
|
} else if ((_decorators & MO_ACQUIRE) != 0) {
|
|
return MemNode::acquire;
|
|
} else if (is_write) {
|
|
// Volatile fields need releasing stores.
|
|
// Non-volatile fields also need releasing stores if they hold an
|
|
// object reference, because the object reference might point to
|
|
// a freshly created object.
|
|
// Conservatively release stores of object references.
|
|
return StoreNode::release_if_reference(_type);
|
|
} else {
|
|
return MemNode::unordered;
|
|
}
|
|
}
|
|
|
|
void C2Access::fixup_decorators() {
|
|
bool default_mo = (_decorators & MO_DECORATOR_MASK) == 0;
|
|
bool is_unordered = (_decorators & MO_UNORDERED) != 0 || default_mo;
|
|
bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0;
|
|
|
|
bool is_read = (_decorators & C2_READ_ACCESS) != 0;
|
|
bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
|
|
|
|
if (AlwaysAtomicAccesses && is_unordered) {
|
|
_decorators &= ~MO_DECORATOR_MASK; // clear the MO bits
|
|
_decorators |= MO_RELAXED; // Force the MO_RELAXED decorator with AlwaysAtomicAccess
|
|
}
|
|
|
|
_decorators = AccessInternal::decorator_fixup(_decorators);
|
|
|
|
if (is_read && !is_write && anonymous) {
|
|
// To be valid, unsafe loads may depend on other conditions than
|
|
// the one that guards them: pin the Load node
|
|
_decorators |= C2_CONTROL_DEPENDENT_LOAD;
|
|
_decorators |= C2_PINNED_LOAD;
|
|
const TypePtr* adr_type = _addr.type();
|
|
Node* adr = _addr.node();
|
|
if (!needs_cpu_membar() && adr_type->isa_instptr()) {
|
|
assert(adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative(), "should be not null");
|
|
intptr_t offset = Type::OffsetBot;
|
|
AddPNode::Ideal_base_and_offset(adr, &_kit->gvn(), offset);
|
|
if (offset >= 0) {
|
|
int s = Klass::layout_helper_size_in_bytes(adr_type->isa_instptr()->klass()->layout_helper());
|
|
if (offset < s) {
|
|
// Guaranteed to be a valid access, no need to pin it
|
|
_decorators ^= C2_CONTROL_DEPENDENT_LOAD;
|
|
_decorators ^= C2_PINNED_LOAD;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------- atomic operations---------------------------------
|
|
|
|
void BarrierSetC2::pin_atomic_op(C2AtomicAccess& access) const {
|
|
if (!access.needs_pinning()) {
|
|
return;
|
|
}
|
|
// SCMemProjNodes represent the memory state of a LoadStore. Their
|
|
// main role is to prevent LoadStore nodes from being optimized away
|
|
// when their results aren't used.
|
|
GraphKit* kit = access.kit();
|
|
Node* load_store = access.raw_access();
|
|
assert(load_store != NULL, "must pin atomic op");
|
|
Node* proj = kit->gvn().transform(new SCMemProjNode(load_store));
|
|
kit->set_memory(proj, access.alias_idx());
|
|
}
|
|
|
|
void C2AtomicAccess::set_memory() {
|
|
Node *mem = _kit->memory(_alias_idx);
|
|
_memory = mem;
|
|
}
|
|
|
|
Node* BarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicAccess& access, Node* expected_val,
|
|
Node* new_val, const Type* value_type) const {
|
|
GraphKit* kit = access.kit();
|
|
MemNode::MemOrd mo = access.mem_node_mo();
|
|
Node* mem = access.memory();
|
|
|
|
Node* adr = access.addr().node();
|
|
const TypePtr* adr_type = access.addr().type();
|
|
|
|
Node* load_store = NULL;
|
|
|
|
if (access.is_oop()) {
|
|
#ifdef _LP64
|
|
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
|
|
Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
|
|
Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
|
|
load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
|
|
} else
|
|
#endif
|
|
{
|
|
load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
|
|
}
|
|
} else {
|
|
switch (access.type()) {
|
|
case T_BYTE: {
|
|
load_store = kit->gvn().transform(new CompareAndExchangeBNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
|
|
break;
|
|
}
|
|
case T_SHORT: {
|
|
load_store = kit->gvn().transform(new CompareAndExchangeSNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
|
|
break;
|
|
}
|
|
case T_INT: {
|
|
load_store = kit->gvn().transform(new CompareAndExchangeINode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
|
|
break;
|
|
}
|
|
case T_LONG: {
|
|
load_store = kit->gvn().transform(new CompareAndExchangeLNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
|
|
break;
|
|
}
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
access.set_raw_access(load_store);
|
|
pin_atomic_op(access);
|
|
|
|
#ifdef _LP64
|
|
if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) {
|
|
return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
|
|
}
|
|
#endif
|
|
|
|
return load_store;
|
|
}
|
|
|
|
Node* BarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicAccess& access, Node* expected_val,
|
|
Node* new_val, const Type* value_type) const {
|
|
GraphKit* kit = access.kit();
|
|
DecoratorSet decorators = access.decorators();
|
|
MemNode::MemOrd mo = access.mem_node_mo();
|
|
Node* mem = access.memory();
|
|
bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
|
|
Node* load_store = NULL;
|
|
Node* adr = access.addr().node();
|
|
|
|
if (access.is_oop()) {
|
|
#ifdef _LP64
|
|
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
|
|
Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
|
|
Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
|
|
if (is_weak_cas) {
|
|
load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
|
|
} else {
|
|
load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
if (is_weak_cas) {
|
|
load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
|
|
} else {
|
|
load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
|
|
}
|
|
}
|
|
} else {
|
|
switch(access.type()) {
|
|
case T_BYTE: {
|
|
if (is_weak_cas) {
|
|
load_store = kit->gvn().transform(new WeakCompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo));
|
|
} else {
|
|
load_store = kit->gvn().transform(new CompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo));
|
|
}
|
|
break;
|
|
}
|
|
case T_SHORT: {
|
|
if (is_weak_cas) {
|
|
load_store = kit->gvn().transform(new WeakCompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo));
|
|
} else {
|
|
load_store = kit->gvn().transform(new CompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo));
|
|
}
|
|
break;
|
|
}
|
|
case T_INT: {
|
|
if (is_weak_cas) {
|
|
load_store = kit->gvn().transform(new WeakCompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo));
|
|
} else {
|
|
load_store = kit->gvn().transform(new CompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo));
|
|
}
|
|
break;
|
|
}
|
|
case T_LONG: {
|
|
if (is_weak_cas) {
|
|
load_store = kit->gvn().transform(new WeakCompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo));
|
|
} else {
|
|
load_store = kit->gvn().transform(new CompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo));
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
access.set_raw_access(load_store);
|
|
pin_atomic_op(access);
|
|
|
|
return load_store;
|
|
}
|
|
|
|
Node* BarrierSetC2::atomic_xchg_at_resolved(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
|
|
GraphKit* kit = access.kit();
|
|
Node* mem = access.memory();
|
|
Node* adr = access.addr().node();
|
|
const TypePtr* adr_type = access.addr().type();
|
|
Node* load_store = NULL;
|
|
|
|
if (access.is_oop()) {
|
|
#ifdef _LP64
|
|
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
|
|
Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
|
|
load_store = kit->gvn().transform(new GetAndSetNNode(kit->control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
|
|
} else
|
|
#endif
|
|
{
|
|
load_store = kit->gvn().transform(new GetAndSetPNode(kit->control(), mem, adr, new_val, adr_type, value_type->is_oopptr()));
|
|
}
|
|
} else {
|
|
switch (access.type()) {
|
|
case T_BYTE:
|
|
load_store = kit->gvn().transform(new GetAndSetBNode(kit->control(), mem, adr, new_val, adr_type));
|
|
break;
|
|
case T_SHORT:
|
|
load_store = kit->gvn().transform(new GetAndSetSNode(kit->control(), mem, adr, new_val, adr_type));
|
|
break;
|
|
case T_INT:
|
|
load_store = kit->gvn().transform(new GetAndSetINode(kit->control(), mem, adr, new_val, adr_type));
|
|
break;
|
|
case T_LONG:
|
|
load_store = kit->gvn().transform(new GetAndSetLNode(kit->control(), mem, adr, new_val, adr_type));
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
access.set_raw_access(load_store);
|
|
pin_atomic_op(access);
|
|
|
|
#ifdef _LP64
|
|
if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) {
|
|
return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
|
|
}
|
|
#endif
|
|
|
|
return load_store;
|
|
}
|
|
|
|
Node* BarrierSetC2::atomic_add_at_resolved(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
|
|
Node* load_store = NULL;
|
|
GraphKit* kit = access.kit();
|
|
Node* adr = access.addr().node();
|
|
const TypePtr* adr_type = access.addr().type();
|
|
Node* mem = access.memory();
|
|
|
|
switch(access.type()) {
|
|
case T_BYTE:
|
|
load_store = kit->gvn().transform(new GetAndAddBNode(kit->control(), mem, adr, new_val, adr_type));
|
|
break;
|
|
case T_SHORT:
|
|
load_store = kit->gvn().transform(new GetAndAddSNode(kit->control(), mem, adr, new_val, adr_type));
|
|
break;
|
|
case T_INT:
|
|
load_store = kit->gvn().transform(new GetAndAddINode(kit->control(), mem, adr, new_val, adr_type));
|
|
break;
|
|
case T_LONG:
|
|
load_store = kit->gvn().transform(new GetAndAddLNode(kit->control(), mem, adr, new_val, adr_type));
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
access.set_raw_access(load_store);
|
|
pin_atomic_op(access);
|
|
|
|
return load_store;
|
|
}
|
|
|
|
Node* BarrierSetC2::atomic_cmpxchg_val_at(C2AtomicAccess& access, Node* expected_val,
|
|
Node* new_val, const Type* value_type) const {
|
|
C2AccessFence fence(access);
|
|
resolve_address(access);
|
|
return atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
|
|
}
|
|
|
|
Node* BarrierSetC2::atomic_cmpxchg_bool_at(C2AtomicAccess& access, Node* expected_val,
|
|
Node* new_val, const Type* value_type) const {
|
|
C2AccessFence fence(access);
|
|
resolve_address(access);
|
|
return atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
|
|
}
|
|
|
|
Node* BarrierSetC2::atomic_xchg_at(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
|
|
C2AccessFence fence(access);
|
|
resolve_address(access);
|
|
return atomic_xchg_at_resolved(access, new_val, value_type);
|
|
}
|
|
|
|
Node* BarrierSetC2::atomic_add_at(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
|
|
C2AccessFence fence(access);
|
|
resolve_address(access);
|
|
return atomic_add_at_resolved(access, new_val, value_type);
|
|
}
|
|
|
|
void BarrierSetC2::clone(GraphKit* kit, Node* src, Node* dst, Node* size, bool is_array) const {
|
|
// Exclude the header but include array length to copy by 8 bytes words.
|
|
// Can't use base_offset_in_bytes(bt) since basic type is unknown.
|
|
int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
|
|
instanceOopDesc::base_offset_in_bytes();
|
|
// base_off:
|
|
// 8 - 32-bit VM
|
|
// 12 - 64-bit VM, compressed klass
|
|
// 16 - 64-bit VM, normal klass
|
|
if (base_off % BytesPerLong != 0) {
|
|
assert(UseCompressedClassPointers, "");
|
|
if (is_array) {
|
|
// Exclude length to copy by 8 bytes words.
|
|
base_off += sizeof(int);
|
|
} else {
|
|
// Include klass to copy by 8 bytes words.
|
|
base_off = instanceOopDesc::klass_offset_in_bytes();
|
|
}
|
|
assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
|
|
}
|
|
Node* src_base = kit->basic_plus_adr(src, base_off);
|
|
Node* dst_base = kit->basic_plus_adr(dst, base_off);
|
|
|
|
// Compute the length also, if needed:
|
|
Node* countx = size;
|
|
countx = kit->gvn().transform(new SubXNode(countx, kit->MakeConX(base_off)));
|
|
countx = kit->gvn().transform(new URShiftXNode(countx, kit->intcon(LogBytesPerLong) ));
|
|
|
|
const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
|
|
|
|
ArrayCopyNode* ac = ArrayCopyNode::make(kit, false, src_base, NULL, dst_base, NULL, countx, false, false);
|
|
ac->set_clonebasic();
|
|
Node* n = kit->gvn().transform(ac);
|
|
if (n == ac) {
|
|
ac->_adr_type = TypeRawPtr::BOTTOM;
|
|
kit->set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
|
|
} else {
|
|
kit->set_all_memory(n);
|
|
}
|
|
}
|
|
|
|
Node* BarrierSetC2::obj_allocate(PhaseMacroExpand* macro, Node* ctrl, Node* mem, Node* toobig_false, Node* size_in_bytes,
|
|
Node*& i_o, Node*& needgc_ctrl,
|
|
Node*& fast_oop_ctrl, Node*& fast_oop_rawmem,
|
|
intx prefetch_lines) const {
|
|
|
|
Node* eden_top_adr;
|
|
Node* eden_end_adr;
|
|
|
|
macro->set_eden_pointers(eden_top_adr, eden_end_adr);
|
|
|
|
// Load Eden::end. Loop invariant and hoisted.
|
|
//
|
|
// Note: We set the control input on "eden_end" and "old_eden_top" when using
|
|
// a TLAB to work around a bug where these values were being moved across
|
|
// a safepoint. These are not oops, so they cannot be include in the oop
|
|
// map, but they can be changed by a GC. The proper way to fix this would
|
|
// be to set the raw memory state when generating a SafepointNode. However
|
|
// this will require extensive changes to the loop optimization in order to
|
|
// prevent a degradation of the optimization.
|
|
// See comment in memnode.hpp, around line 227 in class LoadPNode.
|
|
Node *eden_end = macro->make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
|
|
|
|
// We need a Region for the loop-back contended case.
|
|
enum { fall_in_path = 1, contended_loopback_path = 2 };
|
|
Node *contended_region;
|
|
Node *contended_phi_rawmem;
|
|
if (UseTLAB) {
|
|
contended_region = toobig_false;
|
|
contended_phi_rawmem = mem;
|
|
} else {
|
|
contended_region = new RegionNode(3);
|
|
contended_phi_rawmem = new PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
|
|
// Now handle the passing-too-big test. We fall into the contended
|
|
// loop-back merge point.
|
|
contended_region ->init_req(fall_in_path, toobig_false);
|
|
contended_phi_rawmem->init_req(fall_in_path, mem);
|
|
macro->transform_later(contended_region);
|
|
macro->transform_later(contended_phi_rawmem);
|
|
}
|
|
|
|
// Load(-locked) the heap top.
|
|
// See note above concerning the control input when using a TLAB
|
|
Node *old_eden_top = UseTLAB
|
|
? new LoadPNode (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered)
|
|
: new LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire);
|
|
|
|
macro->transform_later(old_eden_top);
|
|
// Add to heap top to get a new heap top
|
|
Node *new_eden_top = new AddPNode(macro->top(), old_eden_top, size_in_bytes);
|
|
macro->transform_later(new_eden_top);
|
|
// Check for needing a GC; compare against heap end
|
|
Node *needgc_cmp = new CmpPNode(new_eden_top, eden_end);
|
|
macro->transform_later(needgc_cmp);
|
|
Node *needgc_bol = new BoolNode(needgc_cmp, BoolTest::ge);
|
|
macro->transform_later(needgc_bol);
|
|
IfNode *needgc_iff = new IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
|
|
macro->transform_later(needgc_iff);
|
|
|
|
// Plug the failing-heap-space-need-gc test into the slow-path region
|
|
Node *needgc_true = new IfTrueNode(needgc_iff);
|
|
macro->transform_later(needgc_true);
|
|
needgc_ctrl = needgc_true;
|
|
|
|
// No need for a GC. Setup for the Store-Conditional
|
|
Node *needgc_false = new IfFalseNode(needgc_iff);
|
|
macro->transform_later(needgc_false);
|
|
|
|
i_o = macro->prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
|
|
old_eden_top, new_eden_top, prefetch_lines);
|
|
|
|
Node* fast_oop = old_eden_top;
|
|
|
|
// Store (-conditional) the modified eden top back down.
|
|
// StorePConditional produces flags for a test PLUS a modified raw
|
|
// memory state.
|
|
if (UseTLAB) {
|
|
Node* store_eden_top =
|
|
new StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
|
|
TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered);
|
|
macro->transform_later(store_eden_top);
|
|
fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
|
|
fast_oop_rawmem = store_eden_top;
|
|
} else {
|
|
Node* store_eden_top =
|
|
new StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
|
|
new_eden_top, fast_oop/*old_eden_top*/);
|
|
macro->transform_later(store_eden_top);
|
|
Node *contention_check = new BoolNode(store_eden_top, BoolTest::ne);
|
|
macro->transform_later(contention_check);
|
|
store_eden_top = new SCMemProjNode(store_eden_top);
|
|
macro->transform_later(store_eden_top);
|
|
|
|
// If not using TLABs, check to see if there was contention.
|
|
IfNode *contention_iff = new IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
|
|
macro->transform_later(contention_iff);
|
|
Node *contention_true = new IfTrueNode(contention_iff);
|
|
macro->transform_later(contention_true);
|
|
// If contention, loopback and try again.
|
|
contended_region->init_req(contended_loopback_path, contention_true);
|
|
contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
|
|
|
|
// Fast-path succeeded with no contention!
|
|
Node *contention_false = new IfFalseNode(contention_iff);
|
|
macro->transform_later(contention_false);
|
|
fast_oop_ctrl = contention_false;
|
|
|
|
// Bump total allocated bytes for this thread
|
|
Node* thread = new ThreadLocalNode();
|
|
macro->transform_later(thread);
|
|
Node* alloc_bytes_adr = macro->basic_plus_adr(macro->top()/*not oop*/, thread,
|
|
in_bytes(JavaThread::allocated_bytes_offset()));
|
|
Node* alloc_bytes = macro->make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
|
|
0, TypeLong::LONG, T_LONG);
|
|
#ifdef _LP64
|
|
Node* alloc_size = size_in_bytes;
|
|
#else
|
|
Node* alloc_size = new ConvI2LNode(size_in_bytes);
|
|
macro->transform_later(alloc_size);
|
|
#endif
|
|
Node* new_alloc_bytes = new AddLNode(alloc_bytes, alloc_size);
|
|
macro->transform_later(new_alloc_bytes);
|
|
fast_oop_rawmem = macro->make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
|
|
0, new_alloc_bytes, T_LONG);
|
|
}
|
|
return fast_oop;
|
|
}
|