mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-27 06:45:07 +02:00
1988 lines
68 KiB
C++
1988 lines
68 KiB
C++
/*
|
|
* Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "jvm.h"
|
|
#include "asm/macroAssembler.inline.hpp"
|
|
#include "gc/shared/barrierSet.hpp"
|
|
#include "gc/shared/cardTable.hpp"
|
|
#include "gc/shared/cardTableBarrierSet.inline.hpp"
|
|
#include "gc/shared/collectedHeap.hpp"
|
|
#include "interp_masm_arm.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "interpreter/interpreterRuntime.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "oops/arrayOop.hpp"
|
|
#include "oops/markOop.hpp"
|
|
#include "oops/method.hpp"
|
|
#include "oops/methodData.hpp"
|
|
#include "prims/jvmtiExport.hpp"
|
|
#include "prims/jvmtiThreadState.hpp"
|
|
#include "runtime/basicLock.hpp"
|
|
#include "runtime/biasedLocking.hpp"
|
|
#include "runtime/frame.inline.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
|
|
//--------------------------------------------------------------------
|
|
// Implementation of InterpreterMacroAssembler
|
|
|
|
|
|
|
|
|
|
InterpreterMacroAssembler::InterpreterMacroAssembler(CodeBuffer* code) : MacroAssembler(code) {
|
|
}
|
|
|
|
void InterpreterMacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
|
|
#if defined(ASSERT) && !defined(AARCH64)
|
|
// Ensure that last_sp is not filled.
|
|
{ Label L;
|
|
ldr(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
|
|
cbz(Rtemp, L);
|
|
stop("InterpreterMacroAssembler::call_VM_helper: last_sp != NULL");
|
|
bind(L);
|
|
}
|
|
#endif // ASSERT && !AARCH64
|
|
|
|
// Rbcp must be saved/restored since it may change due to GC.
|
|
save_bcp();
|
|
|
|
#ifdef AARCH64
|
|
check_no_cached_stack_top(Rtemp);
|
|
save_stack_top();
|
|
check_extended_sp(Rtemp);
|
|
cut_sp_before_call();
|
|
#endif // AARCH64
|
|
|
|
// super call
|
|
MacroAssembler::call_VM_helper(oop_result, entry_point, number_of_arguments, check_exceptions);
|
|
|
|
#ifdef AARCH64
|
|
// Restore SP to extended SP
|
|
restore_sp_after_call(Rtemp);
|
|
check_stack_top();
|
|
clear_cached_stack_top();
|
|
#endif // AARCH64
|
|
|
|
// Restore interpreter specific registers.
|
|
restore_bcp();
|
|
restore_method();
|
|
}
|
|
|
|
void InterpreterMacroAssembler::jump_to_entry(address entry) {
|
|
assert(entry, "Entry must have been generated by now");
|
|
b(entry);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::check_and_handle_popframe() {
|
|
if (can_pop_frame()) {
|
|
Label L;
|
|
const Register popframe_cond = R2_tmp;
|
|
|
|
// Initiate popframe handling only if it is not already being processed. If the flag
|
|
// has the popframe_processing bit set, it means that this code is called *during* popframe
|
|
// handling - we don't want to reenter.
|
|
|
|
ldr_s32(popframe_cond, Address(Rthread, JavaThread::popframe_condition_offset()));
|
|
tbz(popframe_cond, exact_log2(JavaThread::popframe_pending_bit), L);
|
|
tbnz(popframe_cond, exact_log2(JavaThread::popframe_processing_bit), L);
|
|
|
|
// Call Interpreter::remove_activation_preserving_args_entry() to get the
|
|
// address of the same-named entrypoint in the generated interpreter code.
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
|
|
|
|
// Call indirectly to avoid generation ordering problem.
|
|
jump(R0);
|
|
|
|
bind(L);
|
|
}
|
|
}
|
|
|
|
|
|
// Blows R2, Rtemp. Sets TOS cached value.
|
|
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
|
|
const Register thread_state = R2_tmp;
|
|
|
|
ldr(thread_state, Address(Rthread, JavaThread::jvmti_thread_state_offset()));
|
|
|
|
const Address tos_addr(thread_state, JvmtiThreadState::earlyret_tos_offset());
|
|
const Address oop_addr(thread_state, JvmtiThreadState::earlyret_oop_offset());
|
|
const Address val_addr(thread_state, JvmtiThreadState::earlyret_value_offset());
|
|
#ifndef AARCH64
|
|
const Address val_addr_hi(thread_state, JvmtiThreadState::earlyret_value_offset()
|
|
+ in_ByteSize(wordSize));
|
|
#endif // !AARCH64
|
|
|
|
Register zero = zero_register(Rtemp);
|
|
|
|
switch (state) {
|
|
case atos: ldr(R0_tos, oop_addr);
|
|
str(zero, oop_addr);
|
|
interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
|
|
break;
|
|
|
|
#ifdef AARCH64
|
|
case ltos: ldr(R0_tos, val_addr); break;
|
|
#else
|
|
case ltos: ldr(R1_tos_hi, val_addr_hi); // fall through
|
|
#endif // AARCH64
|
|
case btos: // fall through
|
|
case ztos: // fall through
|
|
case ctos: // fall through
|
|
case stos: // fall through
|
|
case itos: ldr_s32(R0_tos, val_addr); break;
|
|
#ifdef __SOFTFP__
|
|
case dtos: ldr(R1_tos_hi, val_addr_hi); // fall through
|
|
case ftos: ldr(R0_tos, val_addr); break;
|
|
#else
|
|
case ftos: ldr_float (S0_tos, val_addr); break;
|
|
case dtos: ldr_double(D0_tos, val_addr); break;
|
|
#endif // __SOFTFP__
|
|
case vtos: /* nothing to do */ break;
|
|
default : ShouldNotReachHere();
|
|
}
|
|
// Clean up tos value in the thread object
|
|
str(zero, val_addr);
|
|
#ifndef AARCH64
|
|
str(zero, val_addr_hi);
|
|
#endif // !AARCH64
|
|
|
|
mov(Rtemp, (int) ilgl);
|
|
str_32(Rtemp, tos_addr);
|
|
}
|
|
|
|
|
|
// Blows R2, Rtemp.
|
|
void InterpreterMacroAssembler::check_and_handle_earlyret() {
|
|
if (can_force_early_return()) {
|
|
Label L;
|
|
const Register thread_state = R2_tmp;
|
|
|
|
ldr(thread_state, Address(Rthread, JavaThread::jvmti_thread_state_offset()));
|
|
cbz(thread_state, L); // if (thread->jvmti_thread_state() == NULL) exit;
|
|
|
|
// Initiate earlyret handling only if it is not already being processed.
|
|
// If the flag has the earlyret_processing bit set, it means that this code
|
|
// is called *during* earlyret handling - we don't want to reenter.
|
|
|
|
ldr_s32(Rtemp, Address(thread_state, JvmtiThreadState::earlyret_state_offset()));
|
|
cmp(Rtemp, JvmtiThreadState::earlyret_pending);
|
|
b(L, ne);
|
|
|
|
// Call Interpreter::remove_activation_early_entry() to get the address of the
|
|
// same-named entrypoint in the generated interpreter code.
|
|
|
|
ldr_s32(R0, Address(thread_state, JvmtiThreadState::earlyret_tos_offset()));
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), R0);
|
|
|
|
jump(R0);
|
|
|
|
bind(L);
|
|
}
|
|
}
|
|
|
|
|
|
// Sets reg. Blows Rtemp.
|
|
void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
|
|
assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
|
|
assert(reg != Rtemp, "should be different registers");
|
|
|
|
ldrb(Rtemp, Address(Rbcp, bcp_offset));
|
|
ldrb(reg, Address(Rbcp, bcp_offset+1));
|
|
orr(reg, reg, AsmOperand(Rtemp, lsl, BitsPerByte));
|
|
}
|
|
|
|
void InterpreterMacroAssembler::get_index_at_bcp(Register index, int bcp_offset, Register tmp_reg, size_t index_size) {
|
|
assert_different_registers(index, tmp_reg);
|
|
if (index_size == sizeof(u2)) {
|
|
// load bytes of index separately to avoid unaligned access
|
|
ldrb(index, Address(Rbcp, bcp_offset+1));
|
|
ldrb(tmp_reg, Address(Rbcp, bcp_offset));
|
|
orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
|
|
} else if (index_size == sizeof(u4)) {
|
|
// TODO-AARCH64: consider using unaligned access here
|
|
ldrb(index, Address(Rbcp, bcp_offset+3));
|
|
ldrb(tmp_reg, Address(Rbcp, bcp_offset+2));
|
|
orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
|
|
ldrb(tmp_reg, Address(Rbcp, bcp_offset+1));
|
|
orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
|
|
ldrb(tmp_reg, Address(Rbcp, bcp_offset));
|
|
orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
|
|
// Check if the secondary index definition is still ~x, otherwise
|
|
// we have to change the following assembler code to calculate the
|
|
// plain index.
|
|
assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
|
|
mvn_32(index, index); // convert to plain index
|
|
} else if (index_size == sizeof(u1)) {
|
|
ldrb(index, Address(Rbcp, bcp_offset));
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
// Sets cache, index.
|
|
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset, size_t index_size) {
|
|
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
|
|
assert_different_registers(cache, index);
|
|
|
|
get_index_at_bcp(index, bcp_offset, cache, index_size);
|
|
|
|
// load constant pool cache pointer
|
|
ldr(cache, Address(FP, frame::interpreter_frame_cache_offset * wordSize));
|
|
|
|
// convert from field index to ConstantPoolCacheEntry index
|
|
assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
|
|
// TODO-AARCH64 merge this shift with shift "add(..., Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord))" after this method is called
|
|
logical_shift_left(index, index, 2);
|
|
}
|
|
|
|
// Sets cache, index, bytecode.
|
|
void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, Register index, Register bytecode, int byte_no, int bcp_offset, size_t index_size) {
|
|
get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
|
|
// caution index and bytecode can be the same
|
|
add(bytecode, cache, AsmOperand(index, lsl, LogBytesPerWord));
|
|
#ifdef AARCH64
|
|
add(bytecode, bytecode, (1 + byte_no) + in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
|
|
ldarb(bytecode, bytecode);
|
|
#else
|
|
ldrb(bytecode, Address(bytecode, (1 + byte_no) + in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())));
|
|
TemplateTable::volatile_barrier(MacroAssembler::LoadLoad, noreg, true);
|
|
#endif // AARCH64
|
|
}
|
|
|
|
// Sets cache. Blows reg_tmp.
|
|
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register reg_tmp, int bcp_offset, size_t index_size) {
|
|
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
|
|
assert_different_registers(cache, reg_tmp);
|
|
|
|
get_index_at_bcp(reg_tmp, bcp_offset, cache, index_size);
|
|
|
|
// load constant pool cache pointer
|
|
ldr(cache, Address(FP, frame::interpreter_frame_cache_offset * wordSize));
|
|
|
|
// skip past the header
|
|
add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
|
|
// convert from field index to ConstantPoolCacheEntry index
|
|
// and from word offset to byte offset
|
|
assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
|
|
add(cache, cache, AsmOperand(reg_tmp, lsl, 2 + LogBytesPerWord));
|
|
}
|
|
|
|
// Load object from cpool->resolved_references(index)
|
|
void InterpreterMacroAssembler::load_resolved_reference_at_index(
|
|
Register result, Register index) {
|
|
assert_different_registers(result, index);
|
|
get_constant_pool(result);
|
|
|
|
Register cache = result;
|
|
// load pointer for resolved_references[] objArray
|
|
ldr(cache, Address(result, ConstantPool::cache_offset_in_bytes()));
|
|
ldr(cache, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
|
|
resolve_oop_handle(cache);
|
|
// Add in the index
|
|
// convert from field index to resolved_references() index and from
|
|
// word index to byte offset. Since this is a java object, it can be compressed
|
|
logical_shift_left(index, index, LogBytesPerHeapOop);
|
|
add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
|
|
load_heap_oop(result, Address(cache, index));
|
|
}
|
|
|
|
void InterpreterMacroAssembler::load_resolved_klass_at_offset(
|
|
Register Rcpool, Register Rindex, Register Rklass) {
|
|
add(Rtemp, Rcpool, AsmOperand(Rindex, lsl, LogBytesPerWord));
|
|
ldrh(Rtemp, Address(Rtemp, sizeof(ConstantPool))); // Rtemp = resolved_klass_index
|
|
ldr(Rklass, Address(Rcpool, ConstantPool::resolved_klasses_offset_in_bytes())); // Rklass = cpool->_resolved_klasses
|
|
add(Rklass, Rklass, AsmOperand(Rtemp, lsl, LogBytesPerWord));
|
|
ldr(Rklass, Address(Rklass, Array<Klass*>::base_offset_in_bytes()));
|
|
}
|
|
|
|
// Generate a subtype check: branch to not_subtype if sub_klass is
|
|
// not a subtype of super_klass.
|
|
// Profiling code for the subtype check failure (profile_typecheck_failed)
|
|
// should be explicitly generated by the caller in the not_subtype case.
|
|
// Blows Rtemp, tmp1, tmp2.
|
|
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
|
|
Register Rsuper_klass,
|
|
Label ¬_subtype,
|
|
Register tmp1,
|
|
Register tmp2) {
|
|
|
|
assert_different_registers(Rsub_klass, Rsuper_klass, tmp1, tmp2, Rtemp);
|
|
Label ok_is_subtype, loop, update_cache;
|
|
|
|
const Register super_check_offset = tmp1;
|
|
const Register cached_super = tmp2;
|
|
|
|
// Profile the not-null value's klass.
|
|
profile_typecheck(tmp1, Rsub_klass);
|
|
|
|
// Load the super-klass's check offset into
|
|
ldr_u32(super_check_offset, Address(Rsuper_klass, Klass::super_check_offset_offset()));
|
|
|
|
// Check for self
|
|
cmp(Rsub_klass, Rsuper_klass);
|
|
|
|
// Load from the sub-klass's super-class display list, or a 1-word cache of
|
|
// the secondary superclass list, or a failing value with a sentinel offset
|
|
// if the super-klass is an interface or exceptionally deep in the Java
|
|
// hierarchy and we have to scan the secondary superclass list the hard way.
|
|
// See if we get an immediate positive hit
|
|
ldr(cached_super, Address(Rsub_klass, super_check_offset));
|
|
|
|
cond_cmp(Rsuper_klass, cached_super, ne);
|
|
b(ok_is_subtype, eq);
|
|
|
|
// Check for immediate negative hit
|
|
cmp(super_check_offset, in_bytes(Klass::secondary_super_cache_offset()));
|
|
b(not_subtype, ne);
|
|
|
|
// Now do a linear scan of the secondary super-klass chain.
|
|
const Register supers_arr = tmp1;
|
|
const Register supers_cnt = tmp2;
|
|
const Register cur_super = Rtemp;
|
|
|
|
// Load objArrayOop of secondary supers.
|
|
ldr(supers_arr, Address(Rsub_klass, Klass::secondary_supers_offset()));
|
|
|
|
ldr_u32(supers_cnt, Address(supers_arr, Array<Klass*>::length_offset_in_bytes())); // Load the array length
|
|
#ifdef AARCH64
|
|
cbz(supers_cnt, not_subtype);
|
|
add(supers_arr, supers_arr, Array<Klass*>::base_offset_in_bytes());
|
|
#else
|
|
cmp(supers_cnt, 0);
|
|
|
|
// Skip to the start of array elements and prefetch the first super-klass.
|
|
ldr(cur_super, Address(supers_arr, Array<Klass*>::base_offset_in_bytes(), pre_indexed), ne);
|
|
b(not_subtype, eq);
|
|
#endif // AARCH64
|
|
|
|
bind(loop);
|
|
|
|
#ifdef AARCH64
|
|
ldr(cur_super, Address(supers_arr, wordSize, post_indexed));
|
|
#endif // AARCH64
|
|
|
|
cmp(cur_super, Rsuper_klass);
|
|
b(update_cache, eq);
|
|
|
|
subs(supers_cnt, supers_cnt, 1);
|
|
|
|
#ifndef AARCH64
|
|
ldr(cur_super, Address(supers_arr, wordSize, pre_indexed), ne);
|
|
#endif // !AARCH64
|
|
|
|
b(loop, ne);
|
|
|
|
b(not_subtype);
|
|
|
|
bind(update_cache);
|
|
// Must be equal but missed in cache. Update cache.
|
|
str(Rsuper_klass, Address(Rsub_klass, Klass::secondary_super_cache_offset()));
|
|
|
|
bind(ok_is_subtype);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Java Expression Stack
|
|
|
|
void InterpreterMacroAssembler::pop_ptr(Register r) {
|
|
assert(r != Rstack_top, "unpredictable instruction");
|
|
ldr(r, Address(Rstack_top, wordSize, post_indexed));
|
|
}
|
|
|
|
void InterpreterMacroAssembler::pop_i(Register r) {
|
|
assert(r != Rstack_top, "unpredictable instruction");
|
|
ldr_s32(r, Address(Rstack_top, wordSize, post_indexed));
|
|
zap_high_non_significant_bits(r);
|
|
}
|
|
|
|
#ifdef AARCH64
|
|
void InterpreterMacroAssembler::pop_l(Register r) {
|
|
assert(r != Rstack_top, "unpredictable instruction");
|
|
ldr(r, Address(Rstack_top, 2*wordSize, post_indexed));
|
|
}
|
|
#else
|
|
void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
|
|
assert_different_registers(lo, hi);
|
|
assert(lo < hi, "lo must be < hi");
|
|
pop(RegisterSet(lo) | RegisterSet(hi));
|
|
}
|
|
#endif // AARCH64
|
|
|
|
void InterpreterMacroAssembler::pop_f(FloatRegister fd) {
|
|
#ifdef AARCH64
|
|
ldr_s(fd, Address(Rstack_top, wordSize, post_indexed));
|
|
#else
|
|
fpops(fd);
|
|
#endif // AARCH64
|
|
}
|
|
|
|
void InterpreterMacroAssembler::pop_d(FloatRegister fd) {
|
|
#ifdef AARCH64
|
|
ldr_d(fd, Address(Rstack_top, 2*wordSize, post_indexed));
|
|
#else
|
|
fpopd(fd);
|
|
#endif // AARCH64
|
|
}
|
|
|
|
|
|
// Transition vtos -> state. Blows R0, R1. Sets TOS cached value.
|
|
void InterpreterMacroAssembler::pop(TosState state) {
|
|
switch (state) {
|
|
case atos: pop_ptr(R0_tos); break;
|
|
case btos: // fall through
|
|
case ztos: // fall through
|
|
case ctos: // fall through
|
|
case stos: // fall through
|
|
case itos: pop_i(R0_tos); break;
|
|
#ifdef AARCH64
|
|
case ltos: pop_l(R0_tos); break;
|
|
#else
|
|
case ltos: pop_l(R0_tos_lo, R1_tos_hi); break;
|
|
#endif // AARCH64
|
|
#ifdef __SOFTFP__
|
|
case ftos: pop_i(R0_tos); break;
|
|
case dtos: pop_l(R0_tos_lo, R1_tos_hi); break;
|
|
#else
|
|
case ftos: pop_f(S0_tos); break;
|
|
case dtos: pop_d(D0_tos); break;
|
|
#endif // __SOFTFP__
|
|
case vtos: /* nothing to do */ break;
|
|
default : ShouldNotReachHere();
|
|
}
|
|
interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_ptr(Register r) {
|
|
assert(r != Rstack_top, "unpredictable instruction");
|
|
str(r, Address(Rstack_top, -wordSize, pre_indexed));
|
|
check_stack_top_on_expansion();
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_i(Register r) {
|
|
assert(r != Rstack_top, "unpredictable instruction");
|
|
str_32(r, Address(Rstack_top, -wordSize, pre_indexed));
|
|
check_stack_top_on_expansion();
|
|
}
|
|
|
|
#ifdef AARCH64
|
|
void InterpreterMacroAssembler::push_l(Register r) {
|
|
assert(r != Rstack_top, "unpredictable instruction");
|
|
stp(r, ZR, Address(Rstack_top, -2*wordSize, pre_indexed));
|
|
check_stack_top_on_expansion();
|
|
}
|
|
#else
|
|
void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
|
|
assert_different_registers(lo, hi);
|
|
assert(lo < hi, "lo must be < hi");
|
|
push(RegisterSet(lo) | RegisterSet(hi));
|
|
}
|
|
#endif // AARCH64
|
|
|
|
void InterpreterMacroAssembler::push_f() {
|
|
#ifdef AARCH64
|
|
str_s(S0_tos, Address(Rstack_top, -wordSize, pre_indexed));
|
|
check_stack_top_on_expansion();
|
|
#else
|
|
fpushs(S0_tos);
|
|
#endif // AARCH64
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_d() {
|
|
#ifdef AARCH64
|
|
str_d(D0_tos, Address(Rstack_top, -2*wordSize, pre_indexed));
|
|
check_stack_top_on_expansion();
|
|
#else
|
|
fpushd(D0_tos);
|
|
#endif // AARCH64
|
|
}
|
|
|
|
// Transition state -> vtos. Blows Rtemp.
|
|
void InterpreterMacroAssembler::push(TosState state) {
|
|
interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
|
|
switch (state) {
|
|
case atos: push_ptr(R0_tos); break;
|
|
case btos: // fall through
|
|
case ztos: // fall through
|
|
case ctos: // fall through
|
|
case stos: // fall through
|
|
case itos: push_i(R0_tos); break;
|
|
#ifdef AARCH64
|
|
case ltos: push_l(R0_tos); break;
|
|
#else
|
|
case ltos: push_l(R0_tos_lo, R1_tos_hi); break;
|
|
#endif // AARCH64
|
|
#ifdef __SOFTFP__
|
|
case ftos: push_i(R0_tos); break;
|
|
case dtos: push_l(R0_tos_lo, R1_tos_hi); break;
|
|
#else
|
|
case ftos: push_f(); break;
|
|
case dtos: push_d(); break;
|
|
#endif // __SOFTFP__
|
|
case vtos: /* nothing to do */ break;
|
|
default : ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef AARCH64
|
|
|
|
// Converts return value in R0/R1 (interpreter calling conventions) to TOS cached value.
|
|
void InterpreterMacroAssembler::convert_retval_to_tos(TosState state) {
|
|
#if (!defined __SOFTFP__ && !defined __ABI_HARD__)
|
|
// According to interpreter calling conventions, result is returned in R0/R1,
|
|
// but templates expect ftos in S0, and dtos in D0.
|
|
if (state == ftos) {
|
|
fmsr(S0_tos, R0);
|
|
} else if (state == dtos) {
|
|
fmdrr(D0_tos, R0, R1);
|
|
}
|
|
#endif // !__SOFTFP__ && !__ABI_HARD__
|
|
}
|
|
|
|
// Converts TOS cached value to return value in R0/R1 (according to interpreter calling conventions).
|
|
void InterpreterMacroAssembler::convert_tos_to_retval(TosState state) {
|
|
#if (!defined __SOFTFP__ && !defined __ABI_HARD__)
|
|
// According to interpreter calling conventions, result is returned in R0/R1,
|
|
// so ftos (S0) and dtos (D0) are moved to R0/R1.
|
|
if (state == ftos) {
|
|
fmrs(R0, S0_tos);
|
|
} else if (state == dtos) {
|
|
fmrrd(R0, R1, D0_tos);
|
|
}
|
|
#endif // !__SOFTFP__ && !__ABI_HARD__
|
|
}
|
|
|
|
#endif // !AARCH64
|
|
|
|
|
|
// Helpers for swap and dup
|
|
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
|
|
ldr(val, Address(Rstack_top, Interpreter::expr_offset_in_bytes(n)));
|
|
}
|
|
|
|
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
|
|
str(val, Address(Rstack_top, Interpreter::expr_offset_in_bytes(n)));
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
|
|
#ifdef AARCH64
|
|
check_no_cached_stack_top(Rtemp);
|
|
save_stack_top();
|
|
cut_sp_before_call();
|
|
mov(Rparams, Rstack_top);
|
|
#endif // AARCH64
|
|
|
|
// set sender sp
|
|
mov(Rsender_sp, SP);
|
|
|
|
#ifndef AARCH64
|
|
// record last_sp
|
|
str(Rsender_sp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
|
|
#endif // !AARCH64
|
|
}
|
|
|
|
// Jump to from_interpreted entry of a call unless single stepping is possible
|
|
// in this thread in which case we must call the i2i entry
|
|
void InterpreterMacroAssembler::jump_from_interpreted(Register method) {
|
|
assert_different_registers(method, Rtemp);
|
|
|
|
prepare_to_jump_from_interpreted();
|
|
|
|
if (can_post_interpreter_events()) {
|
|
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
|
|
// compiled code in threads for which the event is enabled. Check here for
|
|
// interp_only_mode if these events CAN be enabled.
|
|
|
|
ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
|
|
#ifdef AARCH64
|
|
{
|
|
Label not_interp_only_mode;
|
|
|
|
cbz(Rtemp, not_interp_only_mode);
|
|
indirect_jump(Address(method, Method::interpreter_entry_offset()), Rtemp);
|
|
|
|
bind(not_interp_only_mode);
|
|
}
|
|
#else
|
|
cmp(Rtemp, 0);
|
|
ldr(PC, Address(method, Method::interpreter_entry_offset()), ne);
|
|
#endif // AARCH64
|
|
}
|
|
|
|
indirect_jump(Address(method, Method::from_interpreted_offset()), Rtemp);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::restore_dispatch() {
|
|
mov_slow(RdispatchTable, (address)Interpreter::dispatch_table(vtos));
|
|
}
|
|
|
|
|
|
// The following two routines provide a hook so that an implementation
|
|
// can schedule the dispatch in two parts.
|
|
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
|
|
// Nothing ARM-specific to be done here.
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
|
|
dispatch_next(state, step);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_base(TosState state,
|
|
DispatchTableMode table_mode,
|
|
bool verifyoop) {
|
|
if (VerifyActivationFrameSize) {
|
|
Label L;
|
|
#ifdef AARCH64
|
|
mov(Rtemp, SP);
|
|
sub(Rtemp, FP, Rtemp);
|
|
#else
|
|
sub(Rtemp, FP, SP);
|
|
#endif // AARCH64
|
|
int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
|
|
cmp(Rtemp, min_frame_size);
|
|
b(L, ge);
|
|
stop("broken stack frame");
|
|
bind(L);
|
|
}
|
|
|
|
if (verifyoop) {
|
|
interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
|
|
}
|
|
|
|
if((state == itos) || (state == btos) || (state == ztos) || (state == ctos) || (state == stos)) {
|
|
zap_high_non_significant_bits(R0_tos);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
Label L;
|
|
mov_slow(Rtemp, (address)Interpreter::dispatch_table(vtos));
|
|
cmp(Rtemp, RdispatchTable);
|
|
b(L, eq);
|
|
stop("invalid RdispatchTable");
|
|
bind(L);
|
|
#endif
|
|
|
|
if (table_mode == DispatchDefault) {
|
|
if (state == vtos) {
|
|
indirect_jump(Address::indexed_ptr(RdispatchTable, R3_bytecode), Rtemp);
|
|
} else {
|
|
#ifdef AARCH64
|
|
sub(Rtemp, R3_bytecode, (Interpreter::distance_from_dispatch_table(vtos) -
|
|
Interpreter::distance_from_dispatch_table(state)));
|
|
indirect_jump(Address::indexed_ptr(RdispatchTable, Rtemp), Rtemp);
|
|
#else
|
|
// on 32-bit ARM this method is faster than the one above.
|
|
sub(Rtemp, RdispatchTable, (Interpreter::distance_from_dispatch_table(vtos) -
|
|
Interpreter::distance_from_dispatch_table(state)) * wordSize);
|
|
indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
|
|
#endif
|
|
}
|
|
} else {
|
|
assert(table_mode == DispatchNormal, "invalid dispatch table mode");
|
|
address table = (address) Interpreter::normal_table(state);
|
|
mov_slow(Rtemp, table);
|
|
indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
|
|
}
|
|
|
|
nop(); // to avoid filling CPU pipeline with invalid instructions
|
|
nop();
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_only(TosState state) {
|
|
dispatch_base(state, DispatchDefault);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
|
|
dispatch_base(state, DispatchNormal);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
|
|
dispatch_base(state, DispatchNormal, false);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
|
|
// load next bytecode and advance Rbcp
|
|
ldrb(R3_bytecode, Address(Rbcp, step, pre_indexed));
|
|
dispatch_base(state, DispatchDefault);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::narrow(Register result) {
|
|
// mask integer result to narrower return type.
|
|
const Register Rtmp = R2;
|
|
|
|
// get method type
|
|
ldr(Rtmp, Address(Rmethod, Method::const_offset()));
|
|
ldrb(Rtmp, Address(Rtmp, ConstMethod::result_type_offset()));
|
|
|
|
Label notBool, notByte, notChar, done;
|
|
cmp(Rtmp, T_INT);
|
|
b(done, eq);
|
|
|
|
cmp(Rtmp, T_BOOLEAN);
|
|
b(notBool, ne);
|
|
and_32(result, result, 1);
|
|
b(done);
|
|
|
|
bind(notBool);
|
|
cmp(Rtmp, T_BYTE);
|
|
b(notByte, ne);
|
|
sign_extend(result, result, 8);
|
|
b(done);
|
|
|
|
bind(notByte);
|
|
cmp(Rtmp, T_CHAR);
|
|
b(notChar, ne);
|
|
zero_extend(result, result, 16);
|
|
b(done);
|
|
|
|
bind(notChar);
|
|
// cmp(Rtmp, T_SHORT);
|
|
// b(done, ne);
|
|
sign_extend(result, result, 16);
|
|
|
|
// Nothing to do
|
|
bind(done);
|
|
}
|
|
|
|
// remove activation
|
|
//
|
|
// Unlock the receiver if this is a synchronized method.
|
|
// Unlock any Java monitors from syncronized blocks.
|
|
// Remove the activation from the stack.
|
|
//
|
|
// If there are locked Java monitors
|
|
// If throw_monitor_exception
|
|
// throws IllegalMonitorStateException
|
|
// Else if install_monitor_exception
|
|
// installs IllegalMonitorStateException
|
|
// Else
|
|
// no error processing
|
|
void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
|
|
bool throw_monitor_exception,
|
|
bool install_monitor_exception,
|
|
bool notify_jvmdi) {
|
|
Label unlock, unlocked, no_unlock;
|
|
|
|
// Note: Registers R0, R1, S0 and D0 (TOS cached value) may be in use for the result.
|
|
|
|
const Address do_not_unlock_if_synchronized(Rthread,
|
|
JavaThread::do_not_unlock_if_synchronized_offset());
|
|
|
|
const Register Rflag = R2;
|
|
const Register Raccess_flags = R3;
|
|
|
|
restore_method();
|
|
|
|
ldrb(Rflag, do_not_unlock_if_synchronized);
|
|
|
|
// get method access flags
|
|
ldr_u32(Raccess_flags, Address(Rmethod, Method::access_flags_offset()));
|
|
|
|
strb(zero_register(Rtemp), do_not_unlock_if_synchronized); // reset the flag
|
|
|
|
// check if method is synchronized
|
|
|
|
tbz(Raccess_flags, JVM_ACC_SYNCHRONIZED_BIT, unlocked);
|
|
|
|
// Don't unlock anything if the _do_not_unlock_if_synchronized flag is set.
|
|
cbnz(Rflag, no_unlock);
|
|
|
|
// unlock monitor
|
|
push(state); // save result
|
|
|
|
// BasicObjectLock will be first in list, since this is a synchronized method. However, need
|
|
// to check that the object has not been unlocked by an explicit monitorexit bytecode.
|
|
|
|
const Register Rmonitor = R1; // fixed in unlock_object()
|
|
const Register Robj = R2;
|
|
|
|
// address of first monitor
|
|
sub(Rmonitor, FP, - frame::interpreter_frame_monitor_block_bottom_offset * wordSize + (int)sizeof(BasicObjectLock));
|
|
|
|
ldr(Robj, Address(Rmonitor, BasicObjectLock::obj_offset_in_bytes()));
|
|
cbnz(Robj, unlock);
|
|
|
|
pop(state);
|
|
|
|
if (throw_monitor_exception) {
|
|
// Entry already unlocked, need to throw exception
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
|
|
should_not_reach_here();
|
|
} else {
|
|
// Monitor already unlocked during a stack unroll.
|
|
// If requested, install an illegal_monitor_state_exception.
|
|
// Continue with stack unrolling.
|
|
if (install_monitor_exception) {
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
|
|
}
|
|
b(unlocked);
|
|
}
|
|
|
|
|
|
// Exception case for the check that all monitors are unlocked.
|
|
const Register Rcur = R2;
|
|
Label restart_check_monitors_unlocked, exception_monitor_is_still_locked;
|
|
|
|
bind(exception_monitor_is_still_locked);
|
|
// Monitor entry is still locked, need to throw exception.
|
|
// Rcur: monitor entry.
|
|
|
|
if (throw_monitor_exception) {
|
|
// Throw exception
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
|
|
should_not_reach_here();
|
|
} else {
|
|
// Stack unrolling. Unlock object and install illegal_monitor_exception
|
|
// Unlock does not block, so don't have to worry about the frame
|
|
|
|
push(state);
|
|
mov(R1, Rcur);
|
|
unlock_object(R1);
|
|
|
|
if (install_monitor_exception) {
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
|
|
}
|
|
|
|
pop(state);
|
|
b(restart_check_monitors_unlocked);
|
|
}
|
|
|
|
bind(unlock);
|
|
unlock_object(Rmonitor);
|
|
pop(state);
|
|
|
|
// Check that for block-structured locking (i.e., that all locked objects has been unlocked)
|
|
bind(unlocked);
|
|
|
|
// Check that all monitors are unlocked
|
|
{
|
|
Label loop;
|
|
|
|
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
|
|
const Register Rbottom = R3;
|
|
const Register Rcur_obj = Rtemp;
|
|
|
|
bind(restart_check_monitors_unlocked);
|
|
|
|
ldr(Rcur, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
|
|
// points to current entry, starting with top-most entry
|
|
sub(Rbottom, FP, -frame::interpreter_frame_monitor_block_bottom_offset * wordSize);
|
|
// points to word before bottom of monitor block
|
|
|
|
cmp(Rcur, Rbottom); // check if there are no monitors
|
|
#ifndef AARCH64
|
|
ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
|
|
// prefetch monitor's object
|
|
#endif // !AARCH64
|
|
b(no_unlock, eq);
|
|
|
|
bind(loop);
|
|
#ifdef AARCH64
|
|
ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()));
|
|
#endif // AARCH64
|
|
// check if current entry is used
|
|
cbnz(Rcur_obj, exception_monitor_is_still_locked);
|
|
|
|
add(Rcur, Rcur, entry_size); // otherwise advance to next entry
|
|
cmp(Rcur, Rbottom); // check if bottom reached
|
|
#ifndef AARCH64
|
|
ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
|
|
// prefetch monitor's object
|
|
#endif // !AARCH64
|
|
b(loop, ne); // if not at bottom then check this entry
|
|
}
|
|
|
|
bind(no_unlock);
|
|
|
|
// jvmti support
|
|
if (notify_jvmdi) {
|
|
notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
|
|
} else {
|
|
notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
|
|
}
|
|
|
|
// remove activation
|
|
#ifdef AARCH64
|
|
ldr(Rtemp, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
|
|
ldp(FP, LR, Address(FP));
|
|
mov(SP, Rtemp);
|
|
#else
|
|
mov(Rtemp, FP);
|
|
ldmia(FP, RegisterSet(FP) | RegisterSet(LR));
|
|
ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize));
|
|
#endif
|
|
|
|
if (ret_addr != LR) {
|
|
mov(ret_addr, LR);
|
|
}
|
|
}
|
|
|
|
|
|
// At certain points in the method invocation the monitor of
|
|
// synchronized methods hasn't been entered yet.
|
|
// To correctly handle exceptions at these points, we set the thread local
|
|
// variable _do_not_unlock_if_synchronized to true. The remove_activation will
|
|
// check this flag.
|
|
void InterpreterMacroAssembler::set_do_not_unlock_if_synchronized(bool flag, Register tmp) {
|
|
const Address do_not_unlock_if_synchronized(Rthread,
|
|
JavaThread::do_not_unlock_if_synchronized_offset());
|
|
if (flag) {
|
|
mov(tmp, 1);
|
|
strb(tmp, do_not_unlock_if_synchronized);
|
|
} else {
|
|
strb(zero_register(tmp), do_not_unlock_if_synchronized);
|
|
}
|
|
}
|
|
|
|
// Lock object
|
|
//
|
|
// Argument: R1 : Points to BasicObjectLock to be used for locking.
|
|
// Must be initialized with object to lock.
|
|
// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR. Calls VM.
|
|
void InterpreterMacroAssembler::lock_object(Register Rlock) {
|
|
assert(Rlock == R1, "the second argument");
|
|
|
|
if (UseHeavyMonitors) {
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), Rlock);
|
|
} else {
|
|
Label done;
|
|
|
|
const Register Robj = R2;
|
|
const Register Rmark = R3;
|
|
assert_different_registers(Robj, Rmark, Rlock, R0, Rtemp);
|
|
|
|
const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
|
|
const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
|
|
const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
|
|
|
|
Label already_locked, slow_case;
|
|
|
|
// Load object pointer
|
|
ldr(Robj, Address(Rlock, obj_offset));
|
|
|
|
if (UseBiasedLocking) {
|
|
biased_locking_enter(Robj, Rmark/*scratched*/, R0, false, Rtemp, done, slow_case);
|
|
}
|
|
|
|
#ifdef AARCH64
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "must be");
|
|
ldr(Rmark, Robj);
|
|
|
|
// Test if object is already locked
|
|
assert(markOopDesc::unlocked_value == 1, "adjust this code");
|
|
tbz(Rmark, exact_log2(markOopDesc::unlocked_value), already_locked);
|
|
|
|
#else // AARCH64
|
|
|
|
// On MP platforms the next load could return a 'stale' value if the memory location has been modified by another thread.
|
|
// That would be acceptable as ether CAS or slow case path is taken in that case.
|
|
// Exception to that is if the object is locked by the calling thread, then the recursive test will pass (guaranteed as
|
|
// loads are satisfied from a store queue if performed on the same processor).
|
|
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "must be");
|
|
ldr(Rmark, Address(Robj, oopDesc::mark_offset_in_bytes()));
|
|
|
|
// Test if object is already locked
|
|
tst(Rmark, markOopDesc::unlocked_value);
|
|
b(already_locked, eq);
|
|
|
|
#endif // !AARCH64
|
|
// Save old object->mark() into BasicLock's displaced header
|
|
str(Rmark, Address(Rlock, mark_offset));
|
|
|
|
cas_for_lock_acquire(Rmark, Rlock, Robj, Rtemp, slow_case);
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintBiasedLockingStatistics) {
|
|
cond_atomic_inc32(al, BiasedLocking::fast_path_entry_count_addr());
|
|
}
|
|
#endif //!PRODUCT
|
|
|
|
b(done);
|
|
|
|
// If we got here that means the object is locked by ether calling thread or another thread.
|
|
bind(already_locked);
|
|
// Handling of locked objects: recursive locks and slow case.
|
|
|
|
// Fast check for recursive lock.
|
|
//
|
|
// Can apply the optimization only if this is a stack lock
|
|
// allocated in this thread. For efficiency, we can focus on
|
|
// recently allocated stack locks (instead of reading the stack
|
|
// base and checking whether 'mark' points inside the current
|
|
// thread stack):
|
|
// 1) (mark & 3) == 0
|
|
// 2) SP <= mark < SP + os::pagesize()
|
|
//
|
|
// Warning: SP + os::pagesize can overflow the stack base. We must
|
|
// neither apply the optimization for an inflated lock allocated
|
|
// just above the thread stack (this is why condition 1 matters)
|
|
// nor apply the optimization if the stack lock is inside the stack
|
|
// of another thread. The latter is avoided even in case of overflow
|
|
// because we have guard pages at the end of all stacks. Hence, if
|
|
// we go over the stack base and hit the stack of another thread,
|
|
// this should not be in a writeable area that could contain a
|
|
// stack lock allocated by that thread. As a consequence, a stack
|
|
// lock less than page size away from SP is guaranteed to be
|
|
// owned by the current thread.
|
|
//
|
|
// Note: assuming SP is aligned, we can check the low bits of
|
|
// (mark-SP) instead of the low bits of mark. In that case,
|
|
// assuming page size is a power of 2, we can merge the two
|
|
// conditions into a single test:
|
|
// => ((mark - SP) & (3 - os::pagesize())) == 0
|
|
|
|
#ifdef AARCH64
|
|
// Use the single check since the immediate is OK for AARCH64
|
|
sub(R0, Rmark, Rstack_top);
|
|
intptr_t mask = ((intptr_t)3) - ((intptr_t)os::vm_page_size());
|
|
Assembler::LogicalImmediate imm(mask, false);
|
|
ands(R0, R0, imm);
|
|
|
|
// For recursive case store 0 into lock record.
|
|
// It is harmless to store it unconditionally as lock record contains some garbage
|
|
// value in its _displaced_header field by this moment.
|
|
str(ZR, Address(Rlock, mark_offset));
|
|
|
|
#else // AARCH64
|
|
// (3 - os::pagesize()) cannot be encoded as an ARM immediate operand.
|
|
// Check independently the low bits and the distance to SP.
|
|
// -1- test low 2 bits
|
|
movs(R0, AsmOperand(Rmark, lsl, 30));
|
|
// -2- test (mark - SP) if the low two bits are 0
|
|
sub(R0, Rmark, SP, eq);
|
|
movs(R0, AsmOperand(R0, lsr, exact_log2(os::vm_page_size())), eq);
|
|
// If still 'eq' then recursive locking OK: store 0 into lock record
|
|
str(R0, Address(Rlock, mark_offset), eq);
|
|
|
|
#endif // AARCH64
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintBiasedLockingStatistics) {
|
|
cond_atomic_inc32(eq, BiasedLocking::fast_path_entry_count_addr());
|
|
}
|
|
#endif // !PRODUCT
|
|
|
|
b(done, eq);
|
|
|
|
bind(slow_case);
|
|
|
|
// Call the runtime routine for slow case
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), Rlock);
|
|
|
|
bind(done);
|
|
}
|
|
}
|
|
|
|
|
|
// Unlocks an object. Used in monitorexit bytecode and remove_activation.
|
|
//
|
|
// Argument: R1: Points to BasicObjectLock structure for lock
|
|
// Throw an IllegalMonitorException if object is not locked by current thread
|
|
// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR. Calls VM.
|
|
void InterpreterMacroAssembler::unlock_object(Register Rlock) {
|
|
assert(Rlock == R1, "the second argument");
|
|
|
|
if (UseHeavyMonitors) {
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), Rlock);
|
|
} else {
|
|
Label done, slow_case;
|
|
|
|
const Register Robj = R2;
|
|
const Register Rmark = R3;
|
|
const Register Rresult = R0;
|
|
assert_different_registers(Robj, Rmark, Rlock, R0, Rtemp);
|
|
|
|
const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
|
|
const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
|
|
const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
|
|
|
|
const Register Rzero = zero_register(Rtemp);
|
|
|
|
// Load oop into Robj
|
|
ldr(Robj, Address(Rlock, obj_offset));
|
|
|
|
// Free entry
|
|
str(Rzero, Address(Rlock, obj_offset));
|
|
|
|
if (UseBiasedLocking) {
|
|
biased_locking_exit(Robj, Rmark, done);
|
|
}
|
|
|
|
// Load the old header from BasicLock structure
|
|
ldr(Rmark, Address(Rlock, mark_offset));
|
|
|
|
// Test for recursion (zero mark in BasicLock)
|
|
cbz(Rmark, done);
|
|
|
|
bool allow_fallthrough_on_failure = true;
|
|
|
|
cas_for_lock_release(Rlock, Rmark, Robj, Rtemp, slow_case, allow_fallthrough_on_failure);
|
|
|
|
b(done, eq);
|
|
|
|
bind(slow_case);
|
|
|
|
// Call the runtime routine for slow case.
|
|
str(Robj, Address(Rlock, obj_offset)); // restore obj
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), Rlock);
|
|
|
|
bind(done);
|
|
}
|
|
}
|
|
|
|
|
|
// Test ImethodDataPtr. If it is null, continue at the specified label
|
|
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
ldr(mdp, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
|
|
cbz(mdp, zero_continue);
|
|
}
|
|
|
|
|
|
// Set the method data pointer for the current bcp.
|
|
// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR.
|
|
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
Label set_mdp;
|
|
|
|
// Test MDO to avoid the call if it is NULL.
|
|
ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
|
|
cbz(Rtemp, set_mdp);
|
|
|
|
mov(R0, Rmethod);
|
|
mov(R1, Rbcp);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R0, R1);
|
|
// R0/W0: mdi
|
|
|
|
// mdo is guaranteed to be non-zero here, we checked for it before the call.
|
|
ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
|
|
add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()));
|
|
add_ptr_scaled_int32(Rtemp, Rtemp, R0, 0);
|
|
|
|
bind(set_mdp);
|
|
str(Rtemp, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::verify_method_data_pointer() {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
#ifdef ASSERT
|
|
Label verify_continue;
|
|
save_caller_save_registers();
|
|
|
|
const Register Rmdp = R2;
|
|
test_method_data_pointer(Rmdp, verify_continue); // If mdp is zero, continue
|
|
|
|
// If the mdp is valid, it will point to a DataLayout header which is
|
|
// consistent with the bcp. The converse is highly probable also.
|
|
|
|
ldrh(R3, Address(Rmdp, DataLayout::bci_offset()));
|
|
ldr(Rtemp, Address(Rmethod, Method::const_offset()));
|
|
add(R3, R3, Rtemp);
|
|
add(R3, R3, in_bytes(ConstMethod::codes_offset()));
|
|
cmp(R3, Rbcp);
|
|
b(verify_continue, eq);
|
|
|
|
mov(R0, Rmethod);
|
|
mov(R1, Rbcp);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), R0, R1, Rmdp);
|
|
|
|
bind(verify_continue);
|
|
restore_caller_save_registers();
|
|
#endif // ASSERT
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int offset, Register value) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
assert_different_registers(mdp_in, value);
|
|
str(value, Address(mdp_in, offset));
|
|
}
|
|
|
|
|
|
// Increments mdp data. Sets bumped_count register to adjusted counter.
|
|
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
|
|
int offset,
|
|
Register bumped_count,
|
|
bool decrement) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
|
|
// Counter address
|
|
Address data(mdp_in, offset);
|
|
assert_different_registers(mdp_in, bumped_count);
|
|
|
|
increment_mdp_data_at(data, bumped_count, decrement);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
|
|
assert_different_registers(mdp_in, Rtemp);
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
assert((0 < flag_byte_constant) && (flag_byte_constant < (1 << BitsPerByte)), "flag mask is out of range");
|
|
|
|
// Set the flag
|
|
ldrb(Rtemp, Address(mdp_in, in_bytes(DataLayout::flags_offset())));
|
|
orr(Rtemp, Rtemp, (unsigned)flag_byte_constant);
|
|
strb(Rtemp, Address(mdp_in, in_bytes(DataLayout::flags_offset())));
|
|
}
|
|
|
|
|
|
// Increments mdp data. Sets bumped_count register to adjusted counter.
|
|
void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
|
|
Register bumped_count,
|
|
bool decrement) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
|
|
ldr(bumped_count, data);
|
|
if (decrement) {
|
|
// Decrement the register. Set condition codes.
|
|
subs(bumped_count, bumped_count, DataLayout::counter_increment);
|
|
// Avoid overflow.
|
|
#ifdef AARCH64
|
|
assert(DataLayout::counter_increment == 1, "required for cinc");
|
|
cinc(bumped_count, bumped_count, pl);
|
|
#else
|
|
add(bumped_count, bumped_count, DataLayout::counter_increment, pl);
|
|
#endif // AARCH64
|
|
} else {
|
|
// Increment the register. Set condition codes.
|
|
adds(bumped_count, bumped_count, DataLayout::counter_increment);
|
|
// Avoid overflow.
|
|
#ifdef AARCH64
|
|
assert(DataLayout::counter_increment == 1, "required for cinv");
|
|
cinv(bumped_count, bumped_count, mi); // inverts 0x80..00 back to 0x7f..ff
|
|
#else
|
|
sub(bumped_count, bumped_count, DataLayout::counter_increment, mi);
|
|
#endif // AARCH64
|
|
}
|
|
str(bumped_count, data);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
|
|
int offset,
|
|
Register value,
|
|
Register test_value_out,
|
|
Label& not_equal_continue) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
assert_different_registers(mdp_in, test_value_out, value);
|
|
|
|
ldr(test_value_out, Address(mdp_in, offset));
|
|
cmp(test_value_out, value);
|
|
|
|
b(not_equal_continue, ne);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp, Register reg_temp) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
assert_different_registers(mdp_in, reg_temp);
|
|
|
|
ldr(reg_temp, Address(mdp_in, offset_of_disp));
|
|
add(mdp_in, mdp_in, reg_temp);
|
|
str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg_offset, Register reg_tmp) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
assert_different_registers(mdp_in, reg_offset, reg_tmp);
|
|
|
|
ldr(reg_tmp, Address(mdp_in, reg_offset));
|
|
add(mdp_in, mdp_in, reg_tmp);
|
|
str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
add(mdp_in, mdp_in, constant);
|
|
str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
|
|
}
|
|
|
|
|
|
// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
|
|
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
assert_different_registers(return_bci, R0, R1, R2, R3, Rtemp);
|
|
|
|
mov(R1, return_bci);
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), R1);
|
|
}
|
|
|
|
|
|
// Sets mdp, bumped_count registers, blows Rtemp.
|
|
void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
|
|
assert_different_registers(mdp, bumped_count);
|
|
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
// Otherwise, assign to mdp
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// We are taking a branch. Increment the taken count.
|
|
increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()), bumped_count);
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()), Rtemp);
|
|
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
// Sets mdp, blows Rtemp.
|
|
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
|
|
assert_different_registers(mdp, Rtemp);
|
|
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// We are taking a branch. Increment the not taken count.
|
|
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Rtemp);
|
|
|
|
// The method data pointer needs to be updated to correspond to the next bytecode
|
|
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
|
|
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
// Sets mdp, blows Rtemp.
|
|
void InterpreterMacroAssembler::profile_call(Register mdp) {
|
|
assert_different_registers(mdp, Rtemp);
|
|
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// We are making a call. Increment the count.
|
|
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
|
|
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
// Sets mdp, blows Rtemp.
|
|
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// We are making a call. Increment the count.
|
|
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
|
|
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
// Sets mdp, blows Rtemp.
|
|
void InterpreterMacroAssembler::profile_virtual_call(Register mdp, Register receiver, bool receiver_can_be_null) {
|
|
assert_different_registers(mdp, receiver, Rtemp);
|
|
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
Label skip_receiver_profile;
|
|
if (receiver_can_be_null) {
|
|
Label not_null;
|
|
cbnz(receiver, not_null);
|
|
// We are making a call. Increment the count for null receiver.
|
|
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
|
|
b(skip_receiver_profile);
|
|
bind(not_null);
|
|
}
|
|
|
|
// Record the receiver type.
|
|
record_klass_in_profile(receiver, mdp, Rtemp, true);
|
|
bind(skip_receiver_profile);
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::record_klass_in_profile_helper(
|
|
Register receiver, Register mdp,
|
|
Register reg_tmp,
|
|
int start_row, Label& done, bool is_virtual_call) {
|
|
if (TypeProfileWidth == 0)
|
|
return;
|
|
|
|
assert_different_registers(receiver, mdp, reg_tmp);
|
|
|
|
int last_row = VirtualCallData::row_limit() - 1;
|
|
assert(start_row <= last_row, "must be work left to do");
|
|
// Test this row for both the receiver and for null.
|
|
// Take any of three different outcomes:
|
|
// 1. found receiver => increment count and goto done
|
|
// 2. found null => keep looking for case 1, maybe allocate this cell
|
|
// 3. found something else => keep looking for cases 1 and 2
|
|
// Case 3 is handled by a recursive call.
|
|
for (int row = start_row; row <= last_row; row++) {
|
|
Label next_test;
|
|
|
|
// See if the receiver is receiver[n].
|
|
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
|
|
|
|
test_mdp_data_at(mdp, recvr_offset, receiver, reg_tmp, next_test);
|
|
|
|
// The receiver is receiver[n]. Increment count[n].
|
|
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
|
|
increment_mdp_data_at(mdp, count_offset, reg_tmp);
|
|
b(done);
|
|
|
|
bind(next_test);
|
|
// reg_tmp now contains the receiver from the CallData.
|
|
|
|
if (row == start_row) {
|
|
Label found_null;
|
|
// Failed the equality check on receiver[n]... Test for null.
|
|
if (start_row == last_row) {
|
|
// The only thing left to do is handle the null case.
|
|
if (is_virtual_call) {
|
|
cbz(reg_tmp, found_null);
|
|
// Receiver did not match any saved receiver and there is no empty row for it.
|
|
// Increment total counter to indicate polymorphic case.
|
|
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), reg_tmp);
|
|
b(done);
|
|
bind(found_null);
|
|
} else {
|
|
cbnz(reg_tmp, done);
|
|
}
|
|
break;
|
|
}
|
|
// Since null is rare, make it be the branch-taken case.
|
|
cbz(reg_tmp, found_null);
|
|
|
|
// Put all the "Case 3" tests here.
|
|
record_klass_in_profile_helper(receiver, mdp, reg_tmp, start_row + 1, done, is_virtual_call);
|
|
|
|
// Found a null. Keep searching for a matching receiver,
|
|
// but remember that this is an empty (unused) slot.
|
|
bind(found_null);
|
|
}
|
|
}
|
|
|
|
// In the fall-through case, we found no matching receiver, but we
|
|
// observed the receiver[start_row] is NULL.
|
|
|
|
// Fill in the receiver field and increment the count.
|
|
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
|
|
set_mdp_data_at(mdp, recvr_offset, receiver);
|
|
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
|
|
mov(reg_tmp, DataLayout::counter_increment);
|
|
set_mdp_data_at(mdp, count_offset, reg_tmp);
|
|
if (start_row > 0) {
|
|
b(done);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
|
|
Register mdp,
|
|
Register reg_tmp,
|
|
bool is_virtual_call) {
|
|
assert(ProfileInterpreter, "must be profiling");
|
|
assert_different_registers(receiver, mdp, reg_tmp);
|
|
|
|
Label done;
|
|
|
|
record_klass_in_profile_helper(receiver, mdp, reg_tmp, 0, done, is_virtual_call);
|
|
|
|
bind (done);
|
|
}
|
|
|
|
// Sets mdp, blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
|
|
void InterpreterMacroAssembler::profile_ret(Register mdp, Register return_bci) {
|
|
assert_different_registers(mdp, return_bci, Rtemp, R0, R1, R2, R3);
|
|
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
uint row;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// Update the total ret count.
|
|
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
|
|
|
|
for (row = 0; row < RetData::row_limit(); row++) {
|
|
Label next_test;
|
|
|
|
// See if return_bci is equal to bci[n]:
|
|
test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
|
|
Rtemp, next_test);
|
|
|
|
// return_bci is equal to bci[n]. Increment the count.
|
|
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)), Rtemp);
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)), Rtemp);
|
|
b(profile_continue);
|
|
bind(next_test);
|
|
}
|
|
|
|
update_mdp_for_ret(return_bci);
|
|
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
// Sets mdp.
|
|
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
|
|
|
|
// The method data pointer needs to be updated.
|
|
int mdp_delta = in_bytes(BitData::bit_data_size());
|
|
if (TypeProfileCasts) {
|
|
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
|
|
}
|
|
update_mdp_by_constant(mdp, mdp_delta);
|
|
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
// Sets mdp, blows Rtemp.
|
|
void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
|
|
assert_different_registers(mdp, Rtemp);
|
|
|
|
if (ProfileInterpreter && TypeProfileCasts) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
int count_offset = in_bytes(CounterData::count_offset());
|
|
// Back up the address, since we have already bumped the mdp.
|
|
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
|
|
|
|
// *Decrement* the counter. We expect to see zero or small negatives.
|
|
increment_mdp_data_at(mdp, count_offset, Rtemp, true);
|
|
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
// Sets mdp, blows Rtemp.
|
|
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass)
|
|
{
|
|
assert_different_registers(mdp, klass, Rtemp);
|
|
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// The method data pointer needs to be updated.
|
|
int mdp_delta = in_bytes(BitData::bit_data_size());
|
|
if (TypeProfileCasts) {
|
|
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
|
|
|
|
// Record the object type.
|
|
record_klass_in_profile(klass, mdp, Rtemp, false);
|
|
}
|
|
update_mdp_by_constant(mdp, mdp_delta);
|
|
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
// Sets mdp, blows Rtemp.
|
|
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
|
|
assert_different_registers(mdp, Rtemp);
|
|
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// Update the default case count
|
|
increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()), Rtemp);
|
|
|
|
// The method data pointer needs to be updated.
|
|
update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()), Rtemp);
|
|
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
// Sets mdp. Blows reg_tmp1, reg_tmp2. Index could be the same as reg_tmp2.
|
|
void InterpreterMacroAssembler::profile_switch_case(Register mdp, Register index, Register reg_tmp1, Register reg_tmp2) {
|
|
assert_different_registers(mdp, reg_tmp1, reg_tmp2);
|
|
assert_different_registers(mdp, reg_tmp1, index);
|
|
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
const int count_offset = in_bytes(MultiBranchData::case_array_offset()) +
|
|
in_bytes(MultiBranchData::relative_count_offset());
|
|
|
|
const int displacement_offset = in_bytes(MultiBranchData::case_array_offset()) +
|
|
in_bytes(MultiBranchData::relative_displacement_offset());
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// Build the base (index * per_case_size_in_bytes())
|
|
logical_shift_left(reg_tmp1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
|
|
|
|
// Update the case count
|
|
add(reg_tmp1, reg_tmp1, count_offset);
|
|
increment_mdp_data_at(Address(mdp, reg_tmp1), reg_tmp2);
|
|
|
|
// The method data pointer needs to be updated.
|
|
add(reg_tmp1, reg_tmp1, displacement_offset - count_offset);
|
|
update_mdp_by_offset(mdp, reg_tmp1, reg_tmp2);
|
|
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::byteswap_u32(Register r, Register rtmp1, Register rtmp2) {
|
|
#ifdef AARCH64
|
|
rev_w(r, r);
|
|
#else
|
|
if (VM_Version::supports_rev()) {
|
|
rev(r, r);
|
|
} else {
|
|
eor(rtmp1, r, AsmOperand(r, ror, 16));
|
|
mvn(rtmp2, 0x0000ff00);
|
|
andr(rtmp1, rtmp2, AsmOperand(rtmp1, lsr, 8));
|
|
eor(r, rtmp1, AsmOperand(r, ror, 8));
|
|
}
|
|
#endif // AARCH64
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::inc_global_counter(address address_of_counter, int offset, Register tmp1, Register tmp2, bool avoid_overflow) {
|
|
const intx addr = (intx) (address_of_counter + offset);
|
|
|
|
assert ((addr & 0x3) == 0, "address of counter should be aligned");
|
|
const intx offset_mask = right_n_bits(AARCH64_ONLY(12 + 2) NOT_AARCH64(12));
|
|
|
|
const address base = (address) (addr & ~offset_mask);
|
|
const int offs = (int) (addr & offset_mask);
|
|
|
|
const Register addr_base = tmp1;
|
|
const Register val = tmp2;
|
|
|
|
mov_slow(addr_base, base);
|
|
ldr_s32(val, Address(addr_base, offs));
|
|
|
|
if (avoid_overflow) {
|
|
adds_32(val, val, 1);
|
|
#ifdef AARCH64
|
|
Label L;
|
|
b(L, mi);
|
|
str_32(val, Address(addr_base, offs));
|
|
bind(L);
|
|
#else
|
|
str(val, Address(addr_base, offs), pl);
|
|
#endif // AARCH64
|
|
} else {
|
|
add_32(val, val, 1);
|
|
str_32(val, Address(addr_base, offs));
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char *file, int line) {
|
|
if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop", file, line); }
|
|
}
|
|
|
|
// Inline assembly for:
|
|
//
|
|
// if (thread is in interp_only_mode) {
|
|
// InterpreterRuntime::post_method_entry();
|
|
// }
|
|
// if (DTraceMethodProbes) {
|
|
// SharedRuntime::dtrace_method_entry(method, receiver);
|
|
// }
|
|
// if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
|
|
// SharedRuntime::rc_trace_method_entry(method, receiver);
|
|
// }
|
|
|
|
void InterpreterMacroAssembler::notify_method_entry() {
|
|
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
|
|
// track stack depth. If it is possible to enter interp_only_mode we add
|
|
// the code to check if the event should be sent.
|
|
if (can_post_interpreter_events()) {
|
|
Label L;
|
|
|
|
ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
|
|
cbz(Rtemp, L);
|
|
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
|
|
|
|
bind(L);
|
|
}
|
|
|
|
// Note: Disable DTrace runtime check for now to eliminate overhead on each method entry
|
|
if (DTraceMethodProbes) {
|
|
Label Lcontinue;
|
|
|
|
ldrb_global(Rtemp, (address)&DTraceMethodProbes);
|
|
cbz(Rtemp, Lcontinue);
|
|
|
|
mov(R0, Rthread);
|
|
mov(R1, Rmethod);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), R0, R1);
|
|
|
|
bind(Lcontinue);
|
|
}
|
|
// RedefineClasses() tracing support for obsolete method entry
|
|
if (log_is_enabled(Trace, redefine, class, obsolete)) {
|
|
mov(R0, Rthread);
|
|
mov(R1, Rmethod);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
|
|
R0, R1);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::notify_method_exit(
|
|
TosState state, NotifyMethodExitMode mode,
|
|
bool native, Register result_lo, Register result_hi, FloatRegister result_fp) {
|
|
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
|
|
// track stack depth. If it is possible to enter interp_only_mode we add
|
|
// the code to check if the event should be sent.
|
|
if (mode == NotifyJVMTI && can_post_interpreter_events()) {
|
|
Label L;
|
|
// Note: frame::interpreter_frame_result has a dependency on how the
|
|
// method result is saved across the call to post_method_exit. If this
|
|
// is changed then the interpreter_frame_result implementation will
|
|
// need to be updated too.
|
|
|
|
ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
|
|
cbz(Rtemp, L);
|
|
|
|
if (native) {
|
|
// For c++ and template interpreter push both result registers on the
|
|
// stack in native, we don't know the state.
|
|
// On AArch64 result registers are stored into the frame at known locations.
|
|
// See frame::interpreter_frame_result for code that gets the result values from here.
|
|
assert(result_lo != noreg, "result registers should be defined");
|
|
|
|
#ifdef AARCH64
|
|
assert(result_hi == noreg, "result_hi is not used on AArch64");
|
|
assert(result_fp != fnoreg, "FP result register must be defined");
|
|
|
|
str_d(result_fp, Address(FP, frame::interpreter_frame_fp_saved_result_offset * wordSize));
|
|
str(result_lo, Address(FP, frame::interpreter_frame_gp_saved_result_offset * wordSize));
|
|
#else
|
|
assert(result_hi != noreg, "result registers should be defined");
|
|
|
|
#ifdef __ABI_HARD__
|
|
assert(result_fp != fnoreg, "FP result register must be defined");
|
|
sub(SP, SP, 2 * wordSize);
|
|
fstd(result_fp, Address(SP));
|
|
#endif // __ABI_HARD__
|
|
|
|
push(RegisterSet(result_lo) | RegisterSet(result_hi));
|
|
#endif // AARCH64
|
|
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
|
|
|
|
#ifdef AARCH64
|
|
ldr_d(result_fp, Address(FP, frame::interpreter_frame_fp_saved_result_offset * wordSize));
|
|
ldr(result_lo, Address(FP, frame::interpreter_frame_gp_saved_result_offset * wordSize));
|
|
#else
|
|
pop(RegisterSet(result_lo) | RegisterSet(result_hi));
|
|
#ifdef __ABI_HARD__
|
|
fldd(result_fp, Address(SP));
|
|
add(SP, SP, 2 * wordSize);
|
|
#endif // __ABI_HARD__
|
|
#endif // AARCH64
|
|
|
|
} else {
|
|
// For the template interpreter, the value on tos is the size of the
|
|
// state. (c++ interpreter calls jvmti somewhere else).
|
|
push(state);
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
|
|
pop(state);
|
|
}
|
|
|
|
bind(L);
|
|
}
|
|
|
|
// Note: Disable DTrace runtime check for now to eliminate overhead on each method exit
|
|
if (DTraceMethodProbes) {
|
|
Label Lcontinue;
|
|
|
|
ldrb_global(Rtemp, (address)&DTraceMethodProbes);
|
|
cbz(Rtemp, Lcontinue);
|
|
|
|
push(state);
|
|
|
|
mov(R0, Rthread);
|
|
mov(R1, Rmethod);
|
|
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), R0, R1);
|
|
|
|
pop(state);
|
|
|
|
bind(Lcontinue);
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
void InterpreterMacroAssembler::trace_state(const char* msg) {
|
|
int push_size = save_caller_save_registers();
|
|
|
|
Label Lcontinue;
|
|
InlinedString Lmsg0("%s: FP=" INTPTR_FORMAT ", SP=" INTPTR_FORMAT "\n");
|
|
InlinedString Lmsg(msg);
|
|
InlinedAddress Lprintf((address)printf);
|
|
|
|
ldr_literal(R0, Lmsg0);
|
|
ldr_literal(R1, Lmsg);
|
|
mov(R2, FP);
|
|
add(R3, SP, push_size); // original SP (without saved registers)
|
|
ldr_literal(Rtemp, Lprintf);
|
|
call(Rtemp);
|
|
|
|
b(Lcontinue);
|
|
|
|
bind_literal(Lmsg0);
|
|
bind_literal(Lmsg);
|
|
bind_literal(Lprintf);
|
|
|
|
|
|
bind(Lcontinue);
|
|
|
|
restore_caller_save_registers();
|
|
}
|
|
|
|
#endif
|
|
|
|
// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
|
|
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
|
|
int increment, Address mask_addr,
|
|
Register scratch, Register scratch2,
|
|
AsmCondition cond, Label* where) {
|
|
// caution: scratch2 and base address of counter_addr can be the same
|
|
assert_different_registers(scratch, scratch2);
|
|
ldr_u32(scratch, counter_addr);
|
|
add(scratch, scratch, increment);
|
|
str_32(scratch, counter_addr);
|
|
|
|
#ifdef AARCH64
|
|
ldr_u32(scratch2, mask_addr);
|
|
ands_w(ZR, scratch, scratch2);
|
|
#else
|
|
ldr(scratch2, mask_addr);
|
|
andrs(scratch, scratch, scratch2);
|
|
#endif // AARCH64
|
|
b(*where, cond);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::get_method_counters(Register method,
|
|
Register Rcounters,
|
|
Label& skip,
|
|
bool saveRegs,
|
|
Register reg1,
|
|
Register reg2,
|
|
Register reg3) {
|
|
const Address method_counters(method, Method::method_counters_offset());
|
|
Label has_counters;
|
|
|
|
ldr(Rcounters, method_counters);
|
|
cbnz(Rcounters, has_counters);
|
|
|
|
if (saveRegs) {
|
|
// Save and restore in use caller-saved registers since they will be trashed by call_VM
|
|
assert(reg1 != noreg, "must specify reg1");
|
|
assert(reg2 != noreg, "must specify reg2");
|
|
#ifdef AARCH64
|
|
assert(reg3 != noreg, "must specify reg3");
|
|
stp(reg1, reg2, Address(Rstack_top, -2*wordSize, pre_indexed));
|
|
stp(reg3, ZR, Address(Rstack_top, -2*wordSize, pre_indexed));
|
|
#else
|
|
assert(reg3 == noreg, "must not specify reg3");
|
|
push(RegisterSet(reg1) | RegisterSet(reg2));
|
|
#endif
|
|
}
|
|
|
|
mov(R1, method);
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), R1);
|
|
|
|
if (saveRegs) {
|
|
#ifdef AARCH64
|
|
ldp(reg3, ZR, Address(Rstack_top, 2*wordSize, post_indexed));
|
|
ldp(reg1, reg2, Address(Rstack_top, 2*wordSize, post_indexed));
|
|
#else
|
|
pop(RegisterSet(reg1) | RegisterSet(reg2));
|
|
#endif
|
|
}
|
|
|
|
ldr(Rcounters, method_counters);
|
|
cbz(Rcounters, skip); // No MethodCounters created, OutOfMemory
|
|
|
|
bind(has_counters);
|
|
}
|