mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-26 14:24:46 +02:00
587 lines
20 KiB
C++
587 lines
20 KiB
C++
/*
|
|
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "gc/shared/allocTracer.hpp"
|
|
#include "gc/shared/barrierSet.inline.hpp"
|
|
#include "gc/shared/collectedHeap.hpp"
|
|
#include "gc/shared/collectedHeap.inline.hpp"
|
|
#include "gc/shared/gcLocker.inline.hpp"
|
|
#include "gc/shared/gcHeapSummary.hpp"
|
|
#include "gc/shared/gcTrace.hpp"
|
|
#include "gc/shared/gcTraceTime.inline.hpp"
|
|
#include "gc/shared/gcWhen.hpp"
|
|
#include "gc/shared/vmGCOperations.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/metaspace.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/instanceMirrorKlass.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/init.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "runtime/threadSMR.hpp"
|
|
#include "runtime/vmThread.hpp"
|
|
#include "services/heapDumper.hpp"
|
|
#include "utilities/align.hpp"
|
|
|
|
class ClassLoaderData;
|
|
|
|
#ifdef ASSERT
|
|
int CollectedHeap::_fire_out_of_memory_count = 0;
|
|
#endif
|
|
|
|
size_t CollectedHeap::_filler_array_max_size = 0;
|
|
|
|
template <>
|
|
void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
|
|
st->print_cr("GC heap %s", m.is_before ? "before" : "after");
|
|
st->print_raw(m);
|
|
}
|
|
|
|
void GCHeapLog::log_heap(CollectedHeap* heap, bool before) {
|
|
if (!should_log()) {
|
|
return;
|
|
}
|
|
|
|
double timestamp = fetch_timestamp();
|
|
MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
|
|
int index = compute_log_index();
|
|
_records[index].thread = NULL; // Its the GC thread so it's not that interesting.
|
|
_records[index].timestamp = timestamp;
|
|
_records[index].data.is_before = before;
|
|
stringStream st(_records[index].data.buffer(), _records[index].data.size());
|
|
|
|
st.print_cr("{Heap %s GC invocations=%u (full %u):",
|
|
before ? "before" : "after",
|
|
heap->total_collections(),
|
|
heap->total_full_collections());
|
|
|
|
heap->print_on(&st);
|
|
st.print_cr("}");
|
|
}
|
|
|
|
VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
|
|
size_t capacity_in_words = capacity() / HeapWordSize;
|
|
|
|
return VirtualSpaceSummary(
|
|
reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end());
|
|
}
|
|
|
|
GCHeapSummary CollectedHeap::create_heap_summary() {
|
|
VirtualSpaceSummary heap_space = create_heap_space_summary();
|
|
return GCHeapSummary(heap_space, used());
|
|
}
|
|
|
|
MetaspaceSummary CollectedHeap::create_metaspace_summary() {
|
|
const MetaspaceSizes meta_space(
|
|
MetaspaceAux::committed_bytes(),
|
|
MetaspaceAux::used_bytes(),
|
|
MetaspaceAux::reserved_bytes());
|
|
const MetaspaceSizes data_space(
|
|
MetaspaceAux::committed_bytes(Metaspace::NonClassType),
|
|
MetaspaceAux::used_bytes(Metaspace::NonClassType),
|
|
MetaspaceAux::reserved_bytes(Metaspace::NonClassType));
|
|
const MetaspaceSizes class_space(
|
|
MetaspaceAux::committed_bytes(Metaspace::ClassType),
|
|
MetaspaceAux::used_bytes(Metaspace::ClassType),
|
|
MetaspaceAux::reserved_bytes(Metaspace::ClassType));
|
|
|
|
const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary =
|
|
MetaspaceAux::chunk_free_list_summary(Metaspace::NonClassType);
|
|
const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary =
|
|
MetaspaceAux::chunk_free_list_summary(Metaspace::ClassType);
|
|
|
|
return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space,
|
|
ms_chunk_free_list_summary, class_chunk_free_list_summary);
|
|
}
|
|
|
|
void CollectedHeap::print_heap_before_gc() {
|
|
Universe::print_heap_before_gc();
|
|
if (_gc_heap_log != NULL) {
|
|
_gc_heap_log->log_heap_before(this);
|
|
}
|
|
}
|
|
|
|
void CollectedHeap::print_heap_after_gc() {
|
|
Universe::print_heap_after_gc();
|
|
if (_gc_heap_log != NULL) {
|
|
_gc_heap_log->log_heap_after(this);
|
|
}
|
|
}
|
|
|
|
void CollectedHeap::print_on_error(outputStream* st) const {
|
|
st->print_cr("Heap:");
|
|
print_extended_on(st);
|
|
st->cr();
|
|
|
|
_barrier_set->print_on(st);
|
|
}
|
|
|
|
void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
|
|
const GCHeapSummary& heap_summary = create_heap_summary();
|
|
gc_tracer->report_gc_heap_summary(when, heap_summary);
|
|
|
|
const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
|
|
gc_tracer->report_metaspace_summary(when, metaspace_summary);
|
|
}
|
|
|
|
void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) {
|
|
trace_heap(GCWhen::BeforeGC, gc_tracer);
|
|
}
|
|
|
|
void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) {
|
|
trace_heap(GCWhen::AfterGC, gc_tracer);
|
|
}
|
|
|
|
// WhiteBox API support for concurrent collectors. These are the
|
|
// default implementations, for collectors which don't support this
|
|
// feature.
|
|
bool CollectedHeap::supports_concurrent_phase_control() const {
|
|
return false;
|
|
}
|
|
|
|
const char* const* CollectedHeap::concurrent_phases() const {
|
|
static const char* const result[] = { NULL };
|
|
return result;
|
|
}
|
|
|
|
bool CollectedHeap::request_concurrent_phase(const char* phase) {
|
|
return false;
|
|
}
|
|
|
|
// Memory state functions.
|
|
|
|
|
|
CollectedHeap::CollectedHeap() :
|
|
_barrier_set(NULL),
|
|
_is_gc_active(false),
|
|
_total_collections(0),
|
|
_total_full_collections(0),
|
|
_gc_cause(GCCause::_no_gc),
|
|
_gc_lastcause(GCCause::_no_gc)
|
|
{
|
|
const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
|
|
const size_t elements_per_word = HeapWordSize / sizeof(jint);
|
|
_filler_array_max_size = align_object_size(filler_array_hdr_size() +
|
|
max_len / elements_per_word);
|
|
|
|
NOT_PRODUCT(_promotion_failure_alot_count = 0;)
|
|
NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
|
|
|
|
if (UsePerfData) {
|
|
EXCEPTION_MARK;
|
|
|
|
// create the gc cause jvmstat counters
|
|
_perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
|
|
80, GCCause::to_string(_gc_cause), CHECK);
|
|
|
|
_perf_gc_lastcause =
|
|
PerfDataManager::create_string_variable(SUN_GC, "lastCause",
|
|
80, GCCause::to_string(_gc_lastcause), CHECK);
|
|
}
|
|
|
|
// Create the ring log
|
|
if (LogEvents) {
|
|
_gc_heap_log = new GCHeapLog();
|
|
} else {
|
|
_gc_heap_log = NULL;
|
|
}
|
|
}
|
|
|
|
// This interface assumes that it's being called by the
|
|
// vm thread. It collects the heap assuming that the
|
|
// heap lock is already held and that we are executing in
|
|
// the context of the vm thread.
|
|
void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
|
|
assert(Thread::current()->is_VM_thread(), "Precondition#1");
|
|
assert(Heap_lock->is_locked(), "Precondition#2");
|
|
GCCauseSetter gcs(this, cause);
|
|
switch (cause) {
|
|
case GCCause::_heap_inspection:
|
|
case GCCause::_heap_dump:
|
|
case GCCause::_metadata_GC_threshold : {
|
|
HandleMark hm;
|
|
do_full_collection(false); // don't clear all soft refs
|
|
break;
|
|
}
|
|
case GCCause::_metadata_GC_clear_soft_refs: {
|
|
HandleMark hm;
|
|
do_full_collection(true); // do clear all soft refs
|
|
break;
|
|
}
|
|
default:
|
|
ShouldNotReachHere(); // Unexpected use of this function
|
|
}
|
|
}
|
|
|
|
MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
|
|
size_t word_size,
|
|
Metaspace::MetadataType mdtype) {
|
|
uint loop_count = 0;
|
|
uint gc_count = 0;
|
|
uint full_gc_count = 0;
|
|
|
|
assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
|
|
|
|
do {
|
|
MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
if (GCLocker::is_active_and_needs_gc()) {
|
|
// If the GCLocker is active, just expand and allocate.
|
|
// If that does not succeed, wait if this thread is not
|
|
// in a critical section itself.
|
|
result = loader_data->metaspace_non_null()->expand_and_allocate(word_size, mdtype);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
JavaThread* jthr = JavaThread::current();
|
|
if (!jthr->in_critical()) {
|
|
// Wait for JNI critical section to be exited
|
|
GCLocker::stall_until_clear();
|
|
// The GC invoked by the last thread leaving the critical
|
|
// section will be a young collection and a full collection
|
|
// is (currently) needed for unloading classes so continue
|
|
// to the next iteration to get a full GC.
|
|
continue;
|
|
} else {
|
|
if (CheckJNICalls) {
|
|
fatal("Possible deadlock due to allocating while"
|
|
" in jni critical section");
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
{ // Need lock to get self consistent gc_count's
|
|
MutexLocker ml(Heap_lock);
|
|
gc_count = Universe::heap()->total_collections();
|
|
full_gc_count = Universe::heap()->total_full_collections();
|
|
}
|
|
|
|
// Generate a VM operation
|
|
VM_CollectForMetadataAllocation op(loader_data,
|
|
word_size,
|
|
mdtype,
|
|
gc_count,
|
|
full_gc_count,
|
|
GCCause::_metadata_GC_threshold);
|
|
VMThread::execute(&op);
|
|
|
|
// If GC was locked out, try again. Check before checking success because the
|
|
// prologue could have succeeded and the GC still have been locked out.
|
|
if (op.gc_locked()) {
|
|
continue;
|
|
}
|
|
|
|
if (op.prologue_succeeded()) {
|
|
return op.result();
|
|
}
|
|
loop_count++;
|
|
if ((QueuedAllocationWarningCount > 0) &&
|
|
(loop_count % QueuedAllocationWarningCount == 0)) {
|
|
log_warning(gc, ergo)("satisfy_failed_metadata_allocation() retries %d times,"
|
|
" size=" SIZE_FORMAT, loop_count, word_size);
|
|
}
|
|
} while (true); // Until a GC is done
|
|
}
|
|
|
|
void CollectedHeap::set_barrier_set(BarrierSet* barrier_set) {
|
|
_barrier_set = barrier_set;
|
|
BarrierSet::set_bs(barrier_set);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
|
|
if (CheckMemoryInitialization && ZapUnusedHeapArea) {
|
|
for (size_t slot = 0; slot < size; slot += 1) {
|
|
assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
|
|
"Found badHeapWordValue in post-allocation check");
|
|
}
|
|
}
|
|
}
|
|
|
|
void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
|
|
if (CheckMemoryInitialization && ZapUnusedHeapArea) {
|
|
for (size_t slot = 0; slot < size; slot += 1) {
|
|
assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
|
|
"Found non badHeapWordValue in pre-allocation check");
|
|
}
|
|
}
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
#ifdef ASSERT
|
|
void CollectedHeap::check_for_valid_allocation_state() {
|
|
Thread *thread = Thread::current();
|
|
// How to choose between a pending exception and a potential
|
|
// OutOfMemoryError? Don't allow pending exceptions.
|
|
// This is a VM policy failure, so how do we exhaustively test it?
|
|
assert(!thread->has_pending_exception(),
|
|
"shouldn't be allocating with pending exception");
|
|
if (StrictSafepointChecks) {
|
|
assert(thread->allow_allocation(),
|
|
"Allocation done by thread for which allocation is blocked "
|
|
"by No_Allocation_Verifier!");
|
|
// Allocation of an oop can always invoke a safepoint,
|
|
// hence, the true argument
|
|
thread->check_for_valid_safepoint_state(true);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
HeapWord* CollectedHeap::allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size) {
|
|
|
|
// Retain tlab and allocate object in shared space if
|
|
// the amount free in the tlab is too large to discard.
|
|
if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
|
|
thread->tlab().record_slow_allocation(size);
|
|
return NULL;
|
|
}
|
|
|
|
// Discard tlab and allocate a new one.
|
|
// To minimize fragmentation, the last TLAB may be smaller than the rest.
|
|
size_t new_tlab_size = thread->tlab().compute_size(size);
|
|
|
|
thread->tlab().clear_before_allocation();
|
|
|
|
if (new_tlab_size == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
// Allocate a new TLAB...
|
|
HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
|
|
if (obj == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
AllocTracer::send_allocation_in_new_tlab(klass, obj, new_tlab_size * HeapWordSize, size * HeapWordSize, thread);
|
|
|
|
if (ZeroTLAB) {
|
|
// ..and clear it.
|
|
Copy::zero_to_words(obj, new_tlab_size);
|
|
} else {
|
|
// ...and zap just allocated object.
|
|
#ifdef ASSERT
|
|
// Skip mangling the space corresponding to the object header to
|
|
// ensure that the returned space is not considered parsable by
|
|
// any concurrent GC thread.
|
|
size_t hdr_size = oopDesc::header_size();
|
|
Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
|
|
#endif // ASSERT
|
|
}
|
|
thread->tlab().fill(obj, obj + size, new_tlab_size);
|
|
return obj;
|
|
}
|
|
|
|
size_t CollectedHeap::max_tlab_size() const {
|
|
// TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
|
|
// This restriction could be removed by enabling filling with multiple arrays.
|
|
// If we compute that the reasonable way as
|
|
// header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
|
|
// we'll overflow on the multiply, so we do the divide first.
|
|
// We actually lose a little by dividing first,
|
|
// but that just makes the TLAB somewhat smaller than the biggest array,
|
|
// which is fine, since we'll be able to fill that.
|
|
size_t max_int_size = typeArrayOopDesc::header_size(T_INT) +
|
|
sizeof(jint) *
|
|
((juint) max_jint / (size_t) HeapWordSize);
|
|
return align_down(max_int_size, MinObjAlignment);
|
|
}
|
|
|
|
size_t CollectedHeap::filler_array_hdr_size() {
|
|
return align_object_offset(arrayOopDesc::header_size(T_INT)); // align to Long
|
|
}
|
|
|
|
size_t CollectedHeap::filler_array_min_size() {
|
|
return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
|
|
{
|
|
assert(words >= min_fill_size(), "too small to fill");
|
|
assert(is_object_aligned(words), "unaligned size");
|
|
assert(Universe::heap()->is_in_reserved(start), "not in heap");
|
|
assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
|
|
}
|
|
|
|
void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
|
|
{
|
|
if (ZapFillerObjects && zap) {
|
|
Copy::fill_to_words(start + filler_array_hdr_size(),
|
|
words - filler_array_hdr_size(), 0XDEAFBABE);
|
|
}
|
|
}
|
|
#endif // ASSERT
|
|
|
|
void
|
|
CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
|
|
{
|
|
assert(words >= filler_array_min_size(), "too small for an array");
|
|
assert(words <= filler_array_max_size(), "too big for a single object");
|
|
|
|
const size_t payload_size = words - filler_array_hdr_size();
|
|
const size_t len = payload_size * HeapWordSize / sizeof(jint);
|
|
assert((int)len >= 0, "size too large " SIZE_FORMAT " becomes %d", words, (int)len);
|
|
|
|
// Set the length first for concurrent GC.
|
|
((arrayOop)start)->set_length((int)len);
|
|
post_allocation_setup_common(Universe::intArrayKlassObj(), start);
|
|
DEBUG_ONLY(zap_filler_array(start, words, zap);)
|
|
}
|
|
|
|
void
|
|
CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
|
|
{
|
|
assert(words <= filler_array_max_size(), "too big for a single object");
|
|
|
|
if (words >= filler_array_min_size()) {
|
|
fill_with_array(start, words, zap);
|
|
} else if (words > 0) {
|
|
assert(words == min_fill_size(), "unaligned size");
|
|
post_allocation_setup_common(SystemDictionary::Object_klass(), start);
|
|
}
|
|
}
|
|
|
|
void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
|
|
{
|
|
DEBUG_ONLY(fill_args_check(start, words);)
|
|
HandleMark hm; // Free handles before leaving.
|
|
fill_with_object_impl(start, words, zap);
|
|
}
|
|
|
|
void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
|
|
{
|
|
DEBUG_ONLY(fill_args_check(start, words);)
|
|
HandleMark hm; // Free handles before leaving.
|
|
|
|
// Multiple objects may be required depending on the filler array maximum size. Fill
|
|
// the range up to that with objects that are filler_array_max_size sized. The
|
|
// remainder is filled with a single object.
|
|
const size_t min = min_fill_size();
|
|
const size_t max = filler_array_max_size();
|
|
while (words > max) {
|
|
const size_t cur = (words - max) >= min ? max : max - min;
|
|
fill_with_array(start, cur, zap);
|
|
start += cur;
|
|
words -= cur;
|
|
}
|
|
|
|
fill_with_object_impl(start, words, zap);
|
|
}
|
|
|
|
HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
|
|
guarantee(false, "thread-local allocation buffers not supported");
|
|
return NULL;
|
|
}
|
|
|
|
void CollectedHeap::ensure_parsability(bool retire_tlabs) {
|
|
// The second disjunct in the assertion below makes a concession
|
|
// for the start-up verification done while the VM is being
|
|
// created. Callers be careful that you know that mutators
|
|
// aren't going to interfere -- for instance, this is permissible
|
|
// if we are still single-threaded and have either not yet
|
|
// started allocating (nothing much to verify) or we have
|
|
// started allocating but are now a full-fledged JavaThread
|
|
// (and have thus made our TLAB's) available for filling.
|
|
assert(SafepointSynchronize::is_at_safepoint() ||
|
|
!is_init_completed(),
|
|
"Should only be called at a safepoint or at start-up"
|
|
" otherwise concurrent mutator activity may make heap "
|
|
" unparsable again");
|
|
const bool use_tlab = UseTLAB;
|
|
// The main thread starts allocating via a TLAB even before it
|
|
// has added itself to the threads list at vm boot-up.
|
|
JavaThreadIteratorWithHandle jtiwh;
|
|
assert(!use_tlab || jtiwh.length() > 0,
|
|
"Attempt to fill tlabs before main thread has been added"
|
|
" to threads list is doomed to failure!");
|
|
BarrierSet *bs = barrier_set();
|
|
for (; JavaThread *thread = jtiwh.next(); ) {
|
|
if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
|
|
bs->make_parsable(thread);
|
|
}
|
|
}
|
|
|
|
void CollectedHeap::accumulate_statistics_all_tlabs() {
|
|
if (UseTLAB) {
|
|
assert(SafepointSynchronize::is_at_safepoint() ||
|
|
!is_init_completed(),
|
|
"should only accumulate statistics on tlabs at safepoint");
|
|
|
|
ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
|
|
}
|
|
}
|
|
|
|
void CollectedHeap::resize_all_tlabs() {
|
|
if (UseTLAB) {
|
|
assert(SafepointSynchronize::is_at_safepoint() ||
|
|
!is_init_completed(),
|
|
"should only resize tlabs at safepoint");
|
|
|
|
ThreadLocalAllocBuffer::resize_all_tlabs();
|
|
}
|
|
}
|
|
|
|
void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) {
|
|
assert(timer != NULL, "timer is null");
|
|
if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) {
|
|
GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)", timer);
|
|
HeapDumper::dump_heap();
|
|
}
|
|
|
|
LogTarget(Trace, gc, classhisto) lt;
|
|
if (lt.is_enabled()) {
|
|
GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)", timer);
|
|
ResourceMark rm;
|
|
LogStream ls(lt);
|
|
VM_GC_HeapInspection inspector(&ls, false /* ! full gc */);
|
|
inspector.doit();
|
|
}
|
|
}
|
|
|
|
void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
|
|
full_gc_dump(timer, true);
|
|
}
|
|
|
|
void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
|
|
full_gc_dump(timer, false);
|
|
}
|
|
|
|
void CollectedHeap::initialize_reserved_region(HeapWord *start, HeapWord *end) {
|
|
// It is important to do this in a way such that concurrent readers can't
|
|
// temporarily think something is in the heap. (Seen this happen in asserts.)
|
|
_reserved.set_word_size(0);
|
|
_reserved.set_start(start);
|
|
_reserved.set_end(end);
|
|
}
|
|
|
|
void CollectedHeap::post_initialize() {
|
|
initialize_serviceability();
|
|
}
|