mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-28 15:24:43 +02:00
634 lines
24 KiB
C++
634 lines
24 KiB
C++
/*
|
|
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2016, 2018 SAP SE. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
// This file is organized as os_linux_x86.cpp.
|
|
|
|
// no precompiled headers
|
|
#include "jvm.h"
|
|
#include "asm/assembler.inline.hpp"
|
|
#include "classfile/classLoader.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/nativeInst.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "compiler/disassembler.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "nativeInst_s390.hpp"
|
|
#include "os_share_linux.hpp"
|
|
#include "prims/jniFastGetField.hpp"
|
|
#include "prims/jvm_misc.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/extendedPC.hpp"
|
|
#include "runtime/frame.inline.hpp"
|
|
#include "runtime/interfaceSupport.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/javaCalls.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "runtime/osThread.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "runtime/timer.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/vmError.hpp"
|
|
|
|
// put OS-includes here
|
|
# include <sys/types.h>
|
|
# include <sys/mman.h>
|
|
# include <pthread.h>
|
|
# include <signal.h>
|
|
# include <errno.h>
|
|
# include <dlfcn.h>
|
|
# include <stdlib.h>
|
|
# include <stdio.h>
|
|
# include <unistd.h>
|
|
# include <sys/resource.h>
|
|
# include <pthread.h>
|
|
# include <sys/stat.h>
|
|
# include <sys/time.h>
|
|
# include <sys/utsname.h>
|
|
# include <sys/socket.h>
|
|
# include <sys/wait.h>
|
|
# include <pwd.h>
|
|
# include <poll.h>
|
|
# include <ucontext.h>
|
|
|
|
address os::current_stack_pointer() {
|
|
intptr_t* csp;
|
|
|
|
// Inline assembly for `z_lgr regno(csp), Z_SP' (Z_SP = Z_R15):
|
|
__asm__ __volatile__ ("lgr %0, 15":"=r"(csp):);
|
|
|
|
assert(((uint64_t)csp & (frame::alignment_in_bytes-1)) == 0, "SP must be aligned");
|
|
return (address) csp;
|
|
}
|
|
|
|
char* os::non_memory_address_word() {
|
|
// Must never look like an address returned by reserve_memory,
|
|
// even in its subfields (as defined by the CPU immediate fields,
|
|
// if the CPU splits constants across multiple instructions).
|
|
return (char*) -1;
|
|
}
|
|
|
|
// OS specific thread initialization.
|
|
void os::initialize_thread(Thread* thread) { }
|
|
|
|
// Frame information (pc, sp, fp) retrieved via ucontext
|
|
// always looks like a C-frame according to the frame
|
|
// conventions in frame_s390.hpp.
|
|
address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
|
|
return (address)uc->uc_mcontext.psw.addr;
|
|
}
|
|
|
|
void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
|
|
uc->uc_mcontext.psw.addr = (unsigned long)pc;
|
|
}
|
|
|
|
static address ucontext_get_lr(const ucontext_t * uc) {
|
|
return (address)uc->uc_mcontext.gregs[14/*LINK*/];
|
|
}
|
|
|
|
intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
|
|
return (intptr_t*)uc->uc_mcontext.gregs[15/*REG_SP*/];
|
|
}
|
|
|
|
intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
|
|
return NULL;
|
|
}
|
|
|
|
ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
|
|
intptr_t** ret_sp, intptr_t** ret_fp) {
|
|
|
|
ExtendedPC epc;
|
|
const ucontext_t* uc = (const ucontext_t*)ucVoid;
|
|
|
|
if (uc != NULL) {
|
|
epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
|
|
if (ret_sp) { *ret_sp = os::Linux::ucontext_get_sp(uc); }
|
|
if (ret_fp) { *ret_fp = os::Linux::ucontext_get_fp(uc); }
|
|
} else {
|
|
// Construct empty ExtendedPC for return value checking.
|
|
epc = ExtendedPC(NULL);
|
|
if (ret_sp) { *ret_sp = (intptr_t *)NULL; }
|
|
if (ret_fp) { *ret_fp = (intptr_t *)NULL; }
|
|
}
|
|
|
|
return epc;
|
|
}
|
|
|
|
frame os::fetch_frame_from_context(const void* ucVoid) {
|
|
intptr_t* sp;
|
|
intptr_t* fp;
|
|
ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
|
|
return frame(sp, epc.pc());
|
|
}
|
|
|
|
bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
|
|
address pc = (address) os::Linux::ucontext_get_pc(uc);
|
|
if (Interpreter::contains(pc)) {
|
|
// Interpreter performs stack banging after the fixed frame header has
|
|
// been generated while the compilers perform it before. To maintain
|
|
// semantic consistency between interpreted and compiled frames, the
|
|
// method returns the Java sender of the current frame.
|
|
*fr = os::fetch_frame_from_context(uc);
|
|
if (!fr->is_first_java_frame()) {
|
|
assert(fr->safe_for_sender(thread), "Safety check");
|
|
*fr = fr->java_sender();
|
|
}
|
|
} else {
|
|
// More complex code with compiled code.
|
|
assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
|
|
CodeBlob* cb = CodeCache::find_blob(pc);
|
|
if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
|
|
// Not sure where the pc points to, fallback to default
|
|
// stack overflow handling. In compiled code, we bang before
|
|
// the frame is complete.
|
|
return false;
|
|
} else {
|
|
intptr_t* sp = os::Linux::ucontext_get_sp(uc);
|
|
address lr = ucontext_get_lr(uc);
|
|
*fr = frame(sp, lr);
|
|
if (!fr->is_java_frame()) {
|
|
assert(fr->safe_for_sender(thread), "Safety check");
|
|
assert(!fr->is_first_frame(), "Safety check");
|
|
*fr = fr->java_sender();
|
|
}
|
|
}
|
|
}
|
|
assert(fr->is_java_frame(), "Safety check");
|
|
return true;
|
|
}
|
|
|
|
frame os::get_sender_for_C_frame(frame* fr) {
|
|
if (*fr->sp() == 0) {
|
|
// fr is the last C frame.
|
|
return frame();
|
|
}
|
|
|
|
// If its not one of our frames, the return pc is saved at gpr14
|
|
// stack slot. The call_stub stores the return_pc to the stack slot
|
|
// of gpr10.
|
|
if ((Interpreter::code() != NULL && Interpreter::contains(fr->pc())) ||
|
|
(CodeCache::contains(fr->pc()) && !StubRoutines::contains(fr->pc()))) {
|
|
return frame(fr->sender_sp(), fr->sender_pc());
|
|
} else {
|
|
if (StubRoutines::contains(fr->pc())) {
|
|
StubCodeDesc* desc = StubCodeDesc::desc_for(fr->pc());
|
|
if (desc && !strcmp(desc->name(),"call_stub")) {
|
|
return frame(fr->sender_sp(), fr->callstub_sender_pc());
|
|
} else {
|
|
return frame(fr->sender_sp(), fr->sender_pc());
|
|
}
|
|
} else {
|
|
return frame(fr->sender_sp(), fr->native_sender_pc());
|
|
}
|
|
}
|
|
}
|
|
|
|
frame os::current_frame() {
|
|
// Expected to return the stack pointer of this method.
|
|
// But if inlined, returns the stack pointer of our caller!
|
|
intptr_t* csp = (intptr_t*) *((intptr_t*) os::current_stack_pointer());
|
|
assert (csp != NULL, "sp should not be NULL");
|
|
// Pass a dummy pc. This way we don't have to load it from the
|
|
// stack, since we don't know in which slot we can find it.
|
|
frame topframe(csp, (address)0x8);
|
|
if (os::is_first_C_frame(&topframe)) {
|
|
// Stack is not walkable.
|
|
return frame();
|
|
} else {
|
|
frame senderFrame = os::get_sender_for_C_frame(&topframe);
|
|
assert(senderFrame.pc() != NULL, "Sender pc should not be NULL");
|
|
// Return sender of sender of current topframe which hopefully
|
|
// both have pc != NULL.
|
|
#ifdef _NMT_NOINLINE_ // Is set in slowdebug builds.
|
|
// Current_stack_pointer is not inlined, we must pop one more frame.
|
|
frame tmp = os::get_sender_for_C_frame(&topframe);
|
|
return os::get_sender_for_C_frame(&tmp);
|
|
#else
|
|
return os::get_sender_for_C_frame(&topframe);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Utility functions
|
|
|
|
extern "C" JNIEXPORT int
|
|
JVM_handle_linux_signal(int sig,
|
|
siginfo_t* info,
|
|
void* ucVoid,
|
|
int abort_if_unrecognized) {
|
|
ucontext_t* uc = (ucontext_t*) ucVoid;
|
|
|
|
Thread* t = Thread::current_or_null_safe();
|
|
|
|
// Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
|
|
// (no destructors can be run).
|
|
os::ThreadCrashProtection::check_crash_protection(sig, t);
|
|
|
|
SignalHandlerMark shm(t);
|
|
|
|
// Note: it's not uncommon that JNI code uses signal/sigset to install
|
|
// then restore certain signal handler (e.g. to temporarily block SIGPIPE,
|
|
// or have a SIGILL handler when detecting CPU type). When that happens,
|
|
// JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
|
|
// avoid unnecessary crash when libjsig is not preloaded, try handle signals
|
|
// that do not require siginfo/ucontext first.
|
|
|
|
if (sig == SIGPIPE) {
|
|
if (os::Linux::chained_handler(sig, info, ucVoid)) {
|
|
return true;
|
|
} else {
|
|
if (PrintMiscellaneous && (WizardMode || Verbose)) {
|
|
warning("Ignoring SIGPIPE - see bug 4229104");
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
JavaThread* thread = NULL;
|
|
VMThread* vmthread = NULL;
|
|
if (os::Linux::signal_handlers_are_installed) {
|
|
if (t != NULL) {
|
|
if(t->is_Java_thread()) {
|
|
thread = (JavaThread*)t;
|
|
} else if(t->is_VM_thread()) {
|
|
vmthread = (VMThread *)t;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Moved SafeFetch32 handling outside thread!=NULL conditional block to make
|
|
// it work if no associated JavaThread object exists.
|
|
if (uc) {
|
|
address const pc = os::Linux::ucontext_get_pc(uc);
|
|
if (pc && StubRoutines::is_safefetch_fault(pc)) {
|
|
os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Decide if this trap can be handled by a stub.
|
|
address stub = NULL;
|
|
address pc = NULL; // Pc as retrieved from PSW. Usually points past failing instruction.
|
|
address trap_pc = NULL; // Pc of the instruction causing the trap.
|
|
|
|
//%note os_trap_1
|
|
if (info != NULL && uc != NULL && thread != NULL) {
|
|
pc = os::Linux::ucontext_get_pc(uc);
|
|
if (TraceTraps) {
|
|
tty->print_cr(" pc at " INTPTR_FORMAT, p2i(pc));
|
|
}
|
|
if ((unsigned long)(pc - (address)info->si_addr) <= (unsigned long)Assembler::instr_maxlen() ) {
|
|
trap_pc = (address)info->si_addr;
|
|
if (TraceTraps) {
|
|
tty->print_cr("trap_pc at " INTPTR_FORMAT, p2i(trap_pc));
|
|
}
|
|
}
|
|
|
|
// Handle ALL stack overflow variations here
|
|
if (sig == SIGSEGV) {
|
|
address addr = (address)info->si_addr; // Address causing SIGSEGV, usually mem ref target.
|
|
|
|
// Check if fault address is within thread stack.
|
|
if (thread->on_local_stack(addr)) {
|
|
// stack overflow
|
|
if (thread->in_stack_yellow_reserved_zone(addr)) {
|
|
if (thread->thread_state() == _thread_in_Java) {
|
|
if (thread->in_stack_reserved_zone(addr)) {
|
|
frame fr;
|
|
if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
|
|
assert(fr.is_java_frame(), "Must be a Javac frame");
|
|
frame activation =
|
|
SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
|
|
if (activation.sp() != NULL) {
|
|
thread->disable_stack_reserved_zone();
|
|
if (activation.is_interpreted_frame()) {
|
|
thread->set_reserved_stack_activation((address)activation.fp());
|
|
} else {
|
|
thread->set_reserved_stack_activation((address)activation.unextended_sp());
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
// Throw a stack overflow exception.
|
|
// Guard pages will be reenabled while unwinding the stack.
|
|
thread->disable_stack_yellow_reserved_zone();
|
|
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
|
|
} else {
|
|
// Thread was in the vm or native code. Return and try to finish.
|
|
thread->disable_stack_yellow_reserved_zone();
|
|
return 1;
|
|
}
|
|
} else if (thread->in_stack_red_zone(addr)) {
|
|
// Fatal red zone violation. Disable the guard pages and fall through
|
|
// to handle_unexpected_exception way down below.
|
|
thread->disable_stack_red_zone();
|
|
tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
|
|
|
|
// This is a likely cause, but hard to verify. Let's just print
|
|
// it as a hint.
|
|
tty->print_raw_cr("Please check if any of your loaded .so files has "
|
|
"enabled executable stack (see man page execstack(8))");
|
|
} else {
|
|
// Accessing stack address below sp may cause SEGV if current
|
|
// thread has MAP_GROWSDOWN stack. This should only happen when
|
|
// current thread was created by user code with MAP_GROWSDOWN flag
|
|
// and then attached to VM. See notes in os_linux.cpp.
|
|
if (thread->osthread()->expanding_stack() == 0) {
|
|
thread->osthread()->set_expanding_stack();
|
|
if (os::Linux::manually_expand_stack(thread, addr)) {
|
|
thread->osthread()->clear_expanding_stack();
|
|
return 1;
|
|
}
|
|
thread->osthread()->clear_expanding_stack();
|
|
} else {
|
|
fatal("recursive segv. expanding stack.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (thread->thread_state() == _thread_in_Java) {
|
|
// Java thread running in Java code => find exception handler if any
|
|
// a fault inside compiled code, the interpreter, or a stub
|
|
|
|
// Handle signal from NativeJump::patch_verified_entry().
|
|
if (sig == SIGILL && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant()) {
|
|
if (TraceTraps) {
|
|
tty->print_cr("trap: zombie_not_entrant (SIGILL)");
|
|
}
|
|
stub = SharedRuntime::get_handle_wrong_method_stub();
|
|
}
|
|
|
|
else if (sig == SIGSEGV &&
|
|
os::is_poll_address((address)info->si_addr)) {
|
|
if (TraceTraps) {
|
|
tty->print_cr("trap: safepoint_poll at " INTPTR_FORMAT " (SIGSEGV)", p2i(pc));
|
|
}
|
|
stub = SharedRuntime::get_poll_stub(pc);
|
|
|
|
// Info->si_addr only points to the page base address, so we
|
|
// must extract the real si_addr from the instruction and the
|
|
// ucontext.
|
|
assert(((NativeInstruction*)pc)->is_safepoint_poll(), "must be safepoint poll");
|
|
const address real_si_addr = ((NativeInstruction*)pc)->get_poll_address(uc);
|
|
}
|
|
|
|
// SIGTRAP-based implicit null check in compiled code.
|
|
else if ((sig == SIGFPE) &&
|
|
TrapBasedNullChecks &&
|
|
(trap_pc != NULL) &&
|
|
Assembler::is_sigtrap_zero_check(trap_pc)) {
|
|
if (TraceTraps) {
|
|
tty->print_cr("trap: NULL_CHECK at " INTPTR_FORMAT " (SIGFPE)", p2i(trap_pc));
|
|
}
|
|
stub = SharedRuntime::continuation_for_implicit_exception(thread, trap_pc, SharedRuntime::IMPLICIT_NULL);
|
|
}
|
|
|
|
else if (sig == SIGSEGV && ImplicitNullChecks &&
|
|
CodeCache::contains((void*) pc) &&
|
|
!MacroAssembler::needs_explicit_null_check((intptr_t) info->si_addr)) {
|
|
if (TraceTraps) {
|
|
tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", p2i(pc));
|
|
}
|
|
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
|
|
}
|
|
|
|
// SIGTRAP-based implicit range check in compiled code.
|
|
else if (sig == SIGFPE && TrapBasedRangeChecks &&
|
|
(trap_pc != NULL) &&
|
|
Assembler::is_sigtrap_range_check(trap_pc)) {
|
|
if (TraceTraps) {
|
|
tty->print_cr("trap: RANGE_CHECK at " INTPTR_FORMAT " (SIGFPE)", p2i(trap_pc));
|
|
}
|
|
stub = SharedRuntime::continuation_for_implicit_exception(thread, trap_pc, SharedRuntime::IMPLICIT_NULL);
|
|
}
|
|
|
|
else if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
|
|
stub = SharedRuntime::continuation_for_implicit_exception(thread, trap_pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
|
|
}
|
|
|
|
else if (sig == SIGBUS) {
|
|
// BugId 4454115: A read from a MappedByteBuffer can fault here if the
|
|
// underlying file has been truncated. Do not crash the VM in such a case.
|
|
CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
|
|
CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
|
|
if (nm != NULL && nm->has_unsafe_access()) {
|
|
// We don't really need a stub here! Just set the pending exeption and
|
|
// continue at the next instruction after the faulting read. Returning
|
|
// garbage from this read is ok.
|
|
thread->set_pending_unsafe_access_error();
|
|
uc->uc_mcontext.psw.addr = ((unsigned long)pc) + Assembler::instr_len(pc);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
else { // thread->thread_state() != _thread_in_Java
|
|
if ((sig == SIGILL) && VM_Version::is_determine_features_test_running()) {
|
|
// SIGILL must be caused by VM_Version::determine_features()
|
|
// when attempting to execute a non-existing instruction.
|
|
//*(int *) (pc-6)=0; // Patch instruction to 0 to indicate that it causes a SIGILL.
|
|
// Flushing of icache is not necessary.
|
|
stub = pc; // Continue with next instruction.
|
|
} else if ((sig == SIGFPE) && VM_Version::is_determine_features_test_running()) {
|
|
// SIGFPE is known to be caused by trying to execute a vector instruction
|
|
// when the vector facility is installed, but operating system support is missing.
|
|
VM_Version::reset_has_VectorFacility();
|
|
stub = pc; // Continue with next instruction.
|
|
} else if (thread->thread_state() == _thread_in_vm &&
|
|
sig == SIGBUS && thread->doing_unsafe_access()) {
|
|
// We don't really need a stub here! Just set the pending exeption and
|
|
// continue at the next instruction after the faulting read. Returning
|
|
// garbage from this read is ok.
|
|
thread->set_pending_unsafe_access_error();
|
|
os::Linux::ucontext_set_pc(uc, pc + Assembler::instr_len(pc));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Check to see if we caught the safepoint code in the
|
|
// process of write protecting the memory serialization page.
|
|
// It write enables the page immediately after protecting it
|
|
// so we can just return to retry the write.
|
|
// Info->si_addr need not be the exact address, it is only
|
|
// guaranteed to be on the same page as the address that caused
|
|
// the SIGSEGV.
|
|
if ((sig == SIGSEGV) && !UseMembar &&
|
|
(os::get_memory_serialize_page() ==
|
|
(address)((uintptr_t)info->si_addr & ~(os::vm_page_size()-1)))) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (stub != NULL) {
|
|
// Save all thread context in case we need to restore it.
|
|
if (thread != NULL) thread->set_saved_exception_pc(pc);
|
|
os::Linux::ucontext_set_pc(uc, stub);
|
|
return true;
|
|
}
|
|
|
|
// signal-chaining
|
|
if (os::Linux::chained_handler(sig, info, ucVoid)) {
|
|
return true;
|
|
}
|
|
|
|
if (!abort_if_unrecognized) {
|
|
// caller wants another chance, so give it to him
|
|
return false;
|
|
}
|
|
|
|
if (pc == NULL && uc != NULL) {
|
|
pc = os::Linux::ucontext_get_pc(uc);
|
|
}
|
|
|
|
// unmask current signal
|
|
sigset_t newset;
|
|
sigemptyset(&newset);
|
|
sigaddset(&newset, sig);
|
|
sigprocmask(SIG_UNBLOCK, &newset, NULL);
|
|
|
|
// Hand down correct pc for SIGILL, SIGFPE. pc from context
|
|
// usually points to the instruction after the failing instruction.
|
|
// Note: this should be combined with the trap_pc handling above,
|
|
// because it handles the same issue.
|
|
if (sig == SIGILL || sig == SIGFPE) {
|
|
pc = (address)info->si_addr;
|
|
}
|
|
|
|
VMError::report_and_die(t, sig, pc, info, ucVoid);
|
|
|
|
ShouldNotReachHere();
|
|
return false;
|
|
}
|
|
|
|
void os::Linux::init_thread_fpu_state(void) {
|
|
// Nothing to do on z/Architecture.
|
|
}
|
|
|
|
int os::Linux::get_fpu_control_word(void) {
|
|
// Nothing to do on z/Architecture.
|
|
return 0;
|
|
}
|
|
|
|
void os::Linux::set_fpu_control_word(int fpu_control) {
|
|
// Nothing to do on z/Architecture.
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// thread stack
|
|
|
|
// Minimum usable stack sizes required to get to user code. Space for
|
|
// HotSpot guard pages is added later.
|
|
size_t os::Posix::_compiler_thread_min_stack_allowed = (52 DEBUG_ONLY(+ 32)) * K;
|
|
size_t os::Posix::_java_thread_min_stack_allowed = (32 DEBUG_ONLY(+ 8)) * K;
|
|
size_t os::Posix::_vm_internal_thread_min_stack_allowed = 32 * K;
|
|
|
|
// Return default stack size for thr_type.
|
|
size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
|
|
// Default stack size (compiler thread needs larger stack).
|
|
size_t s = (thr_type == os::compiler_thread ? 4 * M : 1024 * K);
|
|
return s;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// helper functions for fatal error handler
|
|
|
|
void os::print_context(outputStream *st, const void *context) {
|
|
if (context == NULL) return;
|
|
|
|
const ucontext_t* uc = (const ucontext_t*)context;
|
|
|
|
st->print_cr("Processor state:");
|
|
st->print_cr("----------------");
|
|
st->print_cr(" ip = " INTPTR_FORMAT " ", uc->uc_mcontext.psw.addr);
|
|
st->print_cr(" proc mask = " INTPTR_FORMAT " ", uc->uc_mcontext.psw.mask);
|
|
st->print_cr(" fpc reg = 0x%8.8x " , uc->uc_mcontext.fpregs.fpc);
|
|
st->cr();
|
|
|
|
st->print_cr("General Purpose Registers:");
|
|
st->print_cr("--------------------------");
|
|
for( int i = 0; i < 16; i+=2 ) {
|
|
st->print(" r%-2d = " INTPTR_FORMAT " " , i, uc->uc_mcontext.gregs[i]);
|
|
st->print(" r%-2d = " INTPTR_FORMAT " |", i+1, uc->uc_mcontext.gregs[i+1]);
|
|
st->print(" r%-2d = %23.1ld " , i, uc->uc_mcontext.gregs[i]);
|
|
st->print(" r%-2d = %23.1ld " , i+1, uc->uc_mcontext.gregs[i+1]);
|
|
st->cr();
|
|
}
|
|
st->cr();
|
|
|
|
st->print_cr("Access Registers:");
|
|
st->print_cr("-----------------");
|
|
for( int i = 0; i < 16; i+=2 ) {
|
|
st->print(" ar%-2d = 0x%8.8x ", i, uc->uc_mcontext.aregs[i]);
|
|
st->print(" ar%-2d = 0x%8.8x ", i+1, uc->uc_mcontext.aregs[i+1]);
|
|
st->cr();
|
|
}
|
|
st->cr();
|
|
|
|
st->print_cr("Float Registers:");
|
|
st->print_cr("----------------");
|
|
for (int i = 0; i < 16; i += 2) {
|
|
st->print(" fr%-2d = " INTPTR_FORMAT " " , i, (int64_t)(uc->uc_mcontext.fpregs.fprs[i].d));
|
|
st->print(" fr%-2d = " INTPTR_FORMAT " |", i+1, (int64_t)(uc->uc_mcontext.fpregs.fprs[i+1].d));
|
|
st->print(" fr%-2d = %23.15e " , i, (uc->uc_mcontext.fpregs.fprs[i].d));
|
|
st->print(" fr%-2d = %23.15e " , i+1, (uc->uc_mcontext.fpregs.fprs[i+1].d));
|
|
st->cr();
|
|
}
|
|
st->cr();
|
|
st->cr();
|
|
|
|
intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
|
|
st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
|
|
print_hex_dump(st, (address)sp, (address)(sp + 128), sizeof(intptr_t));
|
|
st->cr();
|
|
|
|
// Note: it may be unsafe to inspect memory near pc. For example, pc may
|
|
// point to garbage if entry point in an nmethod is corrupted. Leave
|
|
// this at the end, and hope for the best.
|
|
address pc = os::Linux::ucontext_get_pc(uc);
|
|
if (Verbose) { st->print_cr("pc at " PTR_FORMAT, p2i(pc)); }
|
|
st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
|
|
print_hex_dump(st, pc-64, pc+64, /*intrsize=*/4);
|
|
st->cr();
|
|
}
|
|
|
|
void os::print_register_info(outputStream *st, const void *context) {
|
|
st->print("Not ported\n");
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void os::verify_stack_alignment() {
|
|
}
|
|
#endif
|
|
|
|
int os::extra_bang_size_in_bytes() {
|
|
// z/Architecture does not require the additional stack bang.
|
|
return 0;
|
|
}
|