mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-24 13:24:27 +02:00
911 lines
39 KiB
C++
911 lines
39 KiB
C++
/*
|
|
* Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc/shared/adaptiveSizePolicy.hpp"
|
|
#include "gc/shared/cardTableRS.hpp"
|
|
#include "gc/shared/collectorPolicy.hpp"
|
|
#include "gc/shared/gcLocker.inline.hpp"
|
|
#include "gc/shared/gcPolicyCounters.hpp"
|
|
#include "gc/shared/genCollectedHeap.hpp"
|
|
#include "gc/shared/generationSpec.hpp"
|
|
#include "gc/shared/space.hpp"
|
|
#include "gc/shared/vmGCOperations.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/globals_extension.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "runtime/vmThread.hpp"
|
|
#include "utilities/macros.hpp"
|
|
|
|
// CollectorPolicy methods
|
|
|
|
CollectorPolicy::CollectorPolicy() :
|
|
_space_alignment(0),
|
|
_heap_alignment(0),
|
|
_initial_heap_byte_size(InitialHeapSize),
|
|
_max_heap_byte_size(MaxHeapSize),
|
|
_min_heap_byte_size(Arguments::min_heap_size()),
|
|
_size_policy(NULL),
|
|
_should_clear_all_soft_refs(false),
|
|
_all_soft_refs_clear(false)
|
|
{}
|
|
|
|
#ifdef ASSERT
|
|
void CollectorPolicy::assert_flags() {
|
|
assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
|
|
assert(InitialHeapSize % _heap_alignment == 0, "InitialHeapSize alignment");
|
|
assert(MaxHeapSize % _heap_alignment == 0, "MaxHeapSize alignment");
|
|
}
|
|
|
|
void CollectorPolicy::assert_size_info() {
|
|
assert(InitialHeapSize == _initial_heap_byte_size, "Discrepancy between InitialHeapSize flag and local storage");
|
|
assert(MaxHeapSize == _max_heap_byte_size, "Discrepancy between MaxHeapSize flag and local storage");
|
|
assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
|
|
assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
|
|
assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
|
|
assert(_min_heap_byte_size % _heap_alignment == 0, "min_heap_byte_size alignment");
|
|
assert(_initial_heap_byte_size % _heap_alignment == 0, "initial_heap_byte_size alignment");
|
|
assert(_max_heap_byte_size % _heap_alignment == 0, "max_heap_byte_size alignment");
|
|
}
|
|
#endif // ASSERT
|
|
|
|
void CollectorPolicy::initialize_flags() {
|
|
assert(_space_alignment != 0, "Space alignment not set up properly");
|
|
assert(_heap_alignment != 0, "Heap alignment not set up properly");
|
|
assert(_heap_alignment >= _space_alignment,
|
|
"heap_alignment: " SIZE_FORMAT " less than space_alignment: " SIZE_FORMAT,
|
|
_heap_alignment, _space_alignment);
|
|
assert(_heap_alignment % _space_alignment == 0,
|
|
"heap_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
|
|
_heap_alignment, _space_alignment);
|
|
|
|
if (FLAG_IS_CMDLINE(MaxHeapSize)) {
|
|
if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
|
|
vm_exit_during_initialization("Initial heap size set to a larger value than the maximum heap size");
|
|
}
|
|
if (_min_heap_byte_size != 0 && MaxHeapSize < _min_heap_byte_size) {
|
|
vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
|
|
}
|
|
}
|
|
|
|
// Check heap parameter properties
|
|
if (MaxHeapSize < 2 * M) {
|
|
vm_exit_during_initialization("Too small maximum heap");
|
|
}
|
|
if (InitialHeapSize < M) {
|
|
vm_exit_during_initialization("Too small initial heap");
|
|
}
|
|
if (_min_heap_byte_size < M) {
|
|
vm_exit_during_initialization("Too small minimum heap");
|
|
}
|
|
|
|
// User inputs from -Xmx and -Xms must be aligned
|
|
_min_heap_byte_size = align_up(_min_heap_byte_size, _heap_alignment);
|
|
size_t aligned_initial_heap_size = align_up(InitialHeapSize, _heap_alignment);
|
|
size_t aligned_max_heap_size = align_up(MaxHeapSize, _heap_alignment);
|
|
|
|
// Write back to flags if the values changed
|
|
if (aligned_initial_heap_size != InitialHeapSize) {
|
|
FLAG_SET_ERGO(size_t, InitialHeapSize, aligned_initial_heap_size);
|
|
}
|
|
if (aligned_max_heap_size != MaxHeapSize) {
|
|
FLAG_SET_ERGO(size_t, MaxHeapSize, aligned_max_heap_size);
|
|
}
|
|
|
|
if (FLAG_IS_CMDLINE(InitialHeapSize) && _min_heap_byte_size != 0 &&
|
|
InitialHeapSize < _min_heap_byte_size) {
|
|
vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
|
|
}
|
|
if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
|
|
FLAG_SET_ERGO(size_t, MaxHeapSize, InitialHeapSize);
|
|
} else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
|
|
FLAG_SET_ERGO(size_t, InitialHeapSize, MaxHeapSize);
|
|
if (InitialHeapSize < _min_heap_byte_size) {
|
|
_min_heap_byte_size = InitialHeapSize;
|
|
}
|
|
}
|
|
|
|
_initial_heap_byte_size = InitialHeapSize;
|
|
_max_heap_byte_size = MaxHeapSize;
|
|
|
|
FLAG_SET_ERGO(size_t, MinHeapDeltaBytes, align_up(MinHeapDeltaBytes, _space_alignment));
|
|
|
|
DEBUG_ONLY(CollectorPolicy::assert_flags();)
|
|
}
|
|
|
|
void CollectorPolicy::initialize_size_info() {
|
|
log_debug(gc, heap)("Minimum heap " SIZE_FORMAT " Initial heap " SIZE_FORMAT " Maximum heap " SIZE_FORMAT,
|
|
_min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
|
|
|
|
DEBUG_ONLY(CollectorPolicy::assert_size_info();)
|
|
}
|
|
|
|
bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
|
|
bool result = _should_clear_all_soft_refs;
|
|
set_should_clear_all_soft_refs(false);
|
|
return result;
|
|
}
|
|
|
|
CardTableRS* CollectorPolicy::create_rem_set(MemRegion whole_heap) {
|
|
return new CardTableRS(whole_heap);
|
|
}
|
|
|
|
void CollectorPolicy::cleared_all_soft_refs() {
|
|
// If near gc overhear limit, continue to clear SoftRefs. SoftRefs may
|
|
// have been cleared in the last collection but if the gc overhear
|
|
// limit continues to be near, SoftRefs should still be cleared.
|
|
if (size_policy() != NULL) {
|
|
_should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
|
|
}
|
|
_all_soft_refs_clear = true;
|
|
}
|
|
|
|
size_t CollectorPolicy::compute_heap_alignment() {
|
|
// The card marking array and the offset arrays for old generations are
|
|
// committed in os pages as well. Make sure they are entirely full (to
|
|
// avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
|
|
// byte entry and the os page size is 4096, the maximum heap size should
|
|
// be 512*4096 = 2MB aligned.
|
|
|
|
size_t alignment = CardTableRS::ct_max_alignment_constraint();
|
|
|
|
if (UseLargePages) {
|
|
// In presence of large pages we have to make sure that our
|
|
// alignment is large page aware.
|
|
alignment = lcm(os::large_page_size(), alignment);
|
|
}
|
|
|
|
return alignment;
|
|
}
|
|
|
|
// GenCollectorPolicy methods
|
|
|
|
GenCollectorPolicy::GenCollectorPolicy() :
|
|
_min_young_size(0),
|
|
_initial_young_size(0),
|
|
_max_young_size(0),
|
|
_min_old_size(0),
|
|
_initial_old_size(0),
|
|
_max_old_size(0),
|
|
_gen_alignment(0),
|
|
_young_gen_spec(NULL),
|
|
_old_gen_spec(NULL)
|
|
{}
|
|
|
|
size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
|
|
return align_down_bounded(base_size / (NewRatio + 1), _gen_alignment);
|
|
}
|
|
|
|
size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
|
|
size_t maximum_size) {
|
|
size_t max_minus = maximum_size - _gen_alignment;
|
|
return desired_size < max_minus ? desired_size : max_minus;
|
|
}
|
|
|
|
|
|
void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
|
|
size_t init_promo_size,
|
|
size_t init_survivor_size) {
|
|
const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
|
|
_size_policy = new AdaptiveSizePolicy(init_eden_size,
|
|
init_promo_size,
|
|
init_survivor_size,
|
|
max_gc_pause_sec,
|
|
GCTimeRatio);
|
|
}
|
|
|
|
size_t GenCollectorPolicy::young_gen_size_lower_bound() {
|
|
// The young generation must be aligned and have room for eden + two survivors
|
|
return align_up(3 * _space_alignment, _gen_alignment);
|
|
}
|
|
|
|
size_t GenCollectorPolicy::old_gen_size_lower_bound() {
|
|
return align_up(_space_alignment, _gen_alignment);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void GenCollectorPolicy::assert_flags() {
|
|
CollectorPolicy::assert_flags();
|
|
assert(NewSize >= _min_young_size, "Ergonomics decided on a too small young gen size");
|
|
assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
|
|
assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
|
|
assert(NewSize % _gen_alignment == 0, "NewSize alignment");
|
|
assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _gen_alignment == 0, "MaxNewSize alignment");
|
|
assert(OldSize + NewSize <= MaxHeapSize, "Ergonomics decided on incompatible generation and heap sizes");
|
|
assert(OldSize % _gen_alignment == 0, "OldSize alignment");
|
|
}
|
|
|
|
void GenCollectorPolicy::assert_size_info() {
|
|
CollectorPolicy::assert_size_info();
|
|
// GenCollectorPolicy::initialize_size_info may update the MaxNewSize
|
|
assert(MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young and heap sizes");
|
|
assert(NewSize == _initial_young_size, "Discrepancy between NewSize flag and local storage");
|
|
assert(MaxNewSize == _max_young_size, "Discrepancy between MaxNewSize flag and local storage");
|
|
assert(OldSize == _initial_old_size, "Discrepancy between OldSize flag and local storage");
|
|
assert(_min_young_size <= _initial_young_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
|
|
assert(_initial_young_size <= _max_young_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
|
|
assert(_min_young_size % _gen_alignment == 0, "_min_young_size alignment");
|
|
assert(_initial_young_size % _gen_alignment == 0, "_initial_young_size alignment");
|
|
assert(_max_young_size % _gen_alignment == 0, "_max_young_size alignment");
|
|
assert(_min_young_size <= bound_minus_alignment(_min_young_size, _min_heap_byte_size),
|
|
"Ergonomics made minimum young generation larger than minimum heap");
|
|
assert(_initial_young_size <= bound_minus_alignment(_initial_young_size, _initial_heap_byte_size),
|
|
"Ergonomics made initial young generation larger than initial heap");
|
|
assert(_max_young_size <= bound_minus_alignment(_max_young_size, _max_heap_byte_size),
|
|
"Ergonomics made maximum young generation lager than maximum heap");
|
|
assert(_min_old_size <= _initial_old_size, "Ergonomics decided on incompatible minimum and initial old gen sizes");
|
|
assert(_initial_old_size <= _max_old_size, "Ergonomics decided on incompatible initial and maximum old gen sizes");
|
|
assert(_max_old_size % _gen_alignment == 0, "_max_old_size alignment");
|
|
assert(_initial_old_size % _gen_alignment == 0, "_initial_old_size alignment");
|
|
assert(_max_heap_byte_size <= (_max_young_size + _max_old_size), "Total maximum heap sizes must be sum of generation maximum sizes");
|
|
assert(_min_young_size + _min_old_size <= _min_heap_byte_size, "Minimum generation sizes exceed minimum heap size");
|
|
assert(_initial_young_size + _initial_old_size == _initial_heap_byte_size, "Initial generation sizes should match initial heap size");
|
|
assert(_max_young_size + _max_old_size == _max_heap_byte_size, "Maximum generation sizes should match maximum heap size");
|
|
}
|
|
#endif // ASSERT
|
|
|
|
void GenCollectorPolicy::initialize_flags() {
|
|
CollectorPolicy::initialize_flags();
|
|
|
|
assert(_gen_alignment != 0, "Generation alignment not set up properly");
|
|
assert(_heap_alignment >= _gen_alignment,
|
|
"heap_alignment: " SIZE_FORMAT " less than gen_alignment: " SIZE_FORMAT,
|
|
_heap_alignment, _gen_alignment);
|
|
assert(_gen_alignment % _space_alignment == 0,
|
|
"gen_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
|
|
_gen_alignment, _space_alignment);
|
|
assert(_heap_alignment % _gen_alignment == 0,
|
|
"heap_alignment: " SIZE_FORMAT " not aligned by gen_alignment: " SIZE_FORMAT,
|
|
_heap_alignment, _gen_alignment);
|
|
|
|
// All generational heaps have a young gen; handle those flags here
|
|
|
|
// Make sure the heap is large enough for two generations
|
|
size_t smallest_new_size = young_gen_size_lower_bound();
|
|
size_t smallest_heap_size = align_up(smallest_new_size + old_gen_size_lower_bound(),
|
|
_heap_alignment);
|
|
if (MaxHeapSize < smallest_heap_size) {
|
|
FLAG_SET_ERGO(size_t, MaxHeapSize, smallest_heap_size);
|
|
_max_heap_byte_size = MaxHeapSize;
|
|
}
|
|
// If needed, synchronize _min_heap_byte size and _initial_heap_byte_size
|
|
if (_min_heap_byte_size < smallest_heap_size) {
|
|
_min_heap_byte_size = smallest_heap_size;
|
|
if (InitialHeapSize < _min_heap_byte_size) {
|
|
FLAG_SET_ERGO(size_t, InitialHeapSize, smallest_heap_size);
|
|
_initial_heap_byte_size = smallest_heap_size;
|
|
}
|
|
}
|
|
|
|
// Make sure NewSize allows an old generation to fit even if set on the command line
|
|
if (FLAG_IS_CMDLINE(NewSize) && NewSize >= _initial_heap_byte_size) {
|
|
log_warning(gc, ergo)("NewSize was set larger than initial heap size, will use initial heap size.");
|
|
FLAG_SET_ERGO(size_t, NewSize, bound_minus_alignment(NewSize, _initial_heap_byte_size));
|
|
}
|
|
|
|
// Now take the actual NewSize into account. We will silently increase NewSize
|
|
// if the user specified a smaller or unaligned value.
|
|
size_t bounded_new_size = bound_minus_alignment(NewSize, MaxHeapSize);
|
|
bounded_new_size = MAX2(smallest_new_size, align_down(bounded_new_size, _gen_alignment));
|
|
if (bounded_new_size != NewSize) {
|
|
FLAG_SET_ERGO(size_t, NewSize, bounded_new_size);
|
|
}
|
|
_min_young_size = smallest_new_size;
|
|
_initial_young_size = NewSize;
|
|
|
|
if (!FLAG_IS_DEFAULT(MaxNewSize)) {
|
|
if (MaxNewSize >= MaxHeapSize) {
|
|
// Make sure there is room for an old generation
|
|
size_t smaller_max_new_size = MaxHeapSize - _gen_alignment;
|
|
if (FLAG_IS_CMDLINE(MaxNewSize)) {
|
|
log_warning(gc, ergo)("MaxNewSize (" SIZE_FORMAT "k) is equal to or greater than the entire "
|
|
"heap (" SIZE_FORMAT "k). A new max generation size of " SIZE_FORMAT "k will be used.",
|
|
MaxNewSize/K, MaxHeapSize/K, smaller_max_new_size/K);
|
|
}
|
|
FLAG_SET_ERGO(size_t, MaxNewSize, smaller_max_new_size);
|
|
if (NewSize > MaxNewSize) {
|
|
FLAG_SET_ERGO(size_t, NewSize, MaxNewSize);
|
|
_initial_young_size = NewSize;
|
|
}
|
|
} else if (MaxNewSize < _initial_young_size) {
|
|
FLAG_SET_ERGO(size_t, MaxNewSize, _initial_young_size);
|
|
} else if (!is_aligned(MaxNewSize, _gen_alignment)) {
|
|
FLAG_SET_ERGO(size_t, MaxNewSize, align_down(MaxNewSize, _gen_alignment));
|
|
}
|
|
_max_young_size = MaxNewSize;
|
|
}
|
|
|
|
if (NewSize > MaxNewSize) {
|
|
// At this point this should only happen if the user specifies a large NewSize and/or
|
|
// a small (but not too small) MaxNewSize.
|
|
if (FLAG_IS_CMDLINE(MaxNewSize)) {
|
|
log_warning(gc, ergo)("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
|
|
"A new max generation size of " SIZE_FORMAT "k will be used.",
|
|
NewSize/K, MaxNewSize/K, NewSize/K);
|
|
}
|
|
FLAG_SET_ERGO(size_t, MaxNewSize, NewSize);
|
|
_max_young_size = MaxNewSize;
|
|
}
|
|
|
|
if (SurvivorRatio < 1 || NewRatio < 1) {
|
|
vm_exit_during_initialization("Invalid young gen ratio specified");
|
|
}
|
|
|
|
if (OldSize < old_gen_size_lower_bound()) {
|
|
FLAG_SET_ERGO(size_t, OldSize, old_gen_size_lower_bound());
|
|
}
|
|
if (!is_aligned(OldSize, _gen_alignment)) {
|
|
FLAG_SET_ERGO(size_t, OldSize, align_down(OldSize, _gen_alignment));
|
|
}
|
|
|
|
if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(MaxHeapSize)) {
|
|
// NewRatio will be used later to set the young generation size so we use
|
|
// it to calculate how big the heap should be based on the requested OldSize
|
|
// and NewRatio.
|
|
assert(NewRatio > 0, "NewRatio should have been set up earlier");
|
|
size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
|
|
|
|
calculated_heapsize = align_up(calculated_heapsize, _heap_alignment);
|
|
FLAG_SET_ERGO(size_t, MaxHeapSize, calculated_heapsize);
|
|
_max_heap_byte_size = MaxHeapSize;
|
|
FLAG_SET_ERGO(size_t, InitialHeapSize, calculated_heapsize);
|
|
_initial_heap_byte_size = InitialHeapSize;
|
|
}
|
|
|
|
// Adjust NewSize and OldSize or MaxHeapSize to match each other
|
|
if (NewSize + OldSize > MaxHeapSize) {
|
|
if (FLAG_IS_CMDLINE(MaxHeapSize)) {
|
|
// Somebody has set a maximum heap size with the intention that we should not
|
|
// exceed it. Adjust New/OldSize as necessary.
|
|
size_t calculated_size = NewSize + OldSize;
|
|
double shrink_factor = (double) MaxHeapSize / calculated_size;
|
|
size_t smaller_new_size = align_down((size_t)(NewSize * shrink_factor), _gen_alignment);
|
|
FLAG_SET_ERGO(size_t, NewSize, MAX2(young_gen_size_lower_bound(), smaller_new_size));
|
|
_initial_young_size = NewSize;
|
|
|
|
// OldSize is already aligned because above we aligned MaxHeapSize to
|
|
// _heap_alignment, and we just made sure that NewSize is aligned to
|
|
// _gen_alignment. In initialize_flags() we verified that _heap_alignment
|
|
// is a multiple of _gen_alignment.
|
|
FLAG_SET_ERGO(size_t, OldSize, MaxHeapSize - NewSize);
|
|
} else {
|
|
FLAG_SET_ERGO(size_t, MaxHeapSize, align_up(NewSize + OldSize, _heap_alignment));
|
|
_max_heap_byte_size = MaxHeapSize;
|
|
}
|
|
}
|
|
|
|
// Update NewSize, if possible, to avoid sizing the young gen too small when only
|
|
// OldSize is set on the command line.
|
|
if (FLAG_IS_CMDLINE(OldSize) && !FLAG_IS_CMDLINE(NewSize)) {
|
|
if (OldSize < _initial_heap_byte_size) {
|
|
size_t new_size = _initial_heap_byte_size - OldSize;
|
|
// Need to compare against the flag value for max since _max_young_size
|
|
// might not have been set yet.
|
|
if (new_size >= _min_young_size && new_size <= MaxNewSize) {
|
|
FLAG_SET_ERGO(size_t, NewSize, new_size);
|
|
_initial_young_size = NewSize;
|
|
}
|
|
}
|
|
}
|
|
|
|
always_do_update_barrier = UseConcMarkSweepGC;
|
|
|
|
DEBUG_ONLY(GenCollectorPolicy::assert_flags();)
|
|
}
|
|
|
|
// Values set on the command line win over any ergonomically
|
|
// set command line parameters.
|
|
// Ergonomic choice of parameters are done before this
|
|
// method is called. Values for command line parameters such as NewSize
|
|
// and MaxNewSize feed those ergonomic choices into this method.
|
|
// This method makes the final generation sizings consistent with
|
|
// themselves and with overall heap sizings.
|
|
// In the absence of explicitly set command line flags, policies
|
|
// such as the use of NewRatio are used to size the generation.
|
|
|
|
// Minimum sizes of the generations may be different than
|
|
// the initial sizes. An inconsistency is permitted here
|
|
// in the total size that can be specified explicitly by
|
|
// command line specification of OldSize and NewSize and
|
|
// also a command line specification of -Xms. Issue a warning
|
|
// but allow the values to pass.
|
|
void GenCollectorPolicy::initialize_size_info() {
|
|
CollectorPolicy::initialize_size_info();
|
|
|
|
_initial_young_size = NewSize;
|
|
_max_young_size = MaxNewSize;
|
|
_initial_old_size = OldSize;
|
|
|
|
// Determine maximum size of the young generation.
|
|
|
|
if (FLAG_IS_DEFAULT(MaxNewSize)) {
|
|
_max_young_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
|
|
// Bound the maximum size by NewSize below (since it historically
|
|
// would have been NewSize and because the NewRatio calculation could
|
|
// yield a size that is too small) and bound it by MaxNewSize above.
|
|
// Ergonomics plays here by previously calculating the desired
|
|
// NewSize and MaxNewSize.
|
|
_max_young_size = MIN2(MAX2(_max_young_size, _initial_young_size), MaxNewSize);
|
|
}
|
|
|
|
// Given the maximum young size, determine the initial and
|
|
// minimum young sizes.
|
|
|
|
if (_max_heap_byte_size == _initial_heap_byte_size) {
|
|
// The maximum and initial heap sizes are the same so the generation's
|
|
// initial size must be the same as it maximum size. Use NewSize as the
|
|
// size if set on command line.
|
|
_max_young_size = FLAG_IS_CMDLINE(NewSize) ? NewSize : _max_young_size;
|
|
_initial_young_size = _max_young_size;
|
|
|
|
// Also update the minimum size if min == initial == max.
|
|
if (_max_heap_byte_size == _min_heap_byte_size) {
|
|
_min_young_size = _max_young_size;
|
|
}
|
|
} else {
|
|
if (FLAG_IS_CMDLINE(NewSize)) {
|
|
// If NewSize is set on the command line, we should use it as
|
|
// the initial size, but make sure it is within the heap bounds.
|
|
_initial_young_size =
|
|
MIN2(_max_young_size, bound_minus_alignment(NewSize, _initial_heap_byte_size));
|
|
_min_young_size = bound_minus_alignment(_initial_young_size, _min_heap_byte_size);
|
|
} else {
|
|
// For the case where NewSize is not set on the command line, use
|
|
// NewRatio to size the initial generation size. Use the current
|
|
// NewSize as the floor, because if NewRatio is overly large, the resulting
|
|
// size can be too small.
|
|
_initial_young_size =
|
|
MIN2(_max_young_size, MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize));
|
|
}
|
|
}
|
|
|
|
log_trace(gc, heap)("1: Minimum young " SIZE_FORMAT " Initial young " SIZE_FORMAT " Maximum young " SIZE_FORMAT,
|
|
_min_young_size, _initial_young_size, _max_young_size);
|
|
|
|
// At this point the minimum, initial and maximum sizes
|
|
// of the overall heap and of the young generation have been determined.
|
|
// The maximum old size can be determined from the maximum young
|
|
// and maximum heap size since no explicit flags exist
|
|
// for setting the old generation maximum.
|
|
_max_old_size = MAX2(_max_heap_byte_size - _max_young_size, _gen_alignment);
|
|
|
|
// If no explicit command line flag has been set for the
|
|
// old generation size, use what is left.
|
|
if (!FLAG_IS_CMDLINE(OldSize)) {
|
|
// The user has not specified any value but the ergonomics
|
|
// may have chosen a value (which may or may not be consistent
|
|
// with the overall heap size). In either case make
|
|
// the minimum, maximum and initial sizes consistent
|
|
// with the young sizes and the overall heap sizes.
|
|
_min_old_size = _gen_alignment;
|
|
_initial_old_size = MIN2(_max_old_size, MAX2(_initial_heap_byte_size - _initial_young_size, _min_old_size));
|
|
// _max_old_size has already been made consistent above.
|
|
} else {
|
|
// OldSize has been explicitly set on the command line. Use it
|
|
// for the initial size but make sure the minimum allow a young
|
|
// generation to fit as well.
|
|
// If the user has explicitly set an OldSize that is inconsistent
|
|
// with other command line flags, issue a warning.
|
|
// The generation minimums and the overall heap minimum should
|
|
// be within one generation alignment.
|
|
if (_initial_old_size > _max_old_size) {
|
|
log_warning(gc, ergo)("Inconsistency between maximum heap size and maximum "
|
|
"generation sizes: using maximum heap = " SIZE_FORMAT
|
|
", -XX:OldSize flag is being ignored",
|
|
_max_heap_byte_size);
|
|
_initial_old_size = _max_old_size;
|
|
}
|
|
|
|
_min_old_size = MIN2(_initial_old_size, _min_heap_byte_size - _min_young_size);
|
|
}
|
|
|
|
// The initial generation sizes should match the initial heap size,
|
|
// if not issue a warning and resize the generations. This behavior
|
|
// differs from JDK8 where the generation sizes have higher priority
|
|
// than the initial heap size.
|
|
if ((_initial_old_size + _initial_young_size) != _initial_heap_byte_size) {
|
|
log_warning(gc, ergo)("Inconsistency between generation sizes and heap size, resizing "
|
|
"the generations to fit the heap.");
|
|
|
|
size_t desired_young_size = _initial_heap_byte_size - _initial_old_size;
|
|
if (_initial_heap_byte_size < _initial_old_size) {
|
|
// Old want all memory, use minimum for young and rest for old
|
|
_initial_young_size = _min_young_size;
|
|
_initial_old_size = _initial_heap_byte_size - _min_young_size;
|
|
} else if (desired_young_size > _max_young_size) {
|
|
// Need to increase both young and old generation
|
|
_initial_young_size = _max_young_size;
|
|
_initial_old_size = _initial_heap_byte_size - _max_young_size;
|
|
} else if (desired_young_size < _min_young_size) {
|
|
// Need to decrease both young and old generation
|
|
_initial_young_size = _min_young_size;
|
|
_initial_old_size = _initial_heap_byte_size - _min_young_size;
|
|
} else {
|
|
// The young generation boundaries allow us to only update the
|
|
// young generation.
|
|
_initial_young_size = desired_young_size;
|
|
}
|
|
|
|
log_trace(gc, heap)("2: Minimum young " SIZE_FORMAT " Initial young " SIZE_FORMAT " Maximum young " SIZE_FORMAT,
|
|
_min_young_size, _initial_young_size, _max_young_size);
|
|
}
|
|
|
|
// Write back to flags if necessary.
|
|
if (NewSize != _initial_young_size) {
|
|
FLAG_SET_ERGO(size_t, NewSize, _initial_young_size);
|
|
}
|
|
|
|
if (MaxNewSize != _max_young_size) {
|
|
FLAG_SET_ERGO(size_t, MaxNewSize, _max_young_size);
|
|
}
|
|
|
|
if (OldSize != _initial_old_size) {
|
|
FLAG_SET_ERGO(size_t, OldSize, _initial_old_size);
|
|
}
|
|
|
|
log_trace(gc, heap)("Minimum old " SIZE_FORMAT " Initial old " SIZE_FORMAT " Maximum old " SIZE_FORMAT,
|
|
_min_old_size, _initial_old_size, _max_old_size);
|
|
|
|
DEBUG_ONLY(GenCollectorPolicy::assert_size_info();)
|
|
}
|
|
|
|
HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
|
|
bool is_tlab,
|
|
bool* gc_overhead_limit_was_exceeded) {
|
|
GenCollectedHeap *gch = GenCollectedHeap::heap();
|
|
|
|
debug_only(gch->check_for_valid_allocation_state());
|
|
assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
|
|
|
|
// In general gc_overhead_limit_was_exceeded should be false so
|
|
// set it so here and reset it to true only if the gc time
|
|
// limit is being exceeded as checked below.
|
|
*gc_overhead_limit_was_exceeded = false;
|
|
|
|
HeapWord* result = NULL;
|
|
|
|
// Loop until the allocation is satisfied, or unsatisfied after GC.
|
|
for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
|
|
HandleMark hm; // Discard any handles allocated in each iteration.
|
|
|
|
// First allocation attempt is lock-free.
|
|
Generation *young = gch->young_gen();
|
|
assert(young->supports_inline_contig_alloc(),
|
|
"Otherwise, must do alloc within heap lock");
|
|
if (young->should_allocate(size, is_tlab)) {
|
|
result = young->par_allocate(size, is_tlab);
|
|
if (result != NULL) {
|
|
assert(gch->is_in_reserved(result), "result not in heap");
|
|
return result;
|
|
}
|
|
}
|
|
uint gc_count_before; // Read inside the Heap_lock locked region.
|
|
{
|
|
MutexLocker ml(Heap_lock);
|
|
log_trace(gc, alloc)("GenCollectorPolicy::mem_allocate_work: attempting locked slow path allocation");
|
|
// Note that only large objects get a shot at being
|
|
// allocated in later generations.
|
|
bool first_only = ! should_try_older_generation_allocation(size);
|
|
|
|
result = gch->attempt_allocation(size, is_tlab, first_only);
|
|
if (result != NULL) {
|
|
assert(gch->is_in_reserved(result), "result not in heap");
|
|
return result;
|
|
}
|
|
|
|
if (GCLocker::is_active_and_needs_gc()) {
|
|
if (is_tlab) {
|
|
return NULL; // Caller will retry allocating individual object.
|
|
}
|
|
if (!gch->is_maximal_no_gc()) {
|
|
// Try and expand heap to satisfy request.
|
|
result = expand_heap_and_allocate(size, is_tlab);
|
|
// Result could be null if we are out of space.
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
|
|
return NULL; // We didn't get to do a GC and we didn't get any memory.
|
|
}
|
|
|
|
// If this thread is not in a jni critical section, we stall
|
|
// the requestor until the critical section has cleared and
|
|
// GC allowed. When the critical section clears, a GC is
|
|
// initiated by the last thread exiting the critical section; so
|
|
// we retry the allocation sequence from the beginning of the loop,
|
|
// rather than causing more, now probably unnecessary, GC attempts.
|
|
JavaThread* jthr = JavaThread::current();
|
|
if (!jthr->in_critical()) {
|
|
MutexUnlocker mul(Heap_lock);
|
|
// Wait for JNI critical section to be exited
|
|
GCLocker::stall_until_clear();
|
|
gclocker_stalled_count += 1;
|
|
continue;
|
|
} else {
|
|
if (CheckJNICalls) {
|
|
fatal("Possible deadlock due to allocating while"
|
|
" in jni critical section");
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// Read the gc count while the heap lock is held.
|
|
gc_count_before = gch->total_collections();
|
|
}
|
|
|
|
VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
|
|
VMThread::execute(&op);
|
|
if (op.prologue_succeeded()) {
|
|
result = op.result();
|
|
if (op.gc_locked()) {
|
|
assert(result == NULL, "must be NULL if gc_locked() is true");
|
|
continue; // Retry and/or stall as necessary.
|
|
}
|
|
|
|
// Allocation has failed and a collection
|
|
// has been done. If the gc time limit was exceeded the
|
|
// this time, return NULL so that an out-of-memory
|
|
// will be thrown. Clear gc_overhead_limit_exceeded
|
|
// so that the overhead exceeded does not persist.
|
|
|
|
const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
|
|
const bool softrefs_clear = all_soft_refs_clear();
|
|
|
|
if (limit_exceeded && softrefs_clear) {
|
|
*gc_overhead_limit_was_exceeded = true;
|
|
size_policy()->set_gc_overhead_limit_exceeded(false);
|
|
if (op.result() != NULL) {
|
|
CollectedHeap::fill_with_object(op.result(), size);
|
|
}
|
|
return NULL;
|
|
}
|
|
assert(result == NULL || gch->is_in_reserved(result),
|
|
"result not in heap");
|
|
return result;
|
|
}
|
|
|
|
// Give a warning if we seem to be looping forever.
|
|
if ((QueuedAllocationWarningCount > 0) &&
|
|
(try_count % QueuedAllocationWarningCount == 0)) {
|
|
log_warning(gc, ergo)("GenCollectorPolicy::mem_allocate_work retries %d times,"
|
|
" size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
|
|
}
|
|
}
|
|
}
|
|
|
|
HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
|
|
bool is_tlab) {
|
|
GenCollectedHeap *gch = GenCollectedHeap::heap();
|
|
HeapWord* result = NULL;
|
|
Generation *old = gch->old_gen();
|
|
if (old->should_allocate(size, is_tlab)) {
|
|
result = old->expand_and_allocate(size, is_tlab);
|
|
}
|
|
if (result == NULL) {
|
|
Generation *young = gch->young_gen();
|
|
if (young->should_allocate(size, is_tlab)) {
|
|
result = young->expand_and_allocate(size, is_tlab);
|
|
}
|
|
}
|
|
assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
|
|
return result;
|
|
}
|
|
|
|
HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
|
|
bool is_tlab) {
|
|
GenCollectedHeap *gch = GenCollectedHeap::heap();
|
|
GCCauseSetter x(gch, GCCause::_allocation_failure);
|
|
HeapWord* result = NULL;
|
|
|
|
assert(size != 0, "Precondition violated");
|
|
if (GCLocker::is_active_and_needs_gc()) {
|
|
// GC locker is active; instead of a collection we will attempt
|
|
// to expand the heap, if there's room for expansion.
|
|
if (!gch->is_maximal_no_gc()) {
|
|
result = expand_heap_and_allocate(size, is_tlab);
|
|
}
|
|
return result; // Could be null if we are out of space.
|
|
} else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
|
|
// Do an incremental collection.
|
|
gch->do_collection(false, // full
|
|
false, // clear_all_soft_refs
|
|
size, // size
|
|
is_tlab, // is_tlab
|
|
GenCollectedHeap::OldGen); // max_generation
|
|
} else {
|
|
log_trace(gc)(" :: Trying full because partial may fail :: ");
|
|
// Try a full collection; see delta for bug id 6266275
|
|
// for the original code and why this has been simplified
|
|
// with from-space allocation criteria modified and
|
|
// such allocation moved out of the safepoint path.
|
|
gch->do_collection(true, // full
|
|
false, // clear_all_soft_refs
|
|
size, // size
|
|
is_tlab, // is_tlab
|
|
GenCollectedHeap::OldGen); // max_generation
|
|
}
|
|
|
|
result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
|
|
|
|
if (result != NULL) {
|
|
assert(gch->is_in_reserved(result), "result not in heap");
|
|
return result;
|
|
}
|
|
|
|
// OK, collection failed, try expansion.
|
|
result = expand_heap_and_allocate(size, is_tlab);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
// If we reach this point, we're really out of memory. Try every trick
|
|
// we can to reclaim memory. Force collection of soft references. Force
|
|
// a complete compaction of the heap. Any additional methods for finding
|
|
// free memory should be here, especially if they are expensive. If this
|
|
// attempt fails, an OOM exception will be thrown.
|
|
{
|
|
UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
|
|
|
|
gch->do_collection(true, // full
|
|
true, // clear_all_soft_refs
|
|
size, // size
|
|
is_tlab, // is_tlab
|
|
GenCollectedHeap::OldGen); // max_generation
|
|
}
|
|
|
|
result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
|
|
if (result != NULL) {
|
|
assert(gch->is_in_reserved(result), "result not in heap");
|
|
return result;
|
|
}
|
|
|
|
assert(!should_clear_all_soft_refs(),
|
|
"Flag should have been handled and cleared prior to this point");
|
|
|
|
// What else? We might try synchronous finalization later. If the total
|
|
// space available is large enough for the allocation, then a more
|
|
// complete compaction phase than we've tried so far might be
|
|
// appropriate.
|
|
return NULL;
|
|
}
|
|
|
|
MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
|
|
ClassLoaderData* loader_data,
|
|
size_t word_size,
|
|
Metaspace::MetadataType mdtype) {
|
|
uint loop_count = 0;
|
|
uint gc_count = 0;
|
|
uint full_gc_count = 0;
|
|
|
|
assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
|
|
|
|
do {
|
|
MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
if (GCLocker::is_active_and_needs_gc()) {
|
|
// If the GCLocker is active, just expand and allocate.
|
|
// If that does not succeed, wait if this thread is not
|
|
// in a critical section itself.
|
|
result =
|
|
loader_data->metaspace_non_null()->expand_and_allocate(word_size,
|
|
mdtype);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
JavaThread* jthr = JavaThread::current();
|
|
if (!jthr->in_critical()) {
|
|
// Wait for JNI critical section to be exited
|
|
GCLocker::stall_until_clear();
|
|
// The GC invoked by the last thread leaving the critical
|
|
// section will be a young collection and a full collection
|
|
// is (currently) needed for unloading classes so continue
|
|
// to the next iteration to get a full GC.
|
|
continue;
|
|
} else {
|
|
if (CheckJNICalls) {
|
|
fatal("Possible deadlock due to allocating while"
|
|
" in jni critical section");
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
{ // Need lock to get self consistent gc_count's
|
|
MutexLocker ml(Heap_lock);
|
|
gc_count = Universe::heap()->total_collections();
|
|
full_gc_count = Universe::heap()->total_full_collections();
|
|
}
|
|
|
|
// Generate a VM operation
|
|
VM_CollectForMetadataAllocation op(loader_data,
|
|
word_size,
|
|
mdtype,
|
|
gc_count,
|
|
full_gc_count,
|
|
GCCause::_metadata_GC_threshold);
|
|
VMThread::execute(&op);
|
|
|
|
// If GC was locked out, try again. Check before checking success because the
|
|
// prologue could have succeeded and the GC still have been locked out.
|
|
if (op.gc_locked()) {
|
|
continue;
|
|
}
|
|
|
|
if (op.prologue_succeeded()) {
|
|
return op.result();
|
|
}
|
|
loop_count++;
|
|
if ((QueuedAllocationWarningCount > 0) &&
|
|
(loop_count % QueuedAllocationWarningCount == 0)) {
|
|
log_warning(gc, ergo)("satisfy_failed_metadata_allocation() retries %d times,"
|
|
" size=" SIZE_FORMAT, loop_count, word_size);
|
|
}
|
|
} while (true); // Until a GC is done
|
|
}
|
|
|
|
// Return true if any of the following is true:
|
|
// . the allocation won't fit into the current young gen heap
|
|
// . gc locker is occupied (jni critical section)
|
|
// . heap memory is tight -- the most recent previous collection
|
|
// was a full collection because a partial collection (would
|
|
// have) failed and is likely to fail again
|
|
bool GenCollectorPolicy::should_try_older_generation_allocation(
|
|
size_t word_size) const {
|
|
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
size_t young_capacity = gch->young_gen()->capacity_before_gc();
|
|
return (word_size > heap_word_size(young_capacity))
|
|
|| GCLocker::is_active_and_needs_gc()
|
|
|| gch->incremental_collection_failed();
|
|
}
|
|
|
|
|
|
//
|
|
// MarkSweepPolicy methods
|
|
//
|
|
|
|
void MarkSweepPolicy::initialize_alignments() {
|
|
_space_alignment = _gen_alignment = (size_t)Generation::GenGrain;
|
|
_heap_alignment = compute_heap_alignment();
|
|
}
|
|
|
|
void MarkSweepPolicy::initialize_generations() {
|
|
_young_gen_spec = new GenerationSpec(Generation::DefNew, _initial_young_size, _max_young_size, _gen_alignment);
|
|
_old_gen_spec = new GenerationSpec(Generation::MarkSweepCompact, _initial_old_size, _max_old_size, _gen_alignment);
|
|
}
|
|
|
|
void MarkSweepPolicy::initialize_gc_policy_counters() {
|
|
// Initialize the policy counters - 2 collectors, 3 generations.
|
|
_gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
|
|
}
|
|
|