mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-23 12:54:17 +02:00
5996 lines
199 KiB
C++
5996 lines
199 KiB
C++
/*
|
|
* Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
// no precompiled headers
|
|
#include "jvm.h"
|
|
#include "classfile/classLoader.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "compiler/compileBroker.hpp"
|
|
#include "compiler/disassembler.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/filemap.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "os_linux.inline.hpp"
|
|
#include "os_share_linux.hpp"
|
|
#include "prims/jniFastGetField.hpp"
|
|
#include "prims/jvm_misc.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/atomic.hpp"
|
|
#include "runtime/extendedPC.hpp"
|
|
#include "runtime/globals.hpp"
|
|
#include "runtime/interfaceSupport.hpp"
|
|
#include "runtime/init.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/javaCalls.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "runtime/objectMonitor.hpp"
|
|
#include "runtime/orderAccess.inline.hpp"
|
|
#include "runtime/osThread.hpp"
|
|
#include "runtime/perfMemory.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/statSampler.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "runtime/threadCritical.hpp"
|
|
#include "runtime/timer.hpp"
|
|
#include "semaphore_posix.hpp"
|
|
#include "services/attachListener.hpp"
|
|
#include "services/memTracker.hpp"
|
|
#include "services/runtimeService.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "utilities/decoder.hpp"
|
|
#include "utilities/defaultStream.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/elfFile.hpp"
|
|
#include "utilities/growableArray.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#include "utilities/vmError.hpp"
|
|
|
|
// put OS-includes here
|
|
# include <sys/types.h>
|
|
# include <sys/mman.h>
|
|
# include <sys/stat.h>
|
|
# include <sys/select.h>
|
|
# include <pthread.h>
|
|
# include <signal.h>
|
|
# include <errno.h>
|
|
# include <dlfcn.h>
|
|
# include <stdio.h>
|
|
# include <unistd.h>
|
|
# include <sys/resource.h>
|
|
# include <pthread.h>
|
|
# include <sys/stat.h>
|
|
# include <sys/time.h>
|
|
# include <sys/times.h>
|
|
# include <sys/utsname.h>
|
|
# include <sys/socket.h>
|
|
# include <sys/wait.h>
|
|
# include <pwd.h>
|
|
# include <poll.h>
|
|
# include <semaphore.h>
|
|
# include <fcntl.h>
|
|
# include <string.h>
|
|
# include <syscall.h>
|
|
# include <sys/sysinfo.h>
|
|
# include <gnu/libc-version.h>
|
|
# include <sys/ipc.h>
|
|
# include <sys/shm.h>
|
|
# include <link.h>
|
|
# include <stdint.h>
|
|
# include <inttypes.h>
|
|
# include <sys/ioctl.h>
|
|
|
|
#ifndef _GNU_SOURCE
|
|
#define _GNU_SOURCE
|
|
#include <sched.h>
|
|
#undef _GNU_SOURCE
|
|
#else
|
|
#include <sched.h>
|
|
#endif
|
|
|
|
// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
|
|
// getrusage() is prepared to handle the associated failure.
|
|
#ifndef RUSAGE_THREAD
|
|
#define RUSAGE_THREAD (1) /* only the calling thread */
|
|
#endif
|
|
|
|
#define MAX_PATH (2 * K)
|
|
|
|
#define MAX_SECS 100000000
|
|
|
|
// for timer info max values which include all bits
|
|
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
|
|
|
|
#define LARGEPAGES_BIT (1 << 6)
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// global variables
|
|
julong os::Linux::_physical_memory = 0;
|
|
|
|
address os::Linux::_initial_thread_stack_bottom = NULL;
|
|
uintptr_t os::Linux::_initial_thread_stack_size = 0;
|
|
|
|
int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
|
|
int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
|
|
int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
|
|
Mutex* os::Linux::_createThread_lock = NULL;
|
|
pthread_t os::Linux::_main_thread;
|
|
int os::Linux::_page_size = -1;
|
|
bool os::Linux::_supports_fast_thread_cpu_time = false;
|
|
uint32_t os::Linux::_os_version = 0;
|
|
const char * os::Linux::_glibc_version = NULL;
|
|
const char * os::Linux::_libpthread_version = NULL;
|
|
|
|
static jlong initial_time_count=0;
|
|
|
|
static int clock_tics_per_sec = 100;
|
|
|
|
// For diagnostics to print a message once. see run_periodic_checks
|
|
static sigset_t check_signal_done;
|
|
static bool check_signals = true;
|
|
|
|
// Signal number used to suspend/resume a thread
|
|
|
|
// do not use any signal number less than SIGSEGV, see 4355769
|
|
static int SR_signum = SIGUSR2;
|
|
sigset_t SR_sigset;
|
|
|
|
// utility functions
|
|
|
|
static int SR_initialize();
|
|
|
|
julong os::available_memory() {
|
|
return Linux::available_memory();
|
|
}
|
|
|
|
julong os::Linux::available_memory() {
|
|
// values in struct sysinfo are "unsigned long"
|
|
struct sysinfo si;
|
|
sysinfo(&si);
|
|
|
|
return (julong)si.freeram * si.mem_unit;
|
|
}
|
|
|
|
julong os::physical_memory() {
|
|
return Linux::physical_memory();
|
|
}
|
|
|
|
// Return true if user is running as root.
|
|
|
|
bool os::have_special_privileges() {
|
|
static bool init = false;
|
|
static bool privileges = false;
|
|
if (!init) {
|
|
privileges = (getuid() != geteuid()) || (getgid() != getegid());
|
|
init = true;
|
|
}
|
|
return privileges;
|
|
}
|
|
|
|
|
|
#ifndef SYS_gettid
|
|
// i386: 224, ia64: 1105, amd64: 186, sparc 143
|
|
#ifdef __ia64__
|
|
#define SYS_gettid 1105
|
|
#else
|
|
#ifdef __i386__
|
|
#define SYS_gettid 224
|
|
#else
|
|
#ifdef __amd64__
|
|
#define SYS_gettid 186
|
|
#else
|
|
#ifdef __sparc__
|
|
#define SYS_gettid 143
|
|
#else
|
|
#error define gettid for the arch
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
|
|
// pid_t gettid()
|
|
//
|
|
// Returns the kernel thread id of the currently running thread. Kernel
|
|
// thread id is used to access /proc.
|
|
pid_t os::Linux::gettid() {
|
|
int rslt = syscall(SYS_gettid);
|
|
assert(rslt != -1, "must be."); // old linuxthreads implementation?
|
|
return (pid_t)rslt;
|
|
}
|
|
|
|
// Most versions of linux have a bug where the number of processors are
|
|
// determined by looking at the /proc file system. In a chroot environment,
|
|
// the system call returns 1. This causes the VM to act as if it is
|
|
// a single processor and elide locking (see is_MP() call).
|
|
static bool unsafe_chroot_detected = false;
|
|
static const char *unstable_chroot_error = "/proc file system not found.\n"
|
|
"Java may be unstable running multithreaded in a chroot "
|
|
"environment on Linux when /proc filesystem is not mounted.";
|
|
|
|
void os::Linux::initialize_system_info() {
|
|
set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
|
|
if (processor_count() == 1) {
|
|
pid_t pid = os::Linux::gettid();
|
|
char fname[32];
|
|
jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
|
|
FILE *fp = fopen(fname, "r");
|
|
if (fp == NULL) {
|
|
unsafe_chroot_detected = true;
|
|
} else {
|
|
fclose(fp);
|
|
}
|
|
}
|
|
_physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
|
|
assert(processor_count() > 0, "linux error");
|
|
}
|
|
|
|
void os::init_system_properties_values() {
|
|
// The next steps are taken in the product version:
|
|
//
|
|
// Obtain the JAVA_HOME value from the location of libjvm.so.
|
|
// This library should be located at:
|
|
// <JAVA_HOME>/lib/{client|server}/libjvm.so.
|
|
//
|
|
// If "/jre/lib/" appears at the right place in the path, then we
|
|
// assume libjvm.so is installed in a JDK and we use this path.
|
|
//
|
|
// Otherwise exit with message: "Could not create the Java virtual machine."
|
|
//
|
|
// The following extra steps are taken in the debugging version:
|
|
//
|
|
// If "/jre/lib/" does NOT appear at the right place in the path
|
|
// instead of exit check for $JAVA_HOME environment variable.
|
|
//
|
|
// If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
|
|
// then we append a fake suffix "hotspot/libjvm.so" to this path so
|
|
// it looks like libjvm.so is installed there
|
|
// <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
|
|
//
|
|
// Otherwise exit.
|
|
//
|
|
// Important note: if the location of libjvm.so changes this
|
|
// code needs to be changed accordingly.
|
|
|
|
// See ld(1):
|
|
// The linker uses the following search paths to locate required
|
|
// shared libraries:
|
|
// 1: ...
|
|
// ...
|
|
// 7: The default directories, normally /lib and /usr/lib.
|
|
#if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
|
|
#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
|
|
#else
|
|
#define DEFAULT_LIBPATH "/lib:/usr/lib"
|
|
#endif
|
|
|
|
// Base path of extensions installed on the system.
|
|
#define SYS_EXT_DIR "/usr/java/packages"
|
|
#define EXTENSIONS_DIR "/lib/ext"
|
|
|
|
// Buffer that fits several sprintfs.
|
|
// Note that the space for the colon and the trailing null are provided
|
|
// by the nulls included by the sizeof operator.
|
|
const size_t bufsize =
|
|
MAX2((size_t)MAXPATHLEN, // For dll_dir & friends.
|
|
(size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
|
|
char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
|
|
|
|
// sysclasspath, java_home, dll_dir
|
|
{
|
|
char *pslash;
|
|
os::jvm_path(buf, bufsize);
|
|
|
|
// Found the full path to libjvm.so.
|
|
// Now cut the path to <java_home>/jre if we can.
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /libjvm.so.
|
|
}
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /{client|server|hotspot}.
|
|
}
|
|
Arguments::set_dll_dir(buf);
|
|
|
|
if (pslash != NULL) {
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /lib.
|
|
}
|
|
}
|
|
Arguments::set_java_home(buf);
|
|
set_boot_path('/', ':');
|
|
}
|
|
|
|
// Where to look for native libraries.
|
|
//
|
|
// Note: Due to a legacy implementation, most of the library path
|
|
// is set in the launcher. This was to accomodate linking restrictions
|
|
// on legacy Linux implementations (which are no longer supported).
|
|
// Eventually, all the library path setting will be done here.
|
|
//
|
|
// However, to prevent the proliferation of improperly built native
|
|
// libraries, the new path component /usr/java/packages is added here.
|
|
// Eventually, all the library path setting will be done here.
|
|
{
|
|
// Get the user setting of LD_LIBRARY_PATH, and prepended it. It
|
|
// should always exist (until the legacy problem cited above is
|
|
// addressed).
|
|
const char *v = ::getenv("LD_LIBRARY_PATH");
|
|
const char *v_colon = ":";
|
|
if (v == NULL) { v = ""; v_colon = ""; }
|
|
// That's +1 for the colon and +1 for the trailing '\0'.
|
|
char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
|
|
strlen(v) + 1 +
|
|
sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
|
|
mtInternal);
|
|
sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
|
|
Arguments::set_library_path(ld_library_path);
|
|
FREE_C_HEAP_ARRAY(char, ld_library_path);
|
|
}
|
|
|
|
// Extensions directories.
|
|
sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
|
|
Arguments::set_ext_dirs(buf);
|
|
|
|
FREE_C_HEAP_ARRAY(char, buf);
|
|
|
|
#undef DEFAULT_LIBPATH
|
|
#undef SYS_EXT_DIR
|
|
#undef EXTENSIONS_DIR
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// breakpoint support
|
|
|
|
void os::breakpoint() {
|
|
BREAKPOINT;
|
|
}
|
|
|
|
extern "C" void breakpoint() {
|
|
// use debugger to set breakpoint here
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// signal support
|
|
|
|
debug_only(static bool signal_sets_initialized = false);
|
|
static sigset_t unblocked_sigs, vm_sigs;
|
|
|
|
bool os::Linux::is_sig_ignored(int sig) {
|
|
struct sigaction oact;
|
|
sigaction(sig, (struct sigaction*)NULL, &oact);
|
|
void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(void*, oact.sa_handler);
|
|
if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void os::Linux::signal_sets_init() {
|
|
// Should also have an assertion stating we are still single-threaded.
|
|
assert(!signal_sets_initialized, "Already initialized");
|
|
// Fill in signals that are necessarily unblocked for all threads in
|
|
// the VM. Currently, we unblock the following signals:
|
|
// SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
|
|
// by -Xrs (=ReduceSignalUsage));
|
|
// BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
|
|
// other threads. The "ReduceSignalUsage" boolean tells us not to alter
|
|
// the dispositions or masks wrt these signals.
|
|
// Programs embedding the VM that want to use the above signals for their
|
|
// own purposes must, at this time, use the "-Xrs" option to prevent
|
|
// interference with shutdown hooks and BREAK_SIGNAL thread dumping.
|
|
// (See bug 4345157, and other related bugs).
|
|
// In reality, though, unblocking these signals is really a nop, since
|
|
// these signals are not blocked by default.
|
|
sigemptyset(&unblocked_sigs);
|
|
sigaddset(&unblocked_sigs, SIGILL);
|
|
sigaddset(&unblocked_sigs, SIGSEGV);
|
|
sigaddset(&unblocked_sigs, SIGBUS);
|
|
sigaddset(&unblocked_sigs, SIGFPE);
|
|
#if defined(PPC64)
|
|
sigaddset(&unblocked_sigs, SIGTRAP);
|
|
#endif
|
|
sigaddset(&unblocked_sigs, SR_signum);
|
|
|
|
if (!ReduceSignalUsage) {
|
|
if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
|
|
sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
|
|
}
|
|
if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
|
|
sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
|
|
}
|
|
if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
|
|
sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
|
|
}
|
|
}
|
|
// Fill in signals that are blocked by all but the VM thread.
|
|
sigemptyset(&vm_sigs);
|
|
if (!ReduceSignalUsage) {
|
|
sigaddset(&vm_sigs, BREAK_SIGNAL);
|
|
}
|
|
debug_only(signal_sets_initialized = true);
|
|
|
|
}
|
|
|
|
// These are signals that are unblocked while a thread is running Java.
|
|
// (For some reason, they get blocked by default.)
|
|
sigset_t* os::Linux::unblocked_signals() {
|
|
assert(signal_sets_initialized, "Not initialized");
|
|
return &unblocked_sigs;
|
|
}
|
|
|
|
// These are the signals that are blocked while a (non-VM) thread is
|
|
// running Java. Only the VM thread handles these signals.
|
|
sigset_t* os::Linux::vm_signals() {
|
|
assert(signal_sets_initialized, "Not initialized");
|
|
return &vm_sigs;
|
|
}
|
|
|
|
void os::Linux::hotspot_sigmask(Thread* thread) {
|
|
|
|
//Save caller's signal mask before setting VM signal mask
|
|
sigset_t caller_sigmask;
|
|
pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
osthread->set_caller_sigmask(caller_sigmask);
|
|
|
|
pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
|
|
|
|
if (!ReduceSignalUsage) {
|
|
if (thread->is_VM_thread()) {
|
|
// Only the VM thread handles BREAK_SIGNAL ...
|
|
pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
|
|
} else {
|
|
// ... all other threads block BREAK_SIGNAL
|
|
pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// detecting pthread library
|
|
|
|
void os::Linux::libpthread_init() {
|
|
// Save glibc and pthread version strings.
|
|
#if !defined(_CS_GNU_LIBC_VERSION) || \
|
|
!defined(_CS_GNU_LIBPTHREAD_VERSION)
|
|
#error "glibc too old (< 2.3.2)"
|
|
#endif
|
|
|
|
size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
|
|
assert(n > 0, "cannot retrieve glibc version");
|
|
char *str = (char *)malloc(n, mtInternal);
|
|
confstr(_CS_GNU_LIBC_VERSION, str, n);
|
|
os::Linux::set_glibc_version(str);
|
|
|
|
n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
|
|
assert(n > 0, "cannot retrieve pthread version");
|
|
str = (char *)malloc(n, mtInternal);
|
|
confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
|
|
os::Linux::set_libpthread_version(str);
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// thread stack expansion
|
|
|
|
// os::Linux::manually_expand_stack() takes care of expanding the thread
|
|
// stack. Note that this is normally not needed: pthread stacks allocate
|
|
// thread stack using mmap() without MAP_NORESERVE, so the stack is already
|
|
// committed. Therefore it is not necessary to expand the stack manually.
|
|
//
|
|
// Manually expanding the stack was historically needed on LinuxThreads
|
|
// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
|
|
// it is kept to deal with very rare corner cases:
|
|
//
|
|
// For one, user may run the VM on an own implementation of threads
|
|
// whose stacks are - like the old LinuxThreads - implemented using
|
|
// mmap(MAP_GROWSDOWN).
|
|
//
|
|
// Also, this coding may be needed if the VM is running on the primordial
|
|
// thread. Normally we avoid running on the primordial thread; however,
|
|
// user may still invoke the VM on the primordial thread.
|
|
//
|
|
// The following historical comment describes the details about running
|
|
// on a thread stack allocated with mmap(MAP_GROWSDOWN):
|
|
|
|
|
|
// Force Linux kernel to expand current thread stack. If "bottom" is close
|
|
// to the stack guard, caller should block all signals.
|
|
//
|
|
// MAP_GROWSDOWN:
|
|
// A special mmap() flag that is used to implement thread stacks. It tells
|
|
// kernel that the memory region should extend downwards when needed. This
|
|
// allows early versions of LinuxThreads to only mmap the first few pages
|
|
// when creating a new thread. Linux kernel will automatically expand thread
|
|
// stack as needed (on page faults).
|
|
//
|
|
// However, because the memory region of a MAP_GROWSDOWN stack can grow on
|
|
// demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
|
|
// region, it's hard to tell if the fault is due to a legitimate stack
|
|
// access or because of reading/writing non-exist memory (e.g. buffer
|
|
// overrun). As a rule, if the fault happens below current stack pointer,
|
|
// Linux kernel does not expand stack, instead a SIGSEGV is sent to the
|
|
// application (see Linux kernel fault.c).
|
|
//
|
|
// This Linux feature can cause SIGSEGV when VM bangs thread stack for
|
|
// stack overflow detection.
|
|
//
|
|
// Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
|
|
// not use MAP_GROWSDOWN.
|
|
//
|
|
// To get around the problem and allow stack banging on Linux, we need to
|
|
// manually expand thread stack after receiving the SIGSEGV.
|
|
//
|
|
// There are two ways to expand thread stack to address "bottom", we used
|
|
// both of them in JVM before 1.5:
|
|
// 1. adjust stack pointer first so that it is below "bottom", and then
|
|
// touch "bottom"
|
|
// 2. mmap() the page in question
|
|
//
|
|
// Now alternate signal stack is gone, it's harder to use 2. For instance,
|
|
// if current sp is already near the lower end of page 101, and we need to
|
|
// call mmap() to map page 100, it is possible that part of the mmap() frame
|
|
// will be placed in page 100. When page 100 is mapped, it is zero-filled.
|
|
// That will destroy the mmap() frame and cause VM to crash.
|
|
//
|
|
// The following code works by adjusting sp first, then accessing the "bottom"
|
|
// page to force a page fault. Linux kernel will then automatically expand the
|
|
// stack mapping.
|
|
//
|
|
// _expand_stack_to() assumes its frame size is less than page size, which
|
|
// should always be true if the function is not inlined.
|
|
|
|
static void NOINLINE _expand_stack_to(address bottom) {
|
|
address sp;
|
|
size_t size;
|
|
volatile char *p;
|
|
|
|
// Adjust bottom to point to the largest address within the same page, it
|
|
// gives us a one-page buffer if alloca() allocates slightly more memory.
|
|
bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
|
|
bottom += os::Linux::page_size() - 1;
|
|
|
|
// sp might be slightly above current stack pointer; if that's the case, we
|
|
// will alloca() a little more space than necessary, which is OK. Don't use
|
|
// os::current_stack_pointer(), as its result can be slightly below current
|
|
// stack pointer, causing us to not alloca enough to reach "bottom".
|
|
sp = (address)&sp;
|
|
|
|
if (sp > bottom) {
|
|
size = sp - bottom;
|
|
p = (volatile char *)alloca(size);
|
|
assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
|
|
p[0] = '\0';
|
|
}
|
|
}
|
|
|
|
bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
|
|
assert(t!=NULL, "just checking");
|
|
assert(t->osthread()->expanding_stack(), "expand should be set");
|
|
assert(t->stack_base() != NULL, "stack_base was not initialized");
|
|
|
|
if (addr < t->stack_base() && addr >= t->stack_reserved_zone_base()) {
|
|
sigset_t mask_all, old_sigset;
|
|
sigfillset(&mask_all);
|
|
pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
|
|
_expand_stack_to(addr);
|
|
pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// create new thread
|
|
|
|
// Thread start routine for all newly created threads
|
|
static void *thread_native_entry(Thread *thread) {
|
|
// Try to randomize the cache line index of hot stack frames.
|
|
// This helps when threads of the same stack traces evict each other's
|
|
// cache lines. The threads can be either from the same JVM instance, or
|
|
// from different JVM instances. The benefit is especially true for
|
|
// processors with hyperthreading technology.
|
|
static int counter = 0;
|
|
int pid = os::current_process_id();
|
|
alloca(((pid ^ counter++) & 7) * 128);
|
|
|
|
thread->initialize_thread_current();
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
Monitor* sync = osthread->startThread_lock();
|
|
|
|
osthread->set_thread_id(os::current_thread_id());
|
|
|
|
log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
|
|
os::current_thread_id(), (uintx) pthread_self());
|
|
|
|
if (UseNUMA) {
|
|
int lgrp_id = os::numa_get_group_id();
|
|
if (lgrp_id != -1) {
|
|
thread->set_lgrp_id(lgrp_id);
|
|
}
|
|
}
|
|
// initialize signal mask for this thread
|
|
os::Linux::hotspot_sigmask(thread);
|
|
|
|
// initialize floating point control register
|
|
os::Linux::init_thread_fpu_state();
|
|
|
|
// handshaking with parent thread
|
|
{
|
|
MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
|
|
|
|
// notify parent thread
|
|
osthread->set_state(INITIALIZED);
|
|
sync->notify_all();
|
|
|
|
// wait until os::start_thread()
|
|
while (osthread->get_state() == INITIALIZED) {
|
|
sync->wait(Mutex::_no_safepoint_check_flag);
|
|
}
|
|
}
|
|
|
|
// call one more level start routine
|
|
thread->run();
|
|
|
|
log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
|
|
os::current_thread_id(), (uintx) pthread_self());
|
|
|
|
// If a thread has not deleted itself ("delete this") as part of its
|
|
// termination sequence, we have to ensure thread-local-storage is
|
|
// cleared before we actually terminate. No threads should ever be
|
|
// deleted asynchronously with respect to their termination.
|
|
if (Thread::current_or_null_safe() != NULL) {
|
|
assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
|
|
thread->clear_thread_current();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool os::create_thread(Thread* thread, ThreadType thr_type,
|
|
size_t req_stack_size) {
|
|
assert(thread->osthread() == NULL, "caller responsible");
|
|
|
|
// Allocate the OSThread object
|
|
OSThread* osthread = new OSThread(NULL, NULL);
|
|
if (osthread == NULL) {
|
|
return false;
|
|
}
|
|
|
|
// set the correct thread state
|
|
osthread->set_thread_type(thr_type);
|
|
|
|
// Initial state is ALLOCATED but not INITIALIZED
|
|
osthread->set_state(ALLOCATED);
|
|
|
|
thread->set_osthread(osthread);
|
|
|
|
// init thread attributes
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
|
|
|
// Calculate stack size if it's not specified by caller.
|
|
size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
|
|
// In the Linux NPTL pthread implementation the guard size mechanism
|
|
// is not implemented properly. The posix standard requires adding
|
|
// the size of the guard pages to the stack size, instead Linux
|
|
// takes the space out of 'stacksize'. Thus we adapt the requested
|
|
// stack_size by the size of the guard pages to mimick proper
|
|
// behaviour. However, be careful not to end up with a size
|
|
// of zero due to overflow. Don't add the guard page in that case.
|
|
size_t guard_size = os::Linux::default_guard_size(thr_type);
|
|
if (stack_size <= SIZE_MAX - guard_size) {
|
|
stack_size += guard_size;
|
|
}
|
|
assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
|
|
|
|
int status = pthread_attr_setstacksize(&attr, stack_size);
|
|
assert_status(status == 0, status, "pthread_attr_setstacksize");
|
|
|
|
// Configure glibc guard page.
|
|
pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
|
|
|
|
ThreadState state;
|
|
|
|
{
|
|
pthread_t tid;
|
|
int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
|
|
|
|
char buf[64];
|
|
if (ret == 0) {
|
|
log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
|
|
(uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
|
|
} else {
|
|
log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
|
|
os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
|
|
}
|
|
|
|
pthread_attr_destroy(&attr);
|
|
|
|
if (ret != 0) {
|
|
// Need to clean up stuff we've allocated so far
|
|
thread->set_osthread(NULL);
|
|
delete osthread;
|
|
return false;
|
|
}
|
|
|
|
// Store pthread info into the OSThread
|
|
osthread->set_pthread_id(tid);
|
|
|
|
// Wait until child thread is either initialized or aborted
|
|
{
|
|
Monitor* sync_with_child = osthread->startThread_lock();
|
|
MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
|
|
while ((state = osthread->get_state()) == ALLOCATED) {
|
|
sync_with_child->wait(Mutex::_no_safepoint_check_flag);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Aborted due to thread limit being reached
|
|
if (state == ZOMBIE) {
|
|
thread->set_osthread(NULL);
|
|
delete osthread;
|
|
return false;
|
|
}
|
|
|
|
// The thread is returned suspended (in state INITIALIZED),
|
|
// and is started higher up in the call chain
|
|
assert(state == INITIALIZED, "race condition");
|
|
return true;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// attach existing thread
|
|
|
|
// bootstrap the main thread
|
|
bool os::create_main_thread(JavaThread* thread) {
|
|
assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
|
|
return create_attached_thread(thread);
|
|
}
|
|
|
|
bool os::create_attached_thread(JavaThread* thread) {
|
|
#ifdef ASSERT
|
|
thread->verify_not_published();
|
|
#endif
|
|
|
|
// Allocate the OSThread object
|
|
OSThread* osthread = new OSThread(NULL, NULL);
|
|
|
|
if (osthread == NULL) {
|
|
return false;
|
|
}
|
|
|
|
// Store pthread info into the OSThread
|
|
osthread->set_thread_id(os::Linux::gettid());
|
|
osthread->set_pthread_id(::pthread_self());
|
|
|
|
// initialize floating point control register
|
|
os::Linux::init_thread_fpu_state();
|
|
|
|
// Initial thread state is RUNNABLE
|
|
osthread->set_state(RUNNABLE);
|
|
|
|
thread->set_osthread(osthread);
|
|
|
|
if (UseNUMA) {
|
|
int lgrp_id = os::numa_get_group_id();
|
|
if (lgrp_id != -1) {
|
|
thread->set_lgrp_id(lgrp_id);
|
|
}
|
|
}
|
|
|
|
if (os::Linux::is_initial_thread()) {
|
|
// If current thread is initial thread, its stack is mapped on demand,
|
|
// see notes about MAP_GROWSDOWN. Here we try to force kernel to map
|
|
// the entire stack region to avoid SEGV in stack banging.
|
|
// It is also useful to get around the heap-stack-gap problem on SuSE
|
|
// kernel (see 4821821 for details). We first expand stack to the top
|
|
// of yellow zone, then enable stack yellow zone (order is significant,
|
|
// enabling yellow zone first will crash JVM on SuSE Linux), so there
|
|
// is no gap between the last two virtual memory regions.
|
|
|
|
JavaThread *jt = (JavaThread *)thread;
|
|
address addr = jt->stack_reserved_zone_base();
|
|
assert(addr != NULL, "initialization problem?");
|
|
assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
|
|
|
|
osthread->set_expanding_stack();
|
|
os::Linux::manually_expand_stack(jt, addr);
|
|
osthread->clear_expanding_stack();
|
|
}
|
|
|
|
// initialize signal mask for this thread
|
|
// and save the caller's signal mask
|
|
os::Linux::hotspot_sigmask(thread);
|
|
|
|
log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
|
|
os::current_thread_id(), (uintx) pthread_self());
|
|
|
|
return true;
|
|
}
|
|
|
|
void os::pd_start_thread(Thread* thread) {
|
|
OSThread * osthread = thread->osthread();
|
|
assert(osthread->get_state() != INITIALIZED, "just checking");
|
|
Monitor* sync_with_child = osthread->startThread_lock();
|
|
MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
|
|
sync_with_child->notify();
|
|
}
|
|
|
|
// Free Linux resources related to the OSThread
|
|
void os::free_thread(OSThread* osthread) {
|
|
assert(osthread != NULL, "osthread not set");
|
|
|
|
// We are told to free resources of the argument thread,
|
|
// but we can only really operate on the current thread.
|
|
assert(Thread::current()->osthread() == osthread,
|
|
"os::free_thread but not current thread");
|
|
|
|
#ifdef ASSERT
|
|
sigset_t current;
|
|
sigemptyset(¤t);
|
|
pthread_sigmask(SIG_SETMASK, NULL, ¤t);
|
|
assert(!sigismember(¤t, SR_signum), "SR signal should not be blocked!");
|
|
#endif
|
|
|
|
// Restore caller's signal mask
|
|
sigset_t sigmask = osthread->caller_sigmask();
|
|
pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
|
|
|
|
delete osthread;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// initial thread
|
|
|
|
// Check if current thread is the initial thread, similar to Solaris thr_main.
|
|
bool os::Linux::is_initial_thread(void) {
|
|
char dummy;
|
|
// If called before init complete, thread stack bottom will be null.
|
|
// Can be called if fatal error occurs before initialization.
|
|
if (initial_thread_stack_bottom() == NULL) return false;
|
|
assert(initial_thread_stack_bottom() != NULL &&
|
|
initial_thread_stack_size() != 0,
|
|
"os::init did not locate initial thread's stack region");
|
|
if ((address)&dummy >= initial_thread_stack_bottom() &&
|
|
(address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Find the virtual memory area that contains addr
|
|
static bool find_vma(address addr, address* vma_low, address* vma_high) {
|
|
FILE *fp = fopen("/proc/self/maps", "r");
|
|
if (fp) {
|
|
address low, high;
|
|
while (!feof(fp)) {
|
|
if (fscanf(fp, "%p-%p", &low, &high) == 2) {
|
|
if (low <= addr && addr < high) {
|
|
if (vma_low) *vma_low = low;
|
|
if (vma_high) *vma_high = high;
|
|
fclose(fp);
|
|
return true;
|
|
}
|
|
}
|
|
for (;;) {
|
|
int ch = fgetc(fp);
|
|
if (ch == EOF || ch == (int)'\n') break;
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Locate initial thread stack. This special handling of initial thread stack
|
|
// is needed because pthread_getattr_np() on most (all?) Linux distros returns
|
|
// bogus value for the primordial process thread. While the launcher has created
|
|
// the VM in a new thread since JDK 6, we still have to allow for the use of the
|
|
// JNI invocation API from a primordial thread.
|
|
void os::Linux::capture_initial_stack(size_t max_size) {
|
|
|
|
// max_size is either 0 (which means accept OS default for thread stacks) or
|
|
// a user-specified value known to be at least the minimum needed. If we
|
|
// are actually on the primordial thread we can make it appear that we have a
|
|
// smaller max_size stack by inserting the guard pages at that location. But we
|
|
// cannot do anything to emulate a larger stack than what has been provided by
|
|
// the OS or threading library. In fact if we try to use a stack greater than
|
|
// what is set by rlimit then we will crash the hosting process.
|
|
|
|
// Maximum stack size is the easy part, get it from RLIMIT_STACK.
|
|
// If this is "unlimited" then it will be a huge value.
|
|
struct rlimit rlim;
|
|
getrlimit(RLIMIT_STACK, &rlim);
|
|
size_t stack_size = rlim.rlim_cur;
|
|
|
|
// 6308388: a bug in ld.so will relocate its own .data section to the
|
|
// lower end of primordial stack; reduce ulimit -s value a little bit
|
|
// so we won't install guard page on ld.so's data section.
|
|
stack_size -= 2 * page_size();
|
|
|
|
// Try to figure out where the stack base (top) is. This is harder.
|
|
//
|
|
// When an application is started, glibc saves the initial stack pointer in
|
|
// a global variable "__libc_stack_end", which is then used by system
|
|
// libraries. __libc_stack_end should be pretty close to stack top. The
|
|
// variable is available since the very early days. However, because it is
|
|
// a private interface, it could disappear in the future.
|
|
//
|
|
// Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
|
|
// to __libc_stack_end, it is very close to stack top, but isn't the real
|
|
// stack top. Note that /proc may not exist if VM is running as a chroot
|
|
// program, so reading /proc/<pid>/stat could fail. Also the contents of
|
|
// /proc/<pid>/stat could change in the future (though unlikely).
|
|
//
|
|
// We try __libc_stack_end first. If that doesn't work, look for
|
|
// /proc/<pid>/stat. If neither of them works, we use current stack pointer
|
|
// as a hint, which should work well in most cases.
|
|
|
|
uintptr_t stack_start;
|
|
|
|
// try __libc_stack_end first
|
|
uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
|
|
if (p && *p) {
|
|
stack_start = *p;
|
|
} else {
|
|
// see if we can get the start_stack field from /proc/self/stat
|
|
FILE *fp;
|
|
int pid;
|
|
char state;
|
|
int ppid;
|
|
int pgrp;
|
|
int session;
|
|
int nr;
|
|
int tpgrp;
|
|
unsigned long flags;
|
|
unsigned long minflt;
|
|
unsigned long cminflt;
|
|
unsigned long majflt;
|
|
unsigned long cmajflt;
|
|
unsigned long utime;
|
|
unsigned long stime;
|
|
long cutime;
|
|
long cstime;
|
|
long prio;
|
|
long nice;
|
|
long junk;
|
|
long it_real;
|
|
uintptr_t start;
|
|
uintptr_t vsize;
|
|
intptr_t rss;
|
|
uintptr_t rsslim;
|
|
uintptr_t scodes;
|
|
uintptr_t ecode;
|
|
int i;
|
|
|
|
// Figure what the primordial thread stack base is. Code is inspired
|
|
// by email from Hans Boehm. /proc/self/stat begins with current pid,
|
|
// followed by command name surrounded by parentheses, state, etc.
|
|
char stat[2048];
|
|
int statlen;
|
|
|
|
fp = fopen("/proc/self/stat", "r");
|
|
if (fp) {
|
|
statlen = fread(stat, 1, 2047, fp);
|
|
stat[statlen] = '\0';
|
|
fclose(fp);
|
|
|
|
// Skip pid and the command string. Note that we could be dealing with
|
|
// weird command names, e.g. user could decide to rename java launcher
|
|
// to "java 1.4.2 :)", then the stat file would look like
|
|
// 1234 (java 1.4.2 :)) R ... ...
|
|
// We don't really need to know the command string, just find the last
|
|
// occurrence of ")" and then start parsing from there. See bug 4726580.
|
|
char * s = strrchr(stat, ')');
|
|
|
|
i = 0;
|
|
if (s) {
|
|
// Skip blank chars
|
|
do { s++; } while (s && isspace(*s));
|
|
|
|
#define _UFM UINTX_FORMAT
|
|
#define _DFM INTX_FORMAT
|
|
|
|
// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
|
|
// 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
|
|
i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
|
|
&state, // 3 %c
|
|
&ppid, // 4 %d
|
|
&pgrp, // 5 %d
|
|
&session, // 6 %d
|
|
&nr, // 7 %d
|
|
&tpgrp, // 8 %d
|
|
&flags, // 9 %lu
|
|
&minflt, // 10 %lu
|
|
&cminflt, // 11 %lu
|
|
&majflt, // 12 %lu
|
|
&cmajflt, // 13 %lu
|
|
&utime, // 14 %lu
|
|
&stime, // 15 %lu
|
|
&cutime, // 16 %ld
|
|
&cstime, // 17 %ld
|
|
&prio, // 18 %ld
|
|
&nice, // 19 %ld
|
|
&junk, // 20 %ld
|
|
&it_real, // 21 %ld
|
|
&start, // 22 UINTX_FORMAT
|
|
&vsize, // 23 UINTX_FORMAT
|
|
&rss, // 24 INTX_FORMAT
|
|
&rsslim, // 25 UINTX_FORMAT
|
|
&scodes, // 26 UINTX_FORMAT
|
|
&ecode, // 27 UINTX_FORMAT
|
|
&stack_start); // 28 UINTX_FORMAT
|
|
}
|
|
|
|
#undef _UFM
|
|
#undef _DFM
|
|
|
|
if (i != 28 - 2) {
|
|
assert(false, "Bad conversion from /proc/self/stat");
|
|
// product mode - assume we are the initial thread, good luck in the
|
|
// embedded case.
|
|
warning("Can't detect initial thread stack location - bad conversion");
|
|
stack_start = (uintptr_t) &rlim;
|
|
}
|
|
} else {
|
|
// For some reason we can't open /proc/self/stat (for example, running on
|
|
// FreeBSD with a Linux emulator, or inside chroot), this should work for
|
|
// most cases, so don't abort:
|
|
warning("Can't detect initial thread stack location - no /proc/self/stat");
|
|
stack_start = (uintptr_t) &rlim;
|
|
}
|
|
}
|
|
|
|
// Now we have a pointer (stack_start) very close to the stack top, the
|
|
// next thing to do is to figure out the exact location of stack top. We
|
|
// can find out the virtual memory area that contains stack_start by
|
|
// reading /proc/self/maps, it should be the last vma in /proc/self/maps,
|
|
// and its upper limit is the real stack top. (again, this would fail if
|
|
// running inside chroot, because /proc may not exist.)
|
|
|
|
uintptr_t stack_top;
|
|
address low, high;
|
|
if (find_vma((address)stack_start, &low, &high)) {
|
|
// success, "high" is the true stack top. (ignore "low", because initial
|
|
// thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
|
|
stack_top = (uintptr_t)high;
|
|
} else {
|
|
// failed, likely because /proc/self/maps does not exist
|
|
warning("Can't detect initial thread stack location - find_vma failed");
|
|
// best effort: stack_start is normally within a few pages below the real
|
|
// stack top, use it as stack top, and reduce stack size so we won't put
|
|
// guard page outside stack.
|
|
stack_top = stack_start;
|
|
stack_size -= 16 * page_size();
|
|
}
|
|
|
|
// stack_top could be partially down the page so align it
|
|
stack_top = align_up(stack_top, page_size());
|
|
|
|
// Allowed stack value is minimum of max_size and what we derived from rlimit
|
|
if (max_size > 0) {
|
|
_initial_thread_stack_size = MIN2(max_size, stack_size);
|
|
} else {
|
|
// Accept the rlimit max, but if stack is unlimited then it will be huge, so
|
|
// clamp it at 8MB as we do on Solaris
|
|
_initial_thread_stack_size = MIN2(stack_size, 8*M);
|
|
}
|
|
_initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
|
|
_initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
|
|
|
|
assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
|
|
|
|
if (log_is_enabled(Info, os, thread)) {
|
|
// See if we seem to be on primordial process thread
|
|
bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
|
|
uintptr_t(&rlim) < stack_top;
|
|
|
|
log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
|
|
SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
|
|
primordial ? "primordial" : "user", max_size / K, _initial_thread_stack_size / K,
|
|
stack_top, intptr_t(_initial_thread_stack_bottom));
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// time support
|
|
|
|
// Time since start-up in seconds to a fine granularity.
|
|
// Used by VMSelfDestructTimer and the MemProfiler.
|
|
double os::elapsedTime() {
|
|
|
|
return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
|
|
}
|
|
|
|
jlong os::elapsed_counter() {
|
|
return javaTimeNanos() - initial_time_count;
|
|
}
|
|
|
|
jlong os::elapsed_frequency() {
|
|
return NANOSECS_PER_SEC; // nanosecond resolution
|
|
}
|
|
|
|
bool os::supports_vtime() { return true; }
|
|
bool os::enable_vtime() { return false; }
|
|
bool os::vtime_enabled() { return false; }
|
|
|
|
double os::elapsedVTime() {
|
|
struct rusage usage;
|
|
int retval = getrusage(RUSAGE_THREAD, &usage);
|
|
if (retval == 0) {
|
|
return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
|
|
} else {
|
|
// better than nothing, but not much
|
|
return elapsedTime();
|
|
}
|
|
}
|
|
|
|
jlong os::javaTimeMillis() {
|
|
timeval time;
|
|
int status = gettimeofday(&time, NULL);
|
|
assert(status != -1, "linux error");
|
|
return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
|
|
}
|
|
|
|
void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
|
|
timeval time;
|
|
int status = gettimeofday(&time, NULL);
|
|
assert(status != -1, "linux error");
|
|
seconds = jlong(time.tv_sec);
|
|
nanos = jlong(time.tv_usec) * 1000;
|
|
}
|
|
|
|
|
|
#ifndef CLOCK_MONOTONIC
|
|
#define CLOCK_MONOTONIC (1)
|
|
#endif
|
|
|
|
void os::Linux::clock_init() {
|
|
// we do dlopen's in this particular order due to bug in linux
|
|
// dynamical loader (see 6348968) leading to crash on exit
|
|
void* handle = dlopen("librt.so.1", RTLD_LAZY);
|
|
if (handle == NULL) {
|
|
handle = dlopen("librt.so", RTLD_LAZY);
|
|
}
|
|
|
|
if (handle) {
|
|
int (*clock_getres_func)(clockid_t, struct timespec*) =
|
|
(int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
|
|
int (*clock_gettime_func)(clockid_t, struct timespec*) =
|
|
(int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
|
|
if (clock_getres_func && clock_gettime_func) {
|
|
// See if monotonic clock is supported by the kernel. Note that some
|
|
// early implementations simply return kernel jiffies (updated every
|
|
// 1/100 or 1/1000 second). It would be bad to use such a low res clock
|
|
// for nano time (though the monotonic property is still nice to have).
|
|
// It's fixed in newer kernels, however clock_getres() still returns
|
|
// 1/HZ. We check if clock_getres() works, but will ignore its reported
|
|
// resolution for now. Hopefully as people move to new kernels, this
|
|
// won't be a problem.
|
|
struct timespec res;
|
|
struct timespec tp;
|
|
if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
|
|
clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
|
|
// yes, monotonic clock is supported
|
|
_clock_gettime = clock_gettime_func;
|
|
return;
|
|
} else {
|
|
// close librt if there is no monotonic clock
|
|
dlclose(handle);
|
|
}
|
|
}
|
|
}
|
|
warning("No monotonic clock was available - timed services may " \
|
|
"be adversely affected if the time-of-day clock changes");
|
|
}
|
|
|
|
#ifndef SYS_clock_getres
|
|
#if defined(X86) || defined(PPC64) || defined(S390)
|
|
#define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
|
|
#define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
|
|
#else
|
|
#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
|
|
#define sys_clock_getres(x,y) -1
|
|
#endif
|
|
#else
|
|
#define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
|
|
#endif
|
|
|
|
void os::Linux::fast_thread_clock_init() {
|
|
if (!UseLinuxPosixThreadCPUClocks) {
|
|
return;
|
|
}
|
|
clockid_t clockid;
|
|
struct timespec tp;
|
|
int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
|
|
(int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
|
|
|
|
// Switch to using fast clocks for thread cpu time if
|
|
// the sys_clock_getres() returns 0 error code.
|
|
// Note, that some kernels may support the current thread
|
|
// clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
|
|
// returned by the pthread_getcpuclockid().
|
|
// If the fast Posix clocks are supported then the sys_clock_getres()
|
|
// must return at least tp.tv_sec == 0 which means a resolution
|
|
// better than 1 sec. This is extra check for reliability.
|
|
|
|
if (pthread_getcpuclockid_func &&
|
|
pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
|
|
sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
|
|
_supports_fast_thread_cpu_time = true;
|
|
_pthread_getcpuclockid = pthread_getcpuclockid_func;
|
|
}
|
|
}
|
|
|
|
jlong os::javaTimeNanos() {
|
|
if (os::supports_monotonic_clock()) {
|
|
struct timespec tp;
|
|
int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
|
|
assert(status == 0, "gettime error");
|
|
jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
|
|
return result;
|
|
} else {
|
|
timeval time;
|
|
int status = gettimeofday(&time, NULL);
|
|
assert(status != -1, "linux error");
|
|
jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
|
|
return 1000 * usecs;
|
|
}
|
|
}
|
|
|
|
void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
|
|
if (os::supports_monotonic_clock()) {
|
|
info_ptr->max_value = ALL_64_BITS;
|
|
|
|
// CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
|
|
info_ptr->may_skip_backward = false; // not subject to resetting or drifting
|
|
info_ptr->may_skip_forward = false; // not subject to resetting or drifting
|
|
} else {
|
|
// gettimeofday - based on time in seconds since the Epoch thus does not wrap
|
|
info_ptr->max_value = ALL_64_BITS;
|
|
|
|
// gettimeofday is a real time clock so it skips
|
|
info_ptr->may_skip_backward = true;
|
|
info_ptr->may_skip_forward = true;
|
|
}
|
|
|
|
info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
|
|
}
|
|
|
|
// Return the real, user, and system times in seconds from an
|
|
// arbitrary fixed point in the past.
|
|
bool os::getTimesSecs(double* process_real_time,
|
|
double* process_user_time,
|
|
double* process_system_time) {
|
|
struct tms ticks;
|
|
clock_t real_ticks = times(&ticks);
|
|
|
|
if (real_ticks == (clock_t) (-1)) {
|
|
return false;
|
|
} else {
|
|
double ticks_per_second = (double) clock_tics_per_sec;
|
|
*process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
|
|
*process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
|
|
*process_real_time = ((double) real_ticks) / ticks_per_second;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
char * os::local_time_string(char *buf, size_t buflen) {
|
|
struct tm t;
|
|
time_t long_time;
|
|
time(&long_time);
|
|
localtime_r(&long_time, &t);
|
|
jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
|
|
t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
|
|
t.tm_hour, t.tm_min, t.tm_sec);
|
|
return buf;
|
|
}
|
|
|
|
struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
|
|
return localtime_r(clock, res);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// runtime exit support
|
|
|
|
// Note: os::shutdown() might be called very early during initialization, or
|
|
// called from signal handler. Before adding something to os::shutdown(), make
|
|
// sure it is async-safe and can handle partially initialized VM.
|
|
void os::shutdown() {
|
|
|
|
// allow PerfMemory to attempt cleanup of any persistent resources
|
|
perfMemory_exit();
|
|
|
|
// needs to remove object in file system
|
|
AttachListener::abort();
|
|
|
|
// flush buffered output, finish log files
|
|
ostream_abort();
|
|
|
|
// Check for abort hook
|
|
abort_hook_t abort_hook = Arguments::abort_hook();
|
|
if (abort_hook != NULL) {
|
|
abort_hook();
|
|
}
|
|
|
|
}
|
|
|
|
// Note: os::abort() might be called very early during initialization, or
|
|
// called from signal handler. Before adding something to os::abort(), make
|
|
// sure it is async-safe and can handle partially initialized VM.
|
|
void os::abort(bool dump_core, void* siginfo, const void* context) {
|
|
os::shutdown();
|
|
if (dump_core) {
|
|
#ifndef PRODUCT
|
|
fdStream out(defaultStream::output_fd());
|
|
out.print_raw("Current thread is ");
|
|
char buf[16];
|
|
jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
|
|
out.print_raw_cr(buf);
|
|
out.print_raw_cr("Dumping core ...");
|
|
#endif
|
|
::abort(); // dump core
|
|
}
|
|
|
|
::exit(1);
|
|
}
|
|
|
|
// Die immediately, no exit hook, no abort hook, no cleanup.
|
|
void os::die() {
|
|
::abort();
|
|
}
|
|
|
|
|
|
// This method is a copy of JDK's sysGetLastErrorString
|
|
// from src/solaris/hpi/src/system_md.c
|
|
|
|
size_t os::lasterror(char *buf, size_t len) {
|
|
if (errno == 0) return 0;
|
|
|
|
const char *s = os::strerror(errno);
|
|
size_t n = ::strlen(s);
|
|
if (n >= len) {
|
|
n = len - 1;
|
|
}
|
|
::strncpy(buf, s, n);
|
|
buf[n] = '\0';
|
|
return n;
|
|
}
|
|
|
|
// thread_id is kernel thread id (similar to Solaris LWP id)
|
|
intx os::current_thread_id() { return os::Linux::gettid(); }
|
|
int os::current_process_id() {
|
|
return ::getpid();
|
|
}
|
|
|
|
// DLL functions
|
|
|
|
const char* os::dll_file_extension() { return ".so"; }
|
|
|
|
// This must be hard coded because it's the system's temporary
|
|
// directory not the java application's temp directory, ala java.io.tmpdir.
|
|
const char* os::get_temp_directory() { return "/tmp"; }
|
|
|
|
static bool file_exists(const char* filename) {
|
|
struct stat statbuf;
|
|
if (filename == NULL || strlen(filename) == 0) {
|
|
return false;
|
|
}
|
|
return os::stat(filename, &statbuf) == 0;
|
|
}
|
|
|
|
// check if addr is inside libjvm.so
|
|
bool os::address_is_in_vm(address addr) {
|
|
static address libjvm_base_addr;
|
|
Dl_info dlinfo;
|
|
|
|
if (libjvm_base_addr == NULL) {
|
|
if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
|
|
libjvm_base_addr = (address)dlinfo.dli_fbase;
|
|
}
|
|
assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
|
|
}
|
|
|
|
if (dladdr((void *)addr, &dlinfo) != 0) {
|
|
if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool os::dll_address_to_function_name(address addr, char *buf,
|
|
int buflen, int *offset,
|
|
bool demangle) {
|
|
// buf is not optional, but offset is optional
|
|
assert(buf != NULL, "sanity check");
|
|
|
|
Dl_info dlinfo;
|
|
|
|
if (dladdr((void*)addr, &dlinfo) != 0) {
|
|
// see if we have a matching symbol
|
|
if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
|
|
if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
|
|
jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
|
|
}
|
|
if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
|
|
return true;
|
|
}
|
|
// no matching symbol so try for just file info
|
|
if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
|
|
if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
|
|
buf, buflen, offset, dlinfo.dli_fname, demangle)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
buf[0] = '\0';
|
|
if (offset != NULL) *offset = -1;
|
|
return false;
|
|
}
|
|
|
|
struct _address_to_library_name {
|
|
address addr; // input : memory address
|
|
size_t buflen; // size of fname
|
|
char* fname; // output: library name
|
|
address base; // library base addr
|
|
};
|
|
|
|
static int address_to_library_name_callback(struct dl_phdr_info *info,
|
|
size_t size, void *data) {
|
|
int i;
|
|
bool found = false;
|
|
address libbase = NULL;
|
|
struct _address_to_library_name * d = (struct _address_to_library_name *)data;
|
|
|
|
// iterate through all loadable segments
|
|
for (i = 0; i < info->dlpi_phnum; i++) {
|
|
address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
|
|
if (info->dlpi_phdr[i].p_type == PT_LOAD) {
|
|
// base address of a library is the lowest address of its loaded
|
|
// segments.
|
|
if (libbase == NULL || libbase > segbase) {
|
|
libbase = segbase;
|
|
}
|
|
// see if 'addr' is within current segment
|
|
if (segbase <= d->addr &&
|
|
d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// dlpi_name is NULL or empty if the ELF file is executable, return 0
|
|
// so dll_address_to_library_name() can fall through to use dladdr() which
|
|
// can figure out executable name from argv[0].
|
|
if (found && info->dlpi_name && info->dlpi_name[0]) {
|
|
d->base = libbase;
|
|
if (d->fname) {
|
|
jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool os::dll_address_to_library_name(address addr, char* buf,
|
|
int buflen, int* offset) {
|
|
// buf is not optional, but offset is optional
|
|
assert(buf != NULL, "sanity check");
|
|
|
|
Dl_info dlinfo;
|
|
struct _address_to_library_name data;
|
|
|
|
// There is a bug in old glibc dladdr() implementation that it could resolve
|
|
// to wrong library name if the .so file has a base address != NULL. Here
|
|
// we iterate through the program headers of all loaded libraries to find
|
|
// out which library 'addr' really belongs to. This workaround can be
|
|
// removed once the minimum requirement for glibc is moved to 2.3.x.
|
|
data.addr = addr;
|
|
data.fname = buf;
|
|
data.buflen = buflen;
|
|
data.base = NULL;
|
|
int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
|
|
|
|
if (rslt) {
|
|
// buf already contains library name
|
|
if (offset) *offset = addr - data.base;
|
|
return true;
|
|
}
|
|
if (dladdr((void*)addr, &dlinfo) != 0) {
|
|
if (dlinfo.dli_fname != NULL) {
|
|
jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
|
|
}
|
|
if (dlinfo.dli_fbase != NULL && offset != NULL) {
|
|
*offset = addr - (address)dlinfo.dli_fbase;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
buf[0] = '\0';
|
|
if (offset) *offset = -1;
|
|
return false;
|
|
}
|
|
|
|
// Loads .dll/.so and
|
|
// in case of error it checks if .dll/.so was built for the
|
|
// same architecture as Hotspot is running on
|
|
|
|
|
|
// Remember the stack's state. The Linux dynamic linker will change
|
|
// the stack to 'executable' at most once, so we must safepoint only once.
|
|
bool os::Linux::_stack_is_executable = false;
|
|
|
|
// VM operation that loads a library. This is necessary if stack protection
|
|
// of the Java stacks can be lost during loading the library. If we
|
|
// do not stop the Java threads, they can stack overflow before the stacks
|
|
// are protected again.
|
|
class VM_LinuxDllLoad: public VM_Operation {
|
|
private:
|
|
const char *_filename;
|
|
char *_ebuf;
|
|
int _ebuflen;
|
|
void *_lib;
|
|
public:
|
|
VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
|
|
_filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
|
|
VMOp_Type type() const { return VMOp_LinuxDllLoad; }
|
|
void doit() {
|
|
_lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
|
|
os::Linux::_stack_is_executable = true;
|
|
}
|
|
void* loaded_library() { return _lib; }
|
|
};
|
|
|
|
void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
|
|
void * result = NULL;
|
|
bool load_attempted = false;
|
|
|
|
// Check whether the library to load might change execution rights
|
|
// of the stack. If they are changed, the protection of the stack
|
|
// guard pages will be lost. We need a safepoint to fix this.
|
|
//
|
|
// See Linux man page execstack(8) for more info.
|
|
if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
|
|
if (!ElfFile::specifies_noexecstack(filename)) {
|
|
if (!is_init_completed()) {
|
|
os::Linux::_stack_is_executable = true;
|
|
// This is OK - No Java threads have been created yet, and hence no
|
|
// stack guard pages to fix.
|
|
//
|
|
// This should happen only when you are building JDK7 using a very
|
|
// old version of JDK6 (e.g., with JPRT) and running test_gamma.
|
|
//
|
|
// Dynamic loader will make all stacks executable after
|
|
// this function returns, and will not do that again.
|
|
assert(Threads::first() == NULL, "no Java threads should exist yet.");
|
|
} else {
|
|
warning("You have loaded library %s which might have disabled stack guard. "
|
|
"The VM will try to fix the stack guard now.\n"
|
|
"It's highly recommended that you fix the library with "
|
|
"'execstack -c <libfile>', or link it with '-z noexecstack'.",
|
|
filename);
|
|
|
|
assert(Thread::current()->is_Java_thread(), "must be Java thread");
|
|
JavaThread *jt = JavaThread::current();
|
|
if (jt->thread_state() != _thread_in_native) {
|
|
// This happens when a compiler thread tries to load a hsdis-<arch>.so file
|
|
// that requires ExecStack. Cannot enter safe point. Let's give up.
|
|
warning("Unable to fix stack guard. Giving up.");
|
|
} else {
|
|
if (!LoadExecStackDllInVMThread) {
|
|
// This is for the case where the DLL has an static
|
|
// constructor function that executes JNI code. We cannot
|
|
// load such DLLs in the VMThread.
|
|
result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
|
|
}
|
|
|
|
ThreadInVMfromNative tiv(jt);
|
|
debug_only(VMNativeEntryWrapper vew;)
|
|
|
|
VM_LinuxDllLoad op(filename, ebuf, ebuflen);
|
|
VMThread::execute(&op);
|
|
if (LoadExecStackDllInVMThread) {
|
|
result = op.loaded_library();
|
|
}
|
|
load_attempted = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!load_attempted) {
|
|
result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
|
|
}
|
|
|
|
if (result != NULL) {
|
|
// Successful loading
|
|
return result;
|
|
}
|
|
|
|
Elf32_Ehdr elf_head;
|
|
int diag_msg_max_length=ebuflen-strlen(ebuf);
|
|
char* diag_msg_buf=ebuf+strlen(ebuf);
|
|
|
|
if (diag_msg_max_length==0) {
|
|
// No more space in ebuf for additional diagnostics message
|
|
return NULL;
|
|
}
|
|
|
|
|
|
int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
|
|
|
|
if (file_descriptor < 0) {
|
|
// Can't open library, report dlerror() message
|
|
return NULL;
|
|
}
|
|
|
|
bool failed_to_read_elf_head=
|
|
(sizeof(elf_head)!=
|
|
(::read(file_descriptor, &elf_head,sizeof(elf_head))));
|
|
|
|
::close(file_descriptor);
|
|
if (failed_to_read_elf_head) {
|
|
// file i/o error - report dlerror() msg
|
|
return NULL;
|
|
}
|
|
|
|
typedef struct {
|
|
Elf32_Half code; // Actual value as defined in elf.h
|
|
Elf32_Half compat_class; // Compatibility of archs at VM's sense
|
|
unsigned char elf_class; // 32 or 64 bit
|
|
unsigned char endianess; // MSB or LSB
|
|
char* name; // String representation
|
|
} arch_t;
|
|
|
|
#ifndef EM_486
|
|
#define EM_486 6 /* Intel 80486 */
|
|
#endif
|
|
#ifndef EM_AARCH64
|
|
#define EM_AARCH64 183 /* ARM AARCH64 */
|
|
#endif
|
|
|
|
static const arch_t arch_array[]={
|
|
{EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
|
|
{EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
|
|
{EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
|
|
{EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
|
|
{EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
|
|
{EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
|
|
{EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
|
|
{EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
|
|
#if defined(VM_LITTLE_ENDIAN)
|
|
{EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
|
|
{EM_SH, EM_SH, ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
|
|
#else
|
|
{EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
|
|
{EM_SH, EM_SH, ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
|
|
#endif
|
|
{EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
|
|
{EM_S390, EM_S390, ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
|
|
{EM_ALPHA, EM_ALPHA, ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
|
|
{EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
|
|
{EM_MIPS, EM_MIPS, ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
|
|
{EM_PARISC, EM_PARISC, ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
|
|
{EM_68K, EM_68K, ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
|
|
{EM_AARCH64, EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
|
|
};
|
|
|
|
#if (defined IA32)
|
|
static Elf32_Half running_arch_code=EM_386;
|
|
#elif (defined AMD64)
|
|
static Elf32_Half running_arch_code=EM_X86_64;
|
|
#elif (defined IA64)
|
|
static Elf32_Half running_arch_code=EM_IA_64;
|
|
#elif (defined __sparc) && (defined _LP64)
|
|
static Elf32_Half running_arch_code=EM_SPARCV9;
|
|
#elif (defined __sparc) && (!defined _LP64)
|
|
static Elf32_Half running_arch_code=EM_SPARC;
|
|
#elif (defined __powerpc64__)
|
|
static Elf32_Half running_arch_code=EM_PPC64;
|
|
#elif (defined __powerpc__)
|
|
static Elf32_Half running_arch_code=EM_PPC;
|
|
#elif (defined AARCH64)
|
|
static Elf32_Half running_arch_code=EM_AARCH64;
|
|
#elif (defined ARM)
|
|
static Elf32_Half running_arch_code=EM_ARM;
|
|
#elif (defined S390)
|
|
static Elf32_Half running_arch_code=EM_S390;
|
|
#elif (defined ALPHA)
|
|
static Elf32_Half running_arch_code=EM_ALPHA;
|
|
#elif (defined MIPSEL)
|
|
static Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
|
|
#elif (defined PARISC)
|
|
static Elf32_Half running_arch_code=EM_PARISC;
|
|
#elif (defined MIPS)
|
|
static Elf32_Half running_arch_code=EM_MIPS;
|
|
#elif (defined M68K)
|
|
static Elf32_Half running_arch_code=EM_68K;
|
|
#elif (defined SH)
|
|
static Elf32_Half running_arch_code=EM_SH;
|
|
#else
|
|
#error Method os::dll_load requires that one of following is defined:\
|
|
AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
|
|
#endif
|
|
|
|
// Identify compatability class for VM's architecture and library's architecture
|
|
// Obtain string descriptions for architectures
|
|
|
|
arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
|
|
int running_arch_index=-1;
|
|
|
|
for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
|
|
if (running_arch_code == arch_array[i].code) {
|
|
running_arch_index = i;
|
|
}
|
|
if (lib_arch.code == arch_array[i].code) {
|
|
lib_arch.compat_class = arch_array[i].compat_class;
|
|
lib_arch.name = arch_array[i].name;
|
|
}
|
|
}
|
|
|
|
assert(running_arch_index != -1,
|
|
"Didn't find running architecture code (running_arch_code) in arch_array");
|
|
if (running_arch_index == -1) {
|
|
// Even though running architecture detection failed
|
|
// we may still continue with reporting dlerror() message
|
|
return NULL;
|
|
}
|
|
|
|
if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
|
|
return NULL;
|
|
}
|
|
|
|
#ifndef S390
|
|
if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
|
|
return NULL;
|
|
}
|
|
#endif // !S390
|
|
|
|
if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
|
|
if (lib_arch.name!=NULL) {
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1,
|
|
" (Possible cause: can't load %s-bit .so on a %s-bit platform)",
|
|
lib_arch.name, arch_array[running_arch_index].name);
|
|
} else {
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1,
|
|
" (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
|
|
lib_arch.code,
|
|
arch_array[running_arch_index].name);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
|
|
int ebuflen) {
|
|
void * result = ::dlopen(filename, RTLD_LAZY);
|
|
if (result == NULL) {
|
|
::strncpy(ebuf, ::dlerror(), ebuflen - 1);
|
|
ebuf[ebuflen-1] = '\0';
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
|
|
int ebuflen) {
|
|
void * result = NULL;
|
|
if (LoadExecStackDllInVMThread) {
|
|
result = dlopen_helper(filename, ebuf, ebuflen);
|
|
}
|
|
|
|
// Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
|
|
// library that requires an executable stack, or which does not have this
|
|
// stack attribute set, dlopen changes the stack attribute to executable. The
|
|
// read protection of the guard pages gets lost.
|
|
//
|
|
// Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
|
|
// may have been queued at the same time.
|
|
|
|
if (!_stack_is_executable) {
|
|
JavaThread *jt = Threads::first();
|
|
|
|
while (jt) {
|
|
if (!jt->stack_guard_zone_unused() && // Stack not yet fully initialized
|
|
jt->stack_guards_enabled()) { // No pending stack overflow exceptions
|
|
if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
|
|
warning("Attempt to reguard stack yellow zone failed.");
|
|
}
|
|
}
|
|
jt = jt->next();
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void* os::dll_lookup(void* handle, const char* name) {
|
|
void* res = dlsym(handle, name);
|
|
return res;
|
|
}
|
|
|
|
void* os::get_default_process_handle() {
|
|
return (void*)::dlopen(NULL, RTLD_LAZY);
|
|
}
|
|
|
|
static bool _print_ascii_file(const char* filename, outputStream* st) {
|
|
int fd = ::open(filename, O_RDONLY);
|
|
if (fd == -1) {
|
|
return false;
|
|
}
|
|
|
|
char buf[33];
|
|
int bytes;
|
|
buf[32] = '\0';
|
|
while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
|
|
st->print_raw(buf, bytes);
|
|
}
|
|
|
|
::close(fd);
|
|
|
|
return true;
|
|
}
|
|
|
|
void os::print_dll_info(outputStream *st) {
|
|
st->print_cr("Dynamic libraries:");
|
|
|
|
char fname[32];
|
|
pid_t pid = os::Linux::gettid();
|
|
|
|
jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
|
|
|
|
if (!_print_ascii_file(fname, st)) {
|
|
st->print("Can not get library information for pid = %d\n", pid);
|
|
}
|
|
}
|
|
|
|
int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
|
|
FILE *procmapsFile = NULL;
|
|
|
|
// Open the procfs maps file for the current process
|
|
if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
|
|
// Allocate PATH_MAX for file name plus a reasonable size for other fields.
|
|
char line[PATH_MAX + 100];
|
|
|
|
// Read line by line from 'file'
|
|
while (fgets(line, sizeof(line), procmapsFile) != NULL) {
|
|
u8 base, top, offset, inode;
|
|
char permissions[5];
|
|
char device[6];
|
|
char name[PATH_MAX + 1];
|
|
|
|
// Parse fields from line
|
|
sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
|
|
&base, &top, permissions, &offset, device, &inode, name);
|
|
|
|
// Filter by device id '00:00' so that we only get file system mapped files.
|
|
if (strcmp(device, "00:00") != 0) {
|
|
|
|
// Call callback with the fields of interest
|
|
if(callback(name, (address)base, (address)top, param)) {
|
|
// Oops abort, callback aborted
|
|
fclose(procmapsFile);
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
fclose(procmapsFile);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void os::print_os_info_brief(outputStream* st) {
|
|
os::Linux::print_distro_info(st);
|
|
|
|
os::Posix::print_uname_info(st);
|
|
|
|
os::Linux::print_libversion_info(st);
|
|
|
|
}
|
|
|
|
void os::print_os_info(outputStream* st) {
|
|
st->print("OS:");
|
|
|
|
os::Linux::print_distro_info(st);
|
|
|
|
os::Posix::print_uname_info(st);
|
|
|
|
// Print warning if unsafe chroot environment detected
|
|
if (unsafe_chroot_detected) {
|
|
st->print("WARNING!! ");
|
|
st->print_cr("%s", unstable_chroot_error);
|
|
}
|
|
|
|
os::Linux::print_libversion_info(st);
|
|
|
|
os::Posix::print_rlimit_info(st);
|
|
|
|
os::Posix::print_load_average(st);
|
|
|
|
os::Linux::print_full_memory_info(st);
|
|
}
|
|
|
|
// Try to identify popular distros.
|
|
// Most Linux distributions have a /etc/XXX-release file, which contains
|
|
// the OS version string. Newer Linux distributions have a /etc/lsb-release
|
|
// file that also contains the OS version string. Some have more than one
|
|
// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
|
|
// /etc/redhat-release.), so the order is important.
|
|
// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
|
|
// their own specific XXX-release file as well as a redhat-release file.
|
|
// Because of this the XXX-release file needs to be searched for before the
|
|
// redhat-release file.
|
|
// Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
|
|
// search for redhat-release / SuSE-release needs to be before lsb-release.
|
|
// Since the lsb-release file is the new standard it needs to be searched
|
|
// before the older style release files.
|
|
// Searching system-release (Red Hat) and os-release (other Linuxes) are a
|
|
// next to last resort. The os-release file is a new standard that contains
|
|
// distribution information and the system-release file seems to be an old
|
|
// standard that has been replaced by the lsb-release and os-release files.
|
|
// Searching for the debian_version file is the last resort. It contains
|
|
// an informative string like "6.0.6" or "wheezy/sid". Because of this
|
|
// "Debian " is printed before the contents of the debian_version file.
|
|
|
|
const char* distro_files[] = {
|
|
"/etc/oracle-release",
|
|
"/etc/mandriva-release",
|
|
"/etc/mandrake-release",
|
|
"/etc/sun-release",
|
|
"/etc/redhat-release",
|
|
"/etc/SuSE-release",
|
|
"/etc/lsb-release",
|
|
"/etc/turbolinux-release",
|
|
"/etc/gentoo-release",
|
|
"/etc/ltib-release",
|
|
"/etc/angstrom-version",
|
|
"/etc/system-release",
|
|
"/etc/os-release",
|
|
NULL };
|
|
|
|
void os::Linux::print_distro_info(outputStream* st) {
|
|
for (int i = 0;; i++) {
|
|
const char* file = distro_files[i];
|
|
if (file == NULL) {
|
|
break; // done
|
|
}
|
|
// If file prints, we found it.
|
|
if (_print_ascii_file(file, st)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (file_exists("/etc/debian_version")) {
|
|
st->print("Debian ");
|
|
_print_ascii_file("/etc/debian_version", st);
|
|
} else {
|
|
st->print("Linux");
|
|
}
|
|
st->cr();
|
|
}
|
|
|
|
static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
|
|
char buf[256];
|
|
while (fgets(buf, sizeof(buf), fp)) {
|
|
// Edit out extra stuff in expected format
|
|
if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
|
|
char* ptr = strstr(buf, "\""); // the name is in quotes
|
|
if (ptr != NULL) {
|
|
ptr++; // go beyond first quote
|
|
char* nl = strchr(ptr, '\"');
|
|
if (nl != NULL) *nl = '\0';
|
|
strncpy(distro, ptr, length);
|
|
} else {
|
|
ptr = strstr(buf, "=");
|
|
ptr++; // go beyond equals then
|
|
char* nl = strchr(ptr, '\n');
|
|
if (nl != NULL) *nl = '\0';
|
|
strncpy(distro, ptr, length);
|
|
}
|
|
return;
|
|
} else if (get_first_line) {
|
|
char* nl = strchr(buf, '\n');
|
|
if (nl != NULL) *nl = '\0';
|
|
strncpy(distro, buf, length);
|
|
return;
|
|
}
|
|
}
|
|
// print last line and close
|
|
char* nl = strchr(buf, '\n');
|
|
if (nl != NULL) *nl = '\0';
|
|
strncpy(distro, buf, length);
|
|
}
|
|
|
|
static void parse_os_info(char* distro, size_t length, const char* file) {
|
|
FILE* fp = fopen(file, "r");
|
|
if (fp != NULL) {
|
|
// if suse format, print out first line
|
|
bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
|
|
parse_os_info_helper(fp, distro, length, get_first_line);
|
|
fclose(fp);
|
|
}
|
|
}
|
|
|
|
void os::get_summary_os_info(char* buf, size_t buflen) {
|
|
for (int i = 0;; i++) {
|
|
const char* file = distro_files[i];
|
|
if (file == NULL) {
|
|
break; // ran out of distro_files
|
|
}
|
|
if (file_exists(file)) {
|
|
parse_os_info(buf, buflen, file);
|
|
return;
|
|
}
|
|
}
|
|
// special case for debian
|
|
if (file_exists("/etc/debian_version")) {
|
|
strncpy(buf, "Debian ", buflen);
|
|
parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
|
|
} else {
|
|
strncpy(buf, "Linux", buflen);
|
|
}
|
|
}
|
|
|
|
void os::Linux::print_libversion_info(outputStream* st) {
|
|
// libc, pthread
|
|
st->print("libc:");
|
|
st->print("%s ", os::Linux::glibc_version());
|
|
st->print("%s ", os::Linux::libpthread_version());
|
|
st->cr();
|
|
}
|
|
|
|
void os::Linux::print_full_memory_info(outputStream* st) {
|
|
st->print("\n/proc/meminfo:\n");
|
|
_print_ascii_file("/proc/meminfo", st);
|
|
st->cr();
|
|
}
|
|
|
|
void os::print_memory_info(outputStream* st) {
|
|
|
|
st->print("Memory:");
|
|
st->print(" %dk page", os::vm_page_size()>>10);
|
|
|
|
// values in struct sysinfo are "unsigned long"
|
|
struct sysinfo si;
|
|
sysinfo(&si);
|
|
|
|
st->print(", physical " UINT64_FORMAT "k",
|
|
os::physical_memory() >> 10);
|
|
st->print("(" UINT64_FORMAT "k free)",
|
|
os::available_memory() >> 10);
|
|
st->print(", swap " UINT64_FORMAT "k",
|
|
((jlong)si.totalswap * si.mem_unit) >> 10);
|
|
st->print("(" UINT64_FORMAT "k free)",
|
|
((jlong)si.freeswap * si.mem_unit) >> 10);
|
|
st->cr();
|
|
}
|
|
|
|
// Print the first "model name" line and the first "flags" line
|
|
// that we find and nothing more. We assume "model name" comes
|
|
// before "flags" so if we find a second "model name", then the
|
|
// "flags" field is considered missing.
|
|
static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
|
|
#if defined(IA32) || defined(AMD64)
|
|
// Other platforms have less repetitive cpuinfo files
|
|
FILE *fp = fopen("/proc/cpuinfo", "r");
|
|
if (fp) {
|
|
while (!feof(fp)) {
|
|
if (fgets(buf, buflen, fp)) {
|
|
// Assume model name comes before flags
|
|
bool model_name_printed = false;
|
|
if (strstr(buf, "model name") != NULL) {
|
|
if (!model_name_printed) {
|
|
st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
|
|
st->print_raw(buf);
|
|
model_name_printed = true;
|
|
} else {
|
|
// model name printed but not flags? Odd, just return
|
|
fclose(fp);
|
|
return true;
|
|
}
|
|
}
|
|
// print the flags line too
|
|
if (strstr(buf, "flags") != NULL) {
|
|
st->print_raw(buf);
|
|
fclose(fp);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
#endif // x86 platforms
|
|
return false;
|
|
}
|
|
|
|
void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
|
|
// Only print the model name if the platform provides this as a summary
|
|
if (!print_model_name_and_flags(st, buf, buflen)) {
|
|
st->print("\n/proc/cpuinfo:\n");
|
|
if (!_print_ascii_file("/proc/cpuinfo", st)) {
|
|
st->print_cr(" <Not Available>");
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(AMD64) || defined(IA32) || defined(X32)
|
|
const char* search_string = "model name";
|
|
#elif defined(M68K)
|
|
const char* search_string = "CPU";
|
|
#elif defined(PPC64)
|
|
const char* search_string = "cpu";
|
|
#elif defined(S390)
|
|
const char* search_string = "processor";
|
|
#elif defined(SPARC)
|
|
const char* search_string = "cpu";
|
|
#else
|
|
const char* search_string = "Processor";
|
|
#endif
|
|
|
|
// Parses the cpuinfo file for string representing the model name.
|
|
void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
|
|
FILE* fp = fopen("/proc/cpuinfo", "r");
|
|
if (fp != NULL) {
|
|
while (!feof(fp)) {
|
|
char buf[256];
|
|
if (fgets(buf, sizeof(buf), fp)) {
|
|
char* start = strstr(buf, search_string);
|
|
if (start != NULL) {
|
|
char *ptr = start + strlen(search_string);
|
|
char *end = buf + strlen(buf);
|
|
while (ptr != end) {
|
|
// skip whitespace and colon for the rest of the name.
|
|
if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
|
|
break;
|
|
}
|
|
ptr++;
|
|
}
|
|
if (ptr != end) {
|
|
// reasonable string, get rid of newline and keep the rest
|
|
char* nl = strchr(buf, '\n');
|
|
if (nl != NULL) *nl = '\0';
|
|
strncpy(cpuinfo, ptr, length);
|
|
fclose(fp);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
// cpuinfo not found or parsing failed, just print generic string. The entire
|
|
// /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
|
|
#if defined(AARCH64)
|
|
strncpy(cpuinfo, "AArch64", length);
|
|
#elif defined(AMD64)
|
|
strncpy(cpuinfo, "x86_64", length);
|
|
#elif defined(ARM) // Order wrt. AARCH64 is relevant!
|
|
strncpy(cpuinfo, "ARM", length);
|
|
#elif defined(IA32)
|
|
strncpy(cpuinfo, "x86_32", length);
|
|
#elif defined(IA64)
|
|
strncpy(cpuinfo, "IA64", length);
|
|
#elif defined(PPC)
|
|
strncpy(cpuinfo, "PPC64", length);
|
|
#elif defined(S390)
|
|
strncpy(cpuinfo, "S390", length);
|
|
#elif defined(SPARC)
|
|
strncpy(cpuinfo, "sparcv9", length);
|
|
#elif defined(ZERO_LIBARCH)
|
|
strncpy(cpuinfo, ZERO_LIBARCH, length);
|
|
#else
|
|
strncpy(cpuinfo, "unknown", length);
|
|
#endif
|
|
}
|
|
|
|
static void print_signal_handler(outputStream* st, int sig,
|
|
char* buf, size_t buflen);
|
|
|
|
void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
|
|
st->print_cr("Signal Handlers:");
|
|
print_signal_handler(st, SIGSEGV, buf, buflen);
|
|
print_signal_handler(st, SIGBUS , buf, buflen);
|
|
print_signal_handler(st, SIGFPE , buf, buflen);
|
|
print_signal_handler(st, SIGPIPE, buf, buflen);
|
|
print_signal_handler(st, SIGXFSZ, buf, buflen);
|
|
print_signal_handler(st, SIGILL , buf, buflen);
|
|
print_signal_handler(st, SR_signum, buf, buflen);
|
|
print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
|
|
print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
|
|
print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
|
|
print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
|
|
#if defined(PPC64)
|
|
print_signal_handler(st, SIGTRAP, buf, buflen);
|
|
#endif
|
|
}
|
|
|
|
static char saved_jvm_path[MAXPATHLEN] = {0};
|
|
|
|
// Find the full path to the current module, libjvm.so
|
|
void os::jvm_path(char *buf, jint buflen) {
|
|
// Error checking.
|
|
if (buflen < MAXPATHLEN) {
|
|
assert(false, "must use a large-enough buffer");
|
|
buf[0] = '\0';
|
|
return;
|
|
}
|
|
// Lazy resolve the path to current module.
|
|
if (saved_jvm_path[0] != 0) {
|
|
strcpy(buf, saved_jvm_path);
|
|
return;
|
|
}
|
|
|
|
char dli_fname[MAXPATHLEN];
|
|
bool ret = dll_address_to_library_name(
|
|
CAST_FROM_FN_PTR(address, os::jvm_path),
|
|
dli_fname, sizeof(dli_fname), NULL);
|
|
assert(ret, "cannot locate libjvm");
|
|
char *rp = NULL;
|
|
if (ret && dli_fname[0] != '\0') {
|
|
rp = os::Posix::realpath(dli_fname, buf, buflen);
|
|
}
|
|
if (rp == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (Arguments::sun_java_launcher_is_altjvm()) {
|
|
// Support for the java launcher's '-XXaltjvm=<path>' option. Typical
|
|
// value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
|
|
// If "/jre/lib/" appears at the right place in the string, then
|
|
// assume we are installed in a JDK and we're done. Otherwise, check
|
|
// for a JAVA_HOME environment variable and fix up the path so it
|
|
// looks like libjvm.so is installed there (append a fake suffix
|
|
// hotspot/libjvm.so).
|
|
const char *p = buf + strlen(buf) - 1;
|
|
for (int count = 0; p > buf && count < 5; ++count) {
|
|
for (--p; p > buf && *p != '/'; --p)
|
|
/* empty */ ;
|
|
}
|
|
|
|
if (strncmp(p, "/jre/lib/", 9) != 0) {
|
|
// Look for JAVA_HOME in the environment.
|
|
char* java_home_var = ::getenv("JAVA_HOME");
|
|
if (java_home_var != NULL && java_home_var[0] != 0) {
|
|
char* jrelib_p;
|
|
int len;
|
|
|
|
// Check the current module name "libjvm.so".
|
|
p = strrchr(buf, '/');
|
|
if (p == NULL) {
|
|
return;
|
|
}
|
|
assert(strstr(p, "/libjvm") == p, "invalid library name");
|
|
|
|
rp = os::Posix::realpath(java_home_var, buf, buflen);
|
|
if (rp == NULL) {
|
|
return;
|
|
}
|
|
|
|
// determine if this is a legacy image or modules image
|
|
// modules image doesn't have "jre" subdirectory
|
|
len = strlen(buf);
|
|
assert(len < buflen, "Ran out of buffer room");
|
|
jrelib_p = buf + len;
|
|
snprintf(jrelib_p, buflen-len, "/jre/lib");
|
|
if (0 != access(buf, F_OK)) {
|
|
snprintf(jrelib_p, buflen-len, "/lib");
|
|
}
|
|
|
|
if (0 == access(buf, F_OK)) {
|
|
// Use current module name "libjvm.so"
|
|
len = strlen(buf);
|
|
snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
|
|
} else {
|
|
// Go back to path of .so
|
|
rp = os::Posix::realpath(dli_fname, buf, buflen);
|
|
if (rp == NULL) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
strncpy(saved_jvm_path, buf, MAXPATHLEN);
|
|
saved_jvm_path[MAXPATHLEN - 1] = '\0';
|
|
}
|
|
|
|
void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
|
|
// no prefix required, not even "_"
|
|
}
|
|
|
|
void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
|
|
// no suffix required
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// sun.misc.Signal support
|
|
|
|
static volatile jint sigint_count = 0;
|
|
|
|
static void UserHandler(int sig, void *siginfo, void *context) {
|
|
// 4511530 - sem_post is serialized and handled by the manager thread. When
|
|
// the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
|
|
// don't want to flood the manager thread with sem_post requests.
|
|
if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
|
|
return;
|
|
}
|
|
|
|
// Ctrl-C is pressed during error reporting, likely because the error
|
|
// handler fails to abort. Let VM die immediately.
|
|
if (sig == SIGINT && VMError::is_error_reported()) {
|
|
os::die();
|
|
}
|
|
|
|
os::signal_notify(sig);
|
|
}
|
|
|
|
void* os::user_handler() {
|
|
return CAST_FROM_FN_PTR(void*, UserHandler);
|
|
}
|
|
|
|
struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
|
|
struct timespec ts;
|
|
// Semaphore's are always associated with CLOCK_REALTIME
|
|
os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
|
|
// see unpackTime for discussion on overflow checking
|
|
if (sec >= MAX_SECS) {
|
|
ts.tv_sec += MAX_SECS;
|
|
ts.tv_nsec = 0;
|
|
} else {
|
|
ts.tv_sec += sec;
|
|
ts.tv_nsec += nsec;
|
|
if (ts.tv_nsec >= NANOSECS_PER_SEC) {
|
|
ts.tv_nsec -= NANOSECS_PER_SEC;
|
|
++ts.tv_sec; // note: this must be <= max_secs
|
|
}
|
|
}
|
|
|
|
return ts;
|
|
}
|
|
|
|
extern "C" {
|
|
typedef void (*sa_handler_t)(int);
|
|
typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
|
|
}
|
|
|
|
void* os::signal(int signal_number, void* handler) {
|
|
struct sigaction sigAct, oldSigAct;
|
|
|
|
sigfillset(&(sigAct.sa_mask));
|
|
sigAct.sa_flags = SA_RESTART|SA_SIGINFO;
|
|
sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
|
|
|
|
if (sigaction(signal_number, &sigAct, &oldSigAct)) {
|
|
// -1 means registration failed
|
|
return (void *)-1;
|
|
}
|
|
|
|
return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
|
|
}
|
|
|
|
void os::signal_raise(int signal_number) {
|
|
::raise(signal_number);
|
|
}
|
|
|
|
// The following code is moved from os.cpp for making this
|
|
// code platform specific, which it is by its very nature.
|
|
|
|
// Will be modified when max signal is changed to be dynamic
|
|
int os::sigexitnum_pd() {
|
|
return NSIG;
|
|
}
|
|
|
|
// a counter for each possible signal value
|
|
static volatile jint pending_signals[NSIG+1] = { 0 };
|
|
|
|
// Linux(POSIX) specific hand shaking semaphore.
|
|
static sem_t sig_sem;
|
|
static PosixSemaphore sr_semaphore;
|
|
|
|
void os::signal_init_pd() {
|
|
// Initialize signal structures
|
|
::memset((void*)pending_signals, 0, sizeof(pending_signals));
|
|
|
|
// Initialize signal semaphore
|
|
::sem_init(&sig_sem, 0, 0);
|
|
}
|
|
|
|
void os::signal_notify(int sig) {
|
|
Atomic::inc(&pending_signals[sig]);
|
|
::sem_post(&sig_sem);
|
|
}
|
|
|
|
static int check_pending_signals(bool wait) {
|
|
Atomic::store(0, &sigint_count);
|
|
for (;;) {
|
|
for (int i = 0; i < NSIG + 1; i++) {
|
|
jint n = pending_signals[i];
|
|
if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
|
|
return i;
|
|
}
|
|
}
|
|
if (!wait) {
|
|
return -1;
|
|
}
|
|
JavaThread *thread = JavaThread::current();
|
|
ThreadBlockInVM tbivm(thread);
|
|
|
|
bool threadIsSuspended;
|
|
do {
|
|
thread->set_suspend_equivalent();
|
|
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
|
|
::sem_wait(&sig_sem);
|
|
|
|
// were we externally suspended while we were waiting?
|
|
threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
|
|
if (threadIsSuspended) {
|
|
// The semaphore has been incremented, but while we were waiting
|
|
// another thread suspended us. We don't want to continue running
|
|
// while suspended because that would surprise the thread that
|
|
// suspended us.
|
|
::sem_post(&sig_sem);
|
|
|
|
thread->java_suspend_self();
|
|
}
|
|
} while (threadIsSuspended);
|
|
}
|
|
}
|
|
|
|
int os::signal_lookup() {
|
|
return check_pending_signals(false);
|
|
}
|
|
|
|
int os::signal_wait() {
|
|
return check_pending_signals(true);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Virtual Memory
|
|
|
|
int os::vm_page_size() {
|
|
// Seems redundant as all get out
|
|
assert(os::Linux::page_size() != -1, "must call os::init");
|
|
return os::Linux::page_size();
|
|
}
|
|
|
|
// Solaris allocates memory by pages.
|
|
int os::vm_allocation_granularity() {
|
|
assert(os::Linux::page_size() != -1, "must call os::init");
|
|
return os::Linux::page_size();
|
|
}
|
|
|
|
// Rationale behind this function:
|
|
// current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
|
|
// mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
|
|
// samples for JITted code. Here we create private executable mapping over the code cache
|
|
// and then we can use standard (well, almost, as mapping can change) way to provide
|
|
// info for the reporting script by storing timestamp and location of symbol
|
|
void linux_wrap_code(char* base, size_t size) {
|
|
static volatile jint cnt = 0;
|
|
|
|
if (!UseOprofile) {
|
|
return;
|
|
}
|
|
|
|
char buf[PATH_MAX+1];
|
|
int num = Atomic::add(1, &cnt);
|
|
|
|
snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
|
|
os::get_temp_directory(), os::current_process_id(), num);
|
|
unlink(buf);
|
|
|
|
int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
|
|
|
|
if (fd != -1) {
|
|
off_t rv = ::lseek(fd, size-2, SEEK_SET);
|
|
if (rv != (off_t)-1) {
|
|
if (::write(fd, "", 1) == 1) {
|
|
mmap(base, size,
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
|
|
}
|
|
}
|
|
::close(fd);
|
|
unlink(buf);
|
|
}
|
|
}
|
|
|
|
static bool recoverable_mmap_error(int err) {
|
|
// See if the error is one we can let the caller handle. This
|
|
// list of errno values comes from JBS-6843484. I can't find a
|
|
// Linux man page that documents this specific set of errno
|
|
// values so while this list currently matches Solaris, it may
|
|
// change as we gain experience with this failure mode.
|
|
switch (err) {
|
|
case EBADF:
|
|
case EINVAL:
|
|
case ENOTSUP:
|
|
// let the caller deal with these errors
|
|
return true;
|
|
|
|
default:
|
|
// Any remaining errors on this OS can cause our reserved mapping
|
|
// to be lost. That can cause confusion where different data
|
|
// structures think they have the same memory mapped. The worst
|
|
// scenario is if both the VM and a library think they have the
|
|
// same memory mapped.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
|
|
int err) {
|
|
warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
|
|
", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
|
|
os::strerror(err), err);
|
|
}
|
|
|
|
static void warn_fail_commit_memory(char* addr, size_t size,
|
|
size_t alignment_hint, bool exec,
|
|
int err) {
|
|
warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
|
|
", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
|
|
alignment_hint, exec, os::strerror(err), err);
|
|
}
|
|
|
|
// NOTE: Linux kernel does not really reserve the pages for us.
|
|
// All it does is to check if there are enough free pages
|
|
// left at the time of mmap(). This could be a potential
|
|
// problem.
|
|
int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
|
|
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
|
|
uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
|
|
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
|
|
if (res != (uintptr_t) MAP_FAILED) {
|
|
if (UseNUMAInterleaving) {
|
|
numa_make_global(addr, size);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int err = errno; // save errno from mmap() call above
|
|
|
|
if (!recoverable_mmap_error(err)) {
|
|
warn_fail_commit_memory(addr, size, exec, err);
|
|
vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
|
|
return os::Linux::commit_memory_impl(addr, size, exec) == 0;
|
|
}
|
|
|
|
void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
|
|
const char* mesg) {
|
|
assert(mesg != NULL, "mesg must be specified");
|
|
int err = os::Linux::commit_memory_impl(addr, size, exec);
|
|
if (err != 0) {
|
|
// the caller wants all commit errors to exit with the specified mesg:
|
|
warn_fail_commit_memory(addr, size, exec, err);
|
|
vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
|
|
}
|
|
}
|
|
|
|
// Define MAP_HUGETLB here so we can build HotSpot on old systems.
|
|
#ifndef MAP_HUGETLB
|
|
#define MAP_HUGETLB 0x40000
|
|
#endif
|
|
|
|
// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
|
|
#ifndef MADV_HUGEPAGE
|
|
#define MADV_HUGEPAGE 14
|
|
#endif
|
|
|
|
int os::Linux::commit_memory_impl(char* addr, size_t size,
|
|
size_t alignment_hint, bool exec) {
|
|
int err = os::Linux::commit_memory_impl(addr, size, exec);
|
|
if (err == 0) {
|
|
realign_memory(addr, size, alignment_hint);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
|
|
bool exec) {
|
|
return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
|
|
}
|
|
|
|
void os::pd_commit_memory_or_exit(char* addr, size_t size,
|
|
size_t alignment_hint, bool exec,
|
|
const char* mesg) {
|
|
assert(mesg != NULL, "mesg must be specified");
|
|
int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
|
|
if (err != 0) {
|
|
// the caller wants all commit errors to exit with the specified mesg:
|
|
warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
|
|
vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
|
|
}
|
|
}
|
|
|
|
void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
|
|
if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
|
|
// We don't check the return value: madvise(MADV_HUGEPAGE) may not
|
|
// be supported or the memory may already be backed by huge pages.
|
|
::madvise(addr, bytes, MADV_HUGEPAGE);
|
|
}
|
|
}
|
|
|
|
void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
|
|
// This method works by doing an mmap over an existing mmaping and effectively discarding
|
|
// the existing pages. However it won't work for SHM-based large pages that cannot be
|
|
// uncommitted at all. We don't do anything in this case to avoid creating a segment with
|
|
// small pages on top of the SHM segment. This method always works for small pages, so we
|
|
// allow that in any case.
|
|
if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
|
|
commit_memory(addr, bytes, alignment_hint, !ExecMem);
|
|
}
|
|
}
|
|
|
|
void os::numa_make_global(char *addr, size_t bytes) {
|
|
Linux::numa_interleave_memory(addr, bytes);
|
|
}
|
|
|
|
// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
|
|
// bind policy to MPOL_PREFERRED for the current thread.
|
|
#define USE_MPOL_PREFERRED 0
|
|
|
|
void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
|
|
// To make NUMA and large pages more robust when both enabled, we need to ease
|
|
// the requirements on where the memory should be allocated. MPOL_BIND is the
|
|
// default policy and it will force memory to be allocated on the specified
|
|
// node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
|
|
// the specified node, but will not force it. Using this policy will prevent
|
|
// getting SIGBUS when trying to allocate large pages on NUMA nodes with no
|
|
// free large pages.
|
|
Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
|
|
Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
|
|
}
|
|
|
|
bool os::numa_topology_changed() { return false; }
|
|
|
|
size_t os::numa_get_groups_num() {
|
|
// Return just the number of nodes in which it's possible to allocate memory
|
|
// (in numa terminology, configured nodes).
|
|
return Linux::numa_num_configured_nodes();
|
|
}
|
|
|
|
int os::numa_get_group_id() {
|
|
int cpu_id = Linux::sched_getcpu();
|
|
if (cpu_id != -1) {
|
|
int lgrp_id = Linux::get_node_by_cpu(cpu_id);
|
|
if (lgrp_id != -1) {
|
|
return lgrp_id;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int os::Linux::get_existing_num_nodes() {
|
|
size_t node;
|
|
size_t highest_node_number = Linux::numa_max_node();
|
|
int num_nodes = 0;
|
|
|
|
// Get the total number of nodes in the system including nodes without memory.
|
|
for (node = 0; node <= highest_node_number; node++) {
|
|
if (isnode_in_existing_nodes(node)) {
|
|
num_nodes++;
|
|
}
|
|
}
|
|
return num_nodes;
|
|
}
|
|
|
|
size_t os::numa_get_leaf_groups(int *ids, size_t size) {
|
|
size_t highest_node_number = Linux::numa_max_node();
|
|
size_t i = 0;
|
|
|
|
// Map all node ids in which is possible to allocate memory. Also nodes are
|
|
// not always consecutively available, i.e. available from 0 to the highest
|
|
// node number.
|
|
for (size_t node = 0; node <= highest_node_number; node++) {
|
|
if (Linux::isnode_in_configured_nodes(node)) {
|
|
ids[i++] = node;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
bool os::get_page_info(char *start, page_info* info) {
|
|
return false;
|
|
}
|
|
|
|
char *os::scan_pages(char *start, char* end, page_info* page_expected,
|
|
page_info* page_found) {
|
|
return end;
|
|
}
|
|
|
|
|
|
int os::Linux::sched_getcpu_syscall(void) {
|
|
unsigned int cpu = 0;
|
|
int retval = -1;
|
|
|
|
#if defined(IA32)
|
|
#ifndef SYS_getcpu
|
|
#define SYS_getcpu 318
|
|
#endif
|
|
retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
|
|
#elif defined(AMD64)
|
|
// Unfortunately we have to bring all these macros here from vsyscall.h
|
|
// to be able to compile on old linuxes.
|
|
#define __NR_vgetcpu 2
|
|
#define VSYSCALL_START (-10UL << 20)
|
|
#define VSYSCALL_SIZE 1024
|
|
#define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
|
|
typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
|
|
vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
|
|
retval = vgetcpu(&cpu, NULL, NULL);
|
|
#endif
|
|
|
|
return (retval == -1) ? retval : cpu;
|
|
}
|
|
|
|
void os::Linux::sched_getcpu_init() {
|
|
// sched_getcpu() should be in libc.
|
|
set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
|
|
dlsym(RTLD_DEFAULT, "sched_getcpu")));
|
|
|
|
// If it's not, try a direct syscall.
|
|
if (sched_getcpu() == -1) {
|
|
set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
|
|
(void*)&sched_getcpu_syscall));
|
|
}
|
|
}
|
|
|
|
// Something to do with the numa-aware allocator needs these symbols
|
|
extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
|
|
extern "C" JNIEXPORT void numa_error(char *where) { }
|
|
|
|
// Handle request to load libnuma symbol version 1.1 (API v1). If it fails
|
|
// load symbol from base version instead.
|
|
void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
|
|
void *f = dlvsym(handle, name, "libnuma_1.1");
|
|
if (f == NULL) {
|
|
f = dlsym(handle, name);
|
|
}
|
|
return f;
|
|
}
|
|
|
|
// Handle request to load libnuma symbol version 1.2 (API v2) only.
|
|
// Return NULL if the symbol is not defined in this particular version.
|
|
void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
|
|
return dlvsym(handle, name, "libnuma_1.2");
|
|
}
|
|
|
|
bool os::Linux::libnuma_init() {
|
|
if (sched_getcpu() != -1) { // Requires sched_getcpu() support
|
|
void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
|
|
if (handle != NULL) {
|
|
set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
|
|
libnuma_dlsym(handle, "numa_node_to_cpus")));
|
|
set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
|
|
libnuma_dlsym(handle, "numa_max_node")));
|
|
set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
|
|
libnuma_dlsym(handle, "numa_num_configured_nodes")));
|
|
set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
|
|
libnuma_dlsym(handle, "numa_available")));
|
|
set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
|
|
libnuma_dlsym(handle, "numa_tonode_memory")));
|
|
set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
|
|
libnuma_dlsym(handle, "numa_interleave_memory")));
|
|
set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
|
|
libnuma_v2_dlsym(handle, "numa_interleave_memory")));
|
|
set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
|
|
libnuma_dlsym(handle, "numa_set_bind_policy")));
|
|
set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
|
|
libnuma_dlsym(handle, "numa_bitmask_isbitset")));
|
|
set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
|
|
libnuma_dlsym(handle, "numa_distance")));
|
|
|
|
if (numa_available() != -1) {
|
|
set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
|
|
set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
|
|
set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
|
|
// Create an index -> node mapping, since nodes are not always consecutive
|
|
_nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
|
|
rebuild_nindex_to_node_map();
|
|
// Create a cpu -> node mapping
|
|
_cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
|
|
rebuild_cpu_to_node_map();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
|
|
// Creating guard page is very expensive. Java thread has HotSpot
|
|
// guard pages, only enable glibc guard page for non-Java threads.
|
|
// (Remember: compiler thread is a Java thread, too!)
|
|
return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
|
|
}
|
|
|
|
void os::Linux::rebuild_nindex_to_node_map() {
|
|
int highest_node_number = Linux::numa_max_node();
|
|
|
|
nindex_to_node()->clear();
|
|
for (int node = 0; node <= highest_node_number; node++) {
|
|
if (Linux::isnode_in_existing_nodes(node)) {
|
|
nindex_to_node()->append(node);
|
|
}
|
|
}
|
|
}
|
|
|
|
// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
|
|
// The table is later used in get_node_by_cpu().
|
|
void os::Linux::rebuild_cpu_to_node_map() {
|
|
const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
|
|
// in libnuma (possible values are starting from 16,
|
|
// and continuing up with every other power of 2, but less
|
|
// than the maximum number of CPUs supported by kernel), and
|
|
// is a subject to change (in libnuma version 2 the requirements
|
|
// are more reasonable) we'll just hardcode the number they use
|
|
// in the library.
|
|
const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
|
|
|
|
size_t cpu_num = processor_count();
|
|
size_t cpu_map_size = NCPUS / BitsPerCLong;
|
|
size_t cpu_map_valid_size =
|
|
MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
|
|
|
|
cpu_to_node()->clear();
|
|
cpu_to_node()->at_grow(cpu_num - 1);
|
|
|
|
size_t node_num = get_existing_num_nodes();
|
|
|
|
int distance = 0;
|
|
int closest_distance = INT_MAX;
|
|
int closest_node = 0;
|
|
unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
|
|
for (size_t i = 0; i < node_num; i++) {
|
|
// Check if node is configured (not a memory-less node). If it is not, find
|
|
// the closest configured node.
|
|
if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
|
|
closest_distance = INT_MAX;
|
|
// Check distance from all remaining nodes in the system. Ignore distance
|
|
// from itself and from another non-configured node.
|
|
for (size_t m = 0; m < node_num; m++) {
|
|
if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
|
|
distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
|
|
// If a closest node is found, update. There is always at least one
|
|
// configured node in the system so there is always at least one node
|
|
// close.
|
|
if (distance != 0 && distance < closest_distance) {
|
|
closest_distance = distance;
|
|
closest_node = nindex_to_node()->at(m);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Current node is already a configured node.
|
|
closest_node = nindex_to_node()->at(i);
|
|
}
|
|
|
|
// Get cpus from the original node and map them to the closest node. If node
|
|
// is a configured node (not a memory-less node), then original node and
|
|
// closest node are the same.
|
|
if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
|
|
for (size_t j = 0; j < cpu_map_valid_size; j++) {
|
|
if (cpu_map[j] != 0) {
|
|
for (size_t k = 0; k < BitsPerCLong; k++) {
|
|
if (cpu_map[j] & (1UL << k)) {
|
|
cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
|
|
}
|
|
|
|
int os::Linux::get_node_by_cpu(int cpu_id) {
|
|
if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
|
|
return cpu_to_node()->at(cpu_id);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
GrowableArray<int>* os::Linux::_cpu_to_node;
|
|
GrowableArray<int>* os::Linux::_nindex_to_node;
|
|
os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
|
|
os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
|
|
os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
|
|
os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
|
|
os::Linux::numa_available_func_t os::Linux::_numa_available;
|
|
os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
|
|
os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
|
|
os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
|
|
os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
|
|
os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
|
|
os::Linux::numa_distance_func_t os::Linux::_numa_distance;
|
|
unsigned long* os::Linux::_numa_all_nodes;
|
|
struct bitmask* os::Linux::_numa_all_nodes_ptr;
|
|
struct bitmask* os::Linux::_numa_nodes_ptr;
|
|
|
|
bool os::pd_uncommit_memory(char* addr, size_t size) {
|
|
uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
|
|
MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
|
|
return res != (uintptr_t) MAP_FAILED;
|
|
}
|
|
|
|
static address get_stack_commited_bottom(address bottom, size_t size) {
|
|
address nbot = bottom;
|
|
address ntop = bottom + size;
|
|
|
|
size_t page_sz = os::vm_page_size();
|
|
unsigned pages = size / page_sz;
|
|
|
|
unsigned char vec[1];
|
|
unsigned imin = 1, imax = pages + 1, imid;
|
|
int mincore_return_value = 0;
|
|
|
|
assert(imin <= imax, "Unexpected page size");
|
|
|
|
while (imin < imax) {
|
|
imid = (imax + imin) / 2;
|
|
nbot = ntop - (imid * page_sz);
|
|
|
|
// Use a trick with mincore to check whether the page is mapped or not.
|
|
// mincore sets vec to 1 if page resides in memory and to 0 if page
|
|
// is swapped output but if page we are asking for is unmapped
|
|
// it returns -1,ENOMEM
|
|
mincore_return_value = mincore(nbot, page_sz, vec);
|
|
|
|
if (mincore_return_value == -1) {
|
|
// Page is not mapped go up
|
|
// to find first mapped page
|
|
if (errno != EAGAIN) {
|
|
assert(errno == ENOMEM, "Unexpected mincore errno");
|
|
imax = imid;
|
|
}
|
|
} else {
|
|
// Page is mapped go down
|
|
// to find first not mapped page
|
|
imin = imid + 1;
|
|
}
|
|
}
|
|
|
|
nbot = nbot + page_sz;
|
|
|
|
// Adjust stack bottom one page up if last checked page is not mapped
|
|
if (mincore_return_value == -1) {
|
|
nbot = nbot + page_sz;
|
|
}
|
|
|
|
return nbot;
|
|
}
|
|
|
|
|
|
// Linux uses a growable mapping for the stack, and if the mapping for
|
|
// the stack guard pages is not removed when we detach a thread the
|
|
// stack cannot grow beyond the pages where the stack guard was
|
|
// mapped. If at some point later in the process the stack expands to
|
|
// that point, the Linux kernel cannot expand the stack any further
|
|
// because the guard pages are in the way, and a segfault occurs.
|
|
//
|
|
// However, it's essential not to split the stack region by unmapping
|
|
// a region (leaving a hole) that's already part of the stack mapping,
|
|
// so if the stack mapping has already grown beyond the guard pages at
|
|
// the time we create them, we have to truncate the stack mapping.
|
|
// So, we need to know the extent of the stack mapping when
|
|
// create_stack_guard_pages() is called.
|
|
|
|
// We only need this for stacks that are growable: at the time of
|
|
// writing thread stacks don't use growable mappings (i.e. those
|
|
// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
|
|
// only applies to the main thread.
|
|
|
|
// If the (growable) stack mapping already extends beyond the point
|
|
// where we're going to put our guard pages, truncate the mapping at
|
|
// that point by munmap()ping it. This ensures that when we later
|
|
// munmap() the guard pages we don't leave a hole in the stack
|
|
// mapping. This only affects the main/initial thread
|
|
|
|
bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
|
|
if (os::Linux::is_initial_thread()) {
|
|
// As we manually grow stack up to bottom inside create_attached_thread(),
|
|
// it's likely that os::Linux::initial_thread_stack_bottom is mapped and
|
|
// we don't need to do anything special.
|
|
// Check it first, before calling heavy function.
|
|
uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
|
|
unsigned char vec[1];
|
|
|
|
if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
|
|
// Fallback to slow path on all errors, including EAGAIN
|
|
stack_extent = (uintptr_t) get_stack_commited_bottom(
|
|
os::Linux::initial_thread_stack_bottom(),
|
|
(size_t)addr - stack_extent);
|
|
}
|
|
|
|
if (stack_extent < (uintptr_t)addr) {
|
|
::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
|
|
}
|
|
}
|
|
|
|
return os::commit_memory(addr, size, !ExecMem);
|
|
}
|
|
|
|
// If this is a growable mapping, remove the guard pages entirely by
|
|
// munmap()ping them. If not, just call uncommit_memory(). This only
|
|
// affects the main/initial thread, but guard against future OS changes
|
|
// It's safe to always unmap guard pages for initial thread because we
|
|
// always place it right after end of the mapped region
|
|
|
|
bool os::remove_stack_guard_pages(char* addr, size_t size) {
|
|
uintptr_t stack_extent, stack_base;
|
|
|
|
if (os::Linux::is_initial_thread()) {
|
|
return ::munmap(addr, size) == 0;
|
|
}
|
|
|
|
return os::uncommit_memory(addr, size);
|
|
}
|
|
|
|
// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
|
|
// at 'requested_addr'. If there are existing memory mappings at the same
|
|
// location, however, they will be overwritten. If 'fixed' is false,
|
|
// 'requested_addr' is only treated as a hint, the return value may or
|
|
// may not start from the requested address. Unlike Linux mmap(), this
|
|
// function returns NULL to indicate failure.
|
|
static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
|
|
char * addr;
|
|
int flags;
|
|
|
|
flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
|
|
if (fixed) {
|
|
assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
|
|
flags |= MAP_FIXED;
|
|
}
|
|
|
|
// Map reserved/uncommitted pages PROT_NONE so we fail early if we
|
|
// touch an uncommitted page. Otherwise, the read/write might
|
|
// succeed if we have enough swap space to back the physical page.
|
|
addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
|
|
flags, -1, 0);
|
|
|
|
return addr == MAP_FAILED ? NULL : addr;
|
|
}
|
|
|
|
// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
|
|
// (req_addr != NULL) or with a given alignment.
|
|
// - bytes shall be a multiple of alignment.
|
|
// - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
|
|
// - alignment sets the alignment at which memory shall be allocated.
|
|
// It must be a multiple of allocation granularity.
|
|
// Returns address of memory or NULL. If req_addr was not NULL, will only return
|
|
// req_addr or NULL.
|
|
static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
|
|
|
|
size_t extra_size = bytes;
|
|
if (req_addr == NULL && alignment > 0) {
|
|
extra_size += alignment;
|
|
}
|
|
|
|
char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
|
|
MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
|
|
-1, 0);
|
|
if (start == MAP_FAILED) {
|
|
start = NULL;
|
|
} else {
|
|
if (req_addr != NULL) {
|
|
if (start != req_addr) {
|
|
::munmap(start, extra_size);
|
|
start = NULL;
|
|
}
|
|
} else {
|
|
char* const start_aligned = align_up(start, alignment);
|
|
char* const end_aligned = start_aligned + bytes;
|
|
char* const end = start + extra_size;
|
|
if (start_aligned > start) {
|
|
::munmap(start, start_aligned - start);
|
|
}
|
|
if (end_aligned < end) {
|
|
::munmap(end_aligned, end - end_aligned);
|
|
}
|
|
start = start_aligned;
|
|
}
|
|
}
|
|
return start;
|
|
}
|
|
|
|
static int anon_munmap(char * addr, size_t size) {
|
|
return ::munmap(addr, size) == 0;
|
|
}
|
|
|
|
char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
|
|
size_t alignment_hint) {
|
|
return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
|
|
}
|
|
|
|
bool os::pd_release_memory(char* addr, size_t size) {
|
|
return anon_munmap(addr, size);
|
|
}
|
|
|
|
static bool linux_mprotect(char* addr, size_t size, int prot) {
|
|
// Linux wants the mprotect address argument to be page aligned.
|
|
char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
|
|
|
|
// According to SUSv3, mprotect() should only be used with mappings
|
|
// established by mmap(), and mmap() always maps whole pages. Unaligned
|
|
// 'addr' likely indicates problem in the VM (e.g. trying to change
|
|
// protection of malloc'ed or statically allocated memory). Check the
|
|
// caller if you hit this assert.
|
|
assert(addr == bottom, "sanity check");
|
|
|
|
size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
|
|
return ::mprotect(bottom, size, prot) == 0;
|
|
}
|
|
|
|
// Set protections specified
|
|
bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
|
|
bool is_committed) {
|
|
unsigned int p = 0;
|
|
switch (prot) {
|
|
case MEM_PROT_NONE: p = PROT_NONE; break;
|
|
case MEM_PROT_READ: p = PROT_READ; break;
|
|
case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
|
|
case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
// is_committed is unused.
|
|
return linux_mprotect(addr, bytes, p);
|
|
}
|
|
|
|
bool os::guard_memory(char* addr, size_t size) {
|
|
return linux_mprotect(addr, size, PROT_NONE);
|
|
}
|
|
|
|
bool os::unguard_memory(char* addr, size_t size) {
|
|
return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
|
|
}
|
|
|
|
bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
|
|
size_t page_size) {
|
|
bool result = false;
|
|
void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
|
|
MAP_ANONYMOUS|MAP_PRIVATE,
|
|
-1, 0);
|
|
if (p != MAP_FAILED) {
|
|
void *aligned_p = align_up(p, page_size);
|
|
|
|
result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
|
|
|
|
munmap(p, page_size * 2);
|
|
}
|
|
|
|
if (warn && !result) {
|
|
warning("TransparentHugePages is not supported by the operating system.");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
|
|
bool result = false;
|
|
void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
|
|
MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
|
|
-1, 0);
|
|
|
|
if (p != MAP_FAILED) {
|
|
// We don't know if this really is a huge page or not.
|
|
FILE *fp = fopen("/proc/self/maps", "r");
|
|
if (fp) {
|
|
while (!feof(fp)) {
|
|
char chars[257];
|
|
long x = 0;
|
|
if (fgets(chars, sizeof(chars), fp)) {
|
|
if (sscanf(chars, "%lx-%*x", &x) == 1
|
|
&& x == (long)p) {
|
|
if (strstr (chars, "hugepage")) {
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
munmap(p, page_size);
|
|
}
|
|
|
|
if (warn && !result) {
|
|
warning("HugeTLBFS is not supported by the operating system.");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Set the coredump_filter bits to include largepages in core dump (bit 6)
|
|
//
|
|
// From the coredump_filter documentation:
|
|
//
|
|
// - (bit 0) anonymous private memory
|
|
// - (bit 1) anonymous shared memory
|
|
// - (bit 2) file-backed private memory
|
|
// - (bit 3) file-backed shared memory
|
|
// - (bit 4) ELF header pages in file-backed private memory areas (it is
|
|
// effective only if the bit 2 is cleared)
|
|
// - (bit 5) hugetlb private memory
|
|
// - (bit 6) hugetlb shared memory
|
|
//
|
|
static void set_coredump_filter(void) {
|
|
FILE *f;
|
|
long cdm;
|
|
|
|
if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (fscanf(f, "%lx", &cdm) != 1) {
|
|
fclose(f);
|
|
return;
|
|
}
|
|
|
|
rewind(f);
|
|
|
|
if ((cdm & LARGEPAGES_BIT) == 0) {
|
|
cdm |= LARGEPAGES_BIT;
|
|
fprintf(f, "%#lx", cdm);
|
|
}
|
|
|
|
fclose(f);
|
|
}
|
|
|
|
// Large page support
|
|
|
|
static size_t _large_page_size = 0;
|
|
|
|
size_t os::Linux::find_large_page_size() {
|
|
size_t large_page_size = 0;
|
|
|
|
// large_page_size on Linux is used to round up heap size. x86 uses either
|
|
// 2M or 4M page, depending on whether PAE (Physical Address Extensions)
|
|
// mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
|
|
// page as large as 256M.
|
|
//
|
|
// Here we try to figure out page size by parsing /proc/meminfo and looking
|
|
// for a line with the following format:
|
|
// Hugepagesize: 2048 kB
|
|
//
|
|
// If we can't determine the value (e.g. /proc is not mounted, or the text
|
|
// format has been changed), we'll use the largest page size supported by
|
|
// the processor.
|
|
|
|
#ifndef ZERO
|
|
large_page_size =
|
|
AARCH64_ONLY(2 * M)
|
|
AMD64_ONLY(2 * M)
|
|
ARM32_ONLY(2 * M)
|
|
IA32_ONLY(4 * M)
|
|
IA64_ONLY(256 * M)
|
|
PPC_ONLY(4 * M)
|
|
S390_ONLY(1 * M)
|
|
SPARC_ONLY(4 * M);
|
|
#endif // ZERO
|
|
|
|
FILE *fp = fopen("/proc/meminfo", "r");
|
|
if (fp) {
|
|
while (!feof(fp)) {
|
|
int x = 0;
|
|
char buf[16];
|
|
if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
|
|
if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
|
|
large_page_size = x * K;
|
|
break;
|
|
}
|
|
} else {
|
|
// skip to next line
|
|
for (;;) {
|
|
int ch = fgetc(fp);
|
|
if (ch == EOF || ch == (int)'\n') break;
|
|
}
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
|
|
if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
|
|
warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
|
|
SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
|
|
proper_unit_for_byte_size(large_page_size));
|
|
}
|
|
|
|
return large_page_size;
|
|
}
|
|
|
|
size_t os::Linux::setup_large_page_size() {
|
|
_large_page_size = Linux::find_large_page_size();
|
|
const size_t default_page_size = (size_t)Linux::page_size();
|
|
if (_large_page_size > default_page_size) {
|
|
_page_sizes[0] = _large_page_size;
|
|
_page_sizes[1] = default_page_size;
|
|
_page_sizes[2] = 0;
|
|
}
|
|
|
|
return _large_page_size;
|
|
}
|
|
|
|
bool os::Linux::setup_large_page_type(size_t page_size) {
|
|
if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
|
|
FLAG_IS_DEFAULT(UseSHM) &&
|
|
FLAG_IS_DEFAULT(UseTransparentHugePages)) {
|
|
|
|
// The type of large pages has not been specified by the user.
|
|
|
|
// Try UseHugeTLBFS and then UseSHM.
|
|
UseHugeTLBFS = UseSHM = true;
|
|
|
|
// Don't try UseTransparentHugePages since there are known
|
|
// performance issues with it turned on. This might change in the future.
|
|
UseTransparentHugePages = false;
|
|
}
|
|
|
|
if (UseTransparentHugePages) {
|
|
bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
|
|
if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
|
|
UseHugeTLBFS = false;
|
|
UseSHM = false;
|
|
return true;
|
|
}
|
|
UseTransparentHugePages = false;
|
|
}
|
|
|
|
if (UseHugeTLBFS) {
|
|
bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
|
|
if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
|
|
UseSHM = false;
|
|
return true;
|
|
}
|
|
UseHugeTLBFS = false;
|
|
}
|
|
|
|
return UseSHM;
|
|
}
|
|
|
|
void os::large_page_init() {
|
|
if (!UseLargePages &&
|
|
!UseTransparentHugePages &&
|
|
!UseHugeTLBFS &&
|
|
!UseSHM) {
|
|
// Not using large pages.
|
|
return;
|
|
}
|
|
|
|
if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
|
|
// The user explicitly turned off large pages.
|
|
// Ignore the rest of the large pages flags.
|
|
UseTransparentHugePages = false;
|
|
UseHugeTLBFS = false;
|
|
UseSHM = false;
|
|
return;
|
|
}
|
|
|
|
size_t large_page_size = Linux::setup_large_page_size();
|
|
UseLargePages = Linux::setup_large_page_type(large_page_size);
|
|
|
|
set_coredump_filter();
|
|
}
|
|
|
|
#ifndef SHM_HUGETLB
|
|
#define SHM_HUGETLB 04000
|
|
#endif
|
|
|
|
#define shm_warning_format(format, ...) \
|
|
do { \
|
|
if (UseLargePages && \
|
|
(!FLAG_IS_DEFAULT(UseLargePages) || \
|
|
!FLAG_IS_DEFAULT(UseSHM) || \
|
|
!FLAG_IS_DEFAULT(LargePageSizeInBytes))) { \
|
|
warning(format, __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define shm_warning(str) shm_warning_format("%s", str)
|
|
|
|
#define shm_warning_with_errno(str) \
|
|
do { \
|
|
int err = errno; \
|
|
shm_warning_format(str " (error = %d)", err); \
|
|
} while (0)
|
|
|
|
static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
|
|
assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
|
|
|
|
if (!is_aligned(alignment, SHMLBA)) {
|
|
assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
|
|
return NULL;
|
|
}
|
|
|
|
// To ensure that we get 'alignment' aligned memory from shmat,
|
|
// we pre-reserve aligned virtual memory and then attach to that.
|
|
|
|
char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
|
|
if (pre_reserved_addr == NULL) {
|
|
// Couldn't pre-reserve aligned memory.
|
|
shm_warning("Failed to pre-reserve aligned memory for shmat.");
|
|
return NULL;
|
|
}
|
|
|
|
// SHM_REMAP is needed to allow shmat to map over an existing mapping.
|
|
char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
|
|
|
|
if ((intptr_t)addr == -1) {
|
|
int err = errno;
|
|
shm_warning_with_errno("Failed to attach shared memory.");
|
|
|
|
assert(err != EACCES, "Unexpected error");
|
|
assert(err != EIDRM, "Unexpected error");
|
|
assert(err != EINVAL, "Unexpected error");
|
|
|
|
// Since we don't know if the kernel unmapped the pre-reserved memory area
|
|
// we can't unmap it, since that would potentially unmap memory that was
|
|
// mapped from other threads.
|
|
return NULL;
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
static char* shmat_at_address(int shmid, char* req_addr) {
|
|
if (!is_aligned(req_addr, SHMLBA)) {
|
|
assert(false, "Requested address needs to be SHMLBA aligned");
|
|
return NULL;
|
|
}
|
|
|
|
char* addr = (char*)shmat(shmid, req_addr, 0);
|
|
|
|
if ((intptr_t)addr == -1) {
|
|
shm_warning_with_errno("Failed to attach shared memory.");
|
|
return NULL;
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
|
|
// If a req_addr has been provided, we assume that the caller has already aligned the address.
|
|
if (req_addr != NULL) {
|
|
assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
|
|
assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
|
|
return shmat_at_address(shmid, req_addr);
|
|
}
|
|
|
|
// Since shmid has been setup with SHM_HUGETLB, shmat will automatically
|
|
// return large page size aligned memory addresses when req_addr == NULL.
|
|
// However, if the alignment is larger than the large page size, we have
|
|
// to manually ensure that the memory returned is 'alignment' aligned.
|
|
if (alignment > os::large_page_size()) {
|
|
assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
|
|
return shmat_with_alignment(shmid, bytes, alignment);
|
|
} else {
|
|
return shmat_at_address(shmid, NULL);
|
|
}
|
|
}
|
|
|
|
char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
|
|
char* req_addr, bool exec) {
|
|
// "exec" is passed in but not used. Creating the shared image for
|
|
// the code cache doesn't have an SHM_X executable permission to check.
|
|
assert(UseLargePages && UseSHM, "only for SHM large pages");
|
|
assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
|
|
assert(is_aligned(req_addr, alignment), "Unaligned address");
|
|
|
|
if (!is_aligned(bytes, os::large_page_size())) {
|
|
return NULL; // Fallback to small pages.
|
|
}
|
|
|
|
// Create a large shared memory region to attach to based on size.
|
|
// Currently, size is the total size of the heap.
|
|
int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
|
|
if (shmid == -1) {
|
|
// Possible reasons for shmget failure:
|
|
// 1. shmmax is too small for Java heap.
|
|
// > check shmmax value: cat /proc/sys/kernel/shmmax
|
|
// > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
|
|
// 2. not enough large page memory.
|
|
// > check available large pages: cat /proc/meminfo
|
|
// > increase amount of large pages:
|
|
// echo new_value > /proc/sys/vm/nr_hugepages
|
|
// Note 1: different Linux may use different name for this property,
|
|
// e.g. on Redhat AS-3 it is "hugetlb_pool".
|
|
// Note 2: it's possible there's enough physical memory available but
|
|
// they are so fragmented after a long run that they can't
|
|
// coalesce into large pages. Try to reserve large pages when
|
|
// the system is still "fresh".
|
|
shm_warning_with_errno("Failed to reserve shared memory.");
|
|
return NULL;
|
|
}
|
|
|
|
// Attach to the region.
|
|
char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
|
|
|
|
// Remove shmid. If shmat() is successful, the actual shared memory segment
|
|
// will be deleted when it's detached by shmdt() or when the process
|
|
// terminates. If shmat() is not successful this will remove the shared
|
|
// segment immediately.
|
|
shmctl(shmid, IPC_RMID, NULL);
|
|
|
|
return addr;
|
|
}
|
|
|
|
static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
|
|
int error) {
|
|
assert(error == ENOMEM, "Only expect to fail if no memory is available");
|
|
|
|
bool warn_on_failure = UseLargePages &&
|
|
(!FLAG_IS_DEFAULT(UseLargePages) ||
|
|
!FLAG_IS_DEFAULT(UseHugeTLBFS) ||
|
|
!FLAG_IS_DEFAULT(LargePageSizeInBytes));
|
|
|
|
if (warn_on_failure) {
|
|
char msg[128];
|
|
jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
|
|
PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
|
|
warning("%s", msg);
|
|
}
|
|
}
|
|
|
|
char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
|
|
char* req_addr,
|
|
bool exec) {
|
|
assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
|
|
assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
|
|
assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
|
|
|
|
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
|
|
char* addr = (char*)::mmap(req_addr, bytes, prot,
|
|
MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
|
|
-1, 0);
|
|
|
|
if (addr == MAP_FAILED) {
|
|
warn_on_large_pages_failure(req_addr, bytes, errno);
|
|
return NULL;
|
|
}
|
|
|
|
assert(is_aligned(addr, os::large_page_size()), "Must be");
|
|
|
|
return addr;
|
|
}
|
|
|
|
// Reserve memory using mmap(MAP_HUGETLB).
|
|
// - bytes shall be a multiple of alignment.
|
|
// - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
|
|
// - alignment sets the alignment at which memory shall be allocated.
|
|
// It must be a multiple of allocation granularity.
|
|
// Returns address of memory or NULL. If req_addr was not NULL, will only return
|
|
// req_addr or NULL.
|
|
char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
|
|
size_t alignment,
|
|
char* req_addr,
|
|
bool exec) {
|
|
size_t large_page_size = os::large_page_size();
|
|
assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
|
|
|
|
assert(is_aligned(req_addr, alignment), "Must be");
|
|
assert(is_aligned(bytes, alignment), "Must be");
|
|
|
|
// First reserve - but not commit - the address range in small pages.
|
|
char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
|
|
|
|
if (start == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
assert(is_aligned(start, alignment), "Must be");
|
|
|
|
char* end = start + bytes;
|
|
|
|
// Find the regions of the allocated chunk that can be promoted to large pages.
|
|
char* lp_start = align_up(start, large_page_size);
|
|
char* lp_end = align_down(end, large_page_size);
|
|
|
|
size_t lp_bytes = lp_end - lp_start;
|
|
|
|
assert(is_aligned(lp_bytes, large_page_size), "Must be");
|
|
|
|
if (lp_bytes == 0) {
|
|
// The mapped region doesn't even span the start and the end of a large page.
|
|
// Fall back to allocate a non-special area.
|
|
::munmap(start, end - start);
|
|
return NULL;
|
|
}
|
|
|
|
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
|
|
|
|
void* result;
|
|
|
|
// Commit small-paged leading area.
|
|
if (start != lp_start) {
|
|
result = ::mmap(start, lp_start - start, prot,
|
|
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
|
|
-1, 0);
|
|
if (result == MAP_FAILED) {
|
|
::munmap(lp_start, end - lp_start);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// Commit large-paged area.
|
|
result = ::mmap(lp_start, lp_bytes, prot,
|
|
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
|
|
-1, 0);
|
|
if (result == MAP_FAILED) {
|
|
warn_on_large_pages_failure(lp_start, lp_bytes, errno);
|
|
// If the mmap above fails, the large pages region will be unmapped and we
|
|
// have regions before and after with small pages. Release these regions.
|
|
//
|
|
// | mapped | unmapped | mapped |
|
|
// ^ ^ ^ ^
|
|
// start lp_start lp_end end
|
|
//
|
|
::munmap(start, lp_start - start);
|
|
::munmap(lp_end, end - lp_end);
|
|
return NULL;
|
|
}
|
|
|
|
// Commit small-paged trailing area.
|
|
if (lp_end != end) {
|
|
result = ::mmap(lp_end, end - lp_end, prot,
|
|
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
|
|
-1, 0);
|
|
if (result == MAP_FAILED) {
|
|
::munmap(start, lp_end - start);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return start;
|
|
}
|
|
|
|
char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
|
|
size_t alignment,
|
|
char* req_addr,
|
|
bool exec) {
|
|
assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
|
|
assert(is_aligned(req_addr, alignment), "Must be");
|
|
assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
|
|
assert(is_power_of_2(os::large_page_size()), "Must be");
|
|
assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
|
|
|
|
if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
|
|
return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
|
|
} else {
|
|
return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
|
|
}
|
|
}
|
|
|
|
char* os::reserve_memory_special(size_t bytes, size_t alignment,
|
|
char* req_addr, bool exec) {
|
|
assert(UseLargePages, "only for large pages");
|
|
|
|
char* addr;
|
|
if (UseSHM) {
|
|
addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
|
|
} else {
|
|
assert(UseHugeTLBFS, "must be");
|
|
addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
|
|
}
|
|
|
|
if (addr != NULL) {
|
|
if (UseNUMAInterleaving) {
|
|
numa_make_global(addr, bytes);
|
|
}
|
|
|
|
// The memory is committed
|
|
MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
|
|
// detaching the SHM segment will also delete it, see reserve_memory_special_shm()
|
|
return shmdt(base) == 0;
|
|
}
|
|
|
|
bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
|
|
return pd_release_memory(base, bytes);
|
|
}
|
|
|
|
bool os::release_memory_special(char* base, size_t bytes) {
|
|
bool res;
|
|
if (MemTracker::tracking_level() > NMT_minimal) {
|
|
Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
|
|
res = os::Linux::release_memory_special_impl(base, bytes);
|
|
if (res) {
|
|
tkr.record((address)base, bytes);
|
|
}
|
|
|
|
} else {
|
|
res = os::Linux::release_memory_special_impl(base, bytes);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
|
|
assert(UseLargePages, "only for large pages");
|
|
bool res;
|
|
|
|
if (UseSHM) {
|
|
res = os::Linux::release_memory_special_shm(base, bytes);
|
|
} else {
|
|
assert(UseHugeTLBFS, "must be");
|
|
res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
size_t os::large_page_size() {
|
|
return _large_page_size;
|
|
}
|
|
|
|
// With SysV SHM the entire memory region must be allocated as shared
|
|
// memory.
|
|
// HugeTLBFS allows application to commit large page memory on demand.
|
|
// However, when committing memory with HugeTLBFS fails, the region
|
|
// that was supposed to be committed will lose the old reservation
|
|
// and allow other threads to steal that memory region. Because of this
|
|
// behavior we can't commit HugeTLBFS memory.
|
|
bool os::can_commit_large_page_memory() {
|
|
return UseTransparentHugePages;
|
|
}
|
|
|
|
bool os::can_execute_large_page_memory() {
|
|
return UseTransparentHugePages || UseHugeTLBFS;
|
|
}
|
|
|
|
// Reserve memory at an arbitrary address, only if that area is
|
|
// available (and not reserved for something else).
|
|
|
|
char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
|
|
const int max_tries = 10;
|
|
char* base[max_tries];
|
|
size_t size[max_tries];
|
|
const size_t gap = 0x000000;
|
|
|
|
// Assert only that the size is a multiple of the page size, since
|
|
// that's all that mmap requires, and since that's all we really know
|
|
// about at this low abstraction level. If we need higher alignment,
|
|
// we can either pass an alignment to this method or verify alignment
|
|
// in one of the methods further up the call chain. See bug 5044738.
|
|
assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
|
|
|
|
// Repeatedly allocate blocks until the block is allocated at the
|
|
// right spot.
|
|
|
|
// Linux mmap allows caller to pass an address as hint; give it a try first,
|
|
// if kernel honors the hint then we can return immediately.
|
|
char * addr = anon_mmap(requested_addr, bytes, false);
|
|
if (addr == requested_addr) {
|
|
return requested_addr;
|
|
}
|
|
|
|
if (addr != NULL) {
|
|
// mmap() is successful but it fails to reserve at the requested address
|
|
anon_munmap(addr, bytes);
|
|
}
|
|
|
|
int i;
|
|
for (i = 0; i < max_tries; ++i) {
|
|
base[i] = reserve_memory(bytes);
|
|
|
|
if (base[i] != NULL) {
|
|
// Is this the block we wanted?
|
|
if (base[i] == requested_addr) {
|
|
size[i] = bytes;
|
|
break;
|
|
}
|
|
|
|
// Does this overlap the block we wanted? Give back the overlapped
|
|
// parts and try again.
|
|
|
|
ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
|
|
if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
|
|
unmap_memory(base[i], top_overlap);
|
|
base[i] += top_overlap;
|
|
size[i] = bytes - top_overlap;
|
|
} else {
|
|
ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
|
|
if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
|
|
unmap_memory(requested_addr, bottom_overlap);
|
|
size[i] = bytes - bottom_overlap;
|
|
} else {
|
|
size[i] = bytes;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Give back the unused reserved pieces.
|
|
|
|
for (int j = 0; j < i; ++j) {
|
|
if (base[j] != NULL) {
|
|
unmap_memory(base[j], size[j]);
|
|
}
|
|
}
|
|
|
|
if (i < max_tries) {
|
|
return requested_addr;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
size_t os::read(int fd, void *buf, unsigned int nBytes) {
|
|
return ::read(fd, buf, nBytes);
|
|
}
|
|
|
|
size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
|
|
return ::pread(fd, buf, nBytes, offset);
|
|
}
|
|
|
|
// Short sleep, direct OS call.
|
|
//
|
|
// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
|
|
// sched_yield(2) will actually give up the CPU:
|
|
//
|
|
// * Alone on this pariticular CPU, keeps running.
|
|
// * Before the introduction of "skip_buddy" with "compat_yield" disabled
|
|
// (pre 2.6.39).
|
|
//
|
|
// So calling this with 0 is an alternative.
|
|
//
|
|
void os::naked_short_sleep(jlong ms) {
|
|
struct timespec req;
|
|
|
|
assert(ms < 1000, "Un-interruptable sleep, short time use only");
|
|
req.tv_sec = 0;
|
|
if (ms > 0) {
|
|
req.tv_nsec = (ms % 1000) * 1000000;
|
|
} else {
|
|
req.tv_nsec = 1;
|
|
}
|
|
|
|
nanosleep(&req, NULL);
|
|
|
|
return;
|
|
}
|
|
|
|
// Sleep forever; naked call to OS-specific sleep; use with CAUTION
|
|
void os::infinite_sleep() {
|
|
while (true) { // sleep forever ...
|
|
::sleep(100); // ... 100 seconds at a time
|
|
}
|
|
}
|
|
|
|
// Used to convert frequent JVM_Yield() to nops
|
|
bool os::dont_yield() {
|
|
return DontYieldALot;
|
|
}
|
|
|
|
void os::naked_yield() {
|
|
sched_yield();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// thread priority support
|
|
|
|
// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
|
|
// only supports dynamic priority, static priority must be zero. For real-time
|
|
// applications, Linux supports SCHED_RR which allows static priority (1-99).
|
|
// However, for large multi-threaded applications, SCHED_RR is not only slower
|
|
// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
|
|
// of 5 runs - Sep 2005).
|
|
//
|
|
// The following code actually changes the niceness of kernel-thread/LWP. It
|
|
// has an assumption that setpriority() only modifies one kernel-thread/LWP,
|
|
// not the entire user process, and user level threads are 1:1 mapped to kernel
|
|
// threads. It has always been the case, but could change in the future. For
|
|
// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
|
|
// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
|
|
|
|
int os::java_to_os_priority[CriticalPriority + 1] = {
|
|
19, // 0 Entry should never be used
|
|
|
|
4, // 1 MinPriority
|
|
3, // 2
|
|
2, // 3
|
|
|
|
1, // 4
|
|
0, // 5 NormPriority
|
|
-1, // 6
|
|
|
|
-2, // 7
|
|
-3, // 8
|
|
-4, // 9 NearMaxPriority
|
|
|
|
-5, // 10 MaxPriority
|
|
|
|
-5 // 11 CriticalPriority
|
|
};
|
|
|
|
static int prio_init() {
|
|
if (ThreadPriorityPolicy == 1) {
|
|
// Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
|
|
// if effective uid is not root. Perhaps, a more elegant way of doing
|
|
// this is to test CAP_SYS_NICE capability, but that will require libcap.so
|
|
if (geteuid() != 0) {
|
|
if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
|
|
warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
|
|
}
|
|
ThreadPriorityPolicy = 0;
|
|
}
|
|
}
|
|
if (UseCriticalJavaThreadPriority) {
|
|
os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
OSReturn os::set_native_priority(Thread* thread, int newpri) {
|
|
if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
|
|
|
|
int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
|
|
return (ret == 0) ? OS_OK : OS_ERR;
|
|
}
|
|
|
|
OSReturn os::get_native_priority(const Thread* const thread,
|
|
int *priority_ptr) {
|
|
if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
|
|
*priority_ptr = java_to_os_priority[NormPriority];
|
|
return OS_OK;
|
|
}
|
|
|
|
errno = 0;
|
|
*priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
|
|
return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
|
|
}
|
|
|
|
// Hint to the underlying OS that a task switch would not be good.
|
|
// Void return because it's a hint and can fail.
|
|
void os::hint_no_preempt() {}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// suspend/resume support
|
|
|
|
// The low-level signal-based suspend/resume support is a remnant from the
|
|
// old VM-suspension that used to be for java-suspension, safepoints etc,
|
|
// within hotspot. Currently used by JFR's OSThreadSampler
|
|
//
|
|
// The remaining code is greatly simplified from the more general suspension
|
|
// code that used to be used.
|
|
//
|
|
// The protocol is quite simple:
|
|
// - suspend:
|
|
// - sends a signal to the target thread
|
|
// - polls the suspend state of the osthread using a yield loop
|
|
// - target thread signal handler (SR_handler) sets suspend state
|
|
// and blocks in sigsuspend until continued
|
|
// - resume:
|
|
// - sets target osthread state to continue
|
|
// - sends signal to end the sigsuspend loop in the SR_handler
|
|
//
|
|
// Note that the SR_lock plays no role in this suspend/resume protocol,
|
|
// but is checked for NULL in SR_handler as a thread termination indicator.
|
|
// The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
|
|
//
|
|
// Note that resume_clear_context() and suspend_save_context() are needed
|
|
// by SR_handler(), so that fetch_frame_from_ucontext() works,
|
|
// which in part is used by:
|
|
// - Forte Analyzer: AsyncGetCallTrace()
|
|
// - StackBanging: get_frame_at_stack_banging_point()
|
|
|
|
static void resume_clear_context(OSThread *osthread) {
|
|
osthread->set_ucontext(NULL);
|
|
osthread->set_siginfo(NULL);
|
|
}
|
|
|
|
static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
|
|
ucontext_t* context) {
|
|
osthread->set_ucontext(context);
|
|
osthread->set_siginfo(siginfo);
|
|
}
|
|
|
|
// Handler function invoked when a thread's execution is suspended or
|
|
// resumed. We have to be careful that only async-safe functions are
|
|
// called here (Note: most pthread functions are not async safe and
|
|
// should be avoided.)
|
|
//
|
|
// Note: sigwait() is a more natural fit than sigsuspend() from an
|
|
// interface point of view, but sigwait() prevents the signal hander
|
|
// from being run. libpthread would get very confused by not having
|
|
// its signal handlers run and prevents sigwait()'s use with the
|
|
// mutex granting granting signal.
|
|
//
|
|
// Currently only ever called on the VMThread and JavaThreads (PC sampling)
|
|
//
|
|
static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
|
|
// Save and restore errno to avoid confusing native code with EINTR
|
|
// after sigsuspend.
|
|
int old_errno = errno;
|
|
|
|
Thread* thread = Thread::current_or_null_safe();
|
|
assert(thread != NULL, "Missing current thread in SR_handler");
|
|
|
|
// On some systems we have seen signal delivery get "stuck" until the signal
|
|
// mask is changed as part of thread termination. Check that the current thread
|
|
// has not already terminated (via SR_lock()) - else the following assertion
|
|
// will fail because the thread is no longer a JavaThread as the ~JavaThread
|
|
// destructor has completed.
|
|
|
|
if (thread->SR_lock() == NULL) {
|
|
return;
|
|
}
|
|
|
|
assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
|
|
os::SuspendResume::State current = osthread->sr.state();
|
|
if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
|
|
suspend_save_context(osthread, siginfo, context);
|
|
|
|
// attempt to switch the state, we assume we had a SUSPEND_REQUEST
|
|
os::SuspendResume::State state = osthread->sr.suspended();
|
|
if (state == os::SuspendResume::SR_SUSPENDED) {
|
|
sigset_t suspend_set; // signals for sigsuspend()
|
|
sigemptyset(&suspend_set);
|
|
// get current set of blocked signals and unblock resume signal
|
|
pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
|
|
sigdelset(&suspend_set, SR_signum);
|
|
|
|
sr_semaphore.signal();
|
|
// wait here until we are resumed
|
|
while (1) {
|
|
sigsuspend(&suspend_set);
|
|
|
|
os::SuspendResume::State result = osthread->sr.running();
|
|
if (result == os::SuspendResume::SR_RUNNING) {
|
|
sr_semaphore.signal();
|
|
break;
|
|
}
|
|
}
|
|
|
|
} else if (state == os::SuspendResume::SR_RUNNING) {
|
|
// request was cancelled, continue
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
resume_clear_context(osthread);
|
|
} else if (current == os::SuspendResume::SR_RUNNING) {
|
|
// request was cancelled, continue
|
|
} else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
|
|
// ignore
|
|
} else {
|
|
// ignore
|
|
}
|
|
|
|
errno = old_errno;
|
|
}
|
|
|
|
static int SR_initialize() {
|
|
struct sigaction act;
|
|
char *s;
|
|
|
|
// Get signal number to use for suspend/resume
|
|
if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
|
|
int sig = ::strtol(s, 0, 10);
|
|
if (sig > MAX2(SIGSEGV, SIGBUS) && // See 4355769.
|
|
sig < NSIG) { // Must be legal signal and fit into sigflags[].
|
|
SR_signum = sig;
|
|
} else {
|
|
warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
|
|
sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
|
|
}
|
|
}
|
|
|
|
assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
|
|
"SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
|
|
|
|
sigemptyset(&SR_sigset);
|
|
sigaddset(&SR_sigset, SR_signum);
|
|
|
|
// Set up signal handler for suspend/resume
|
|
act.sa_flags = SA_RESTART|SA_SIGINFO;
|
|
act.sa_handler = (void (*)(int)) SR_handler;
|
|
|
|
// SR_signum is blocked by default.
|
|
// 4528190 - We also need to block pthread restart signal (32 on all
|
|
// supported Linux platforms). Note that LinuxThreads need to block
|
|
// this signal for all threads to work properly. So we don't have
|
|
// to use hard-coded signal number when setting up the mask.
|
|
pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
|
|
|
|
if (sigaction(SR_signum, &act, 0) == -1) {
|
|
return -1;
|
|
}
|
|
|
|
// Save signal flag
|
|
os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
|
|
return 0;
|
|
}
|
|
|
|
static int sr_notify(OSThread* osthread) {
|
|
int status = pthread_kill(osthread->pthread_id(), SR_signum);
|
|
assert_status(status == 0, status, "pthread_kill");
|
|
return status;
|
|
}
|
|
|
|
// "Randomly" selected value for how long we want to spin
|
|
// before bailing out on suspending a thread, also how often
|
|
// we send a signal to a thread we want to resume
|
|
static const int RANDOMLY_LARGE_INTEGER = 1000000;
|
|
static const int RANDOMLY_LARGE_INTEGER2 = 100;
|
|
|
|
// returns true on success and false on error - really an error is fatal
|
|
// but this seems the normal response to library errors
|
|
static bool do_suspend(OSThread* osthread) {
|
|
assert(osthread->sr.is_running(), "thread should be running");
|
|
assert(!sr_semaphore.trywait(), "semaphore has invalid state");
|
|
|
|
// mark as suspended and send signal
|
|
if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
|
|
// failed to switch, state wasn't running?
|
|
ShouldNotReachHere();
|
|
return false;
|
|
}
|
|
|
|
if (sr_notify(osthread) != 0) {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
// managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
|
|
while (true) {
|
|
if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
|
|
break;
|
|
} else {
|
|
// timeout
|
|
os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
|
|
if (cancelled == os::SuspendResume::SR_RUNNING) {
|
|
return false;
|
|
} else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
|
|
// make sure that we consume the signal on the semaphore as well
|
|
sr_semaphore.wait();
|
|
break;
|
|
} else {
|
|
ShouldNotReachHere();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
guarantee(osthread->sr.is_suspended(), "Must be suspended");
|
|
return true;
|
|
}
|
|
|
|
static void do_resume(OSThread* osthread) {
|
|
assert(osthread->sr.is_suspended(), "thread should be suspended");
|
|
assert(!sr_semaphore.trywait(), "invalid semaphore state");
|
|
|
|
if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
|
|
// failed to switch to WAKEUP_REQUEST
|
|
ShouldNotReachHere();
|
|
return;
|
|
}
|
|
|
|
while (true) {
|
|
if (sr_notify(osthread) == 0) {
|
|
if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
|
|
if (osthread->sr.is_running()) {
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
guarantee(osthread->sr.is_running(), "Must be running!");
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
// signal handling (except suspend/resume)
|
|
|
|
// This routine may be used by user applications as a "hook" to catch signals.
|
|
// The user-defined signal handler must pass unrecognized signals to this
|
|
// routine, and if it returns true (non-zero), then the signal handler must
|
|
// return immediately. If the flag "abort_if_unrecognized" is true, then this
|
|
// routine will never retun false (zero), but instead will execute a VM panic
|
|
// routine kill the process.
|
|
//
|
|
// If this routine returns false, it is OK to call it again. This allows
|
|
// the user-defined signal handler to perform checks either before or after
|
|
// the VM performs its own checks. Naturally, the user code would be making
|
|
// a serious error if it tried to handle an exception (such as a null check
|
|
// or breakpoint) that the VM was generating for its own correct operation.
|
|
//
|
|
// This routine may recognize any of the following kinds of signals:
|
|
// SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
|
|
// It should be consulted by handlers for any of those signals.
|
|
//
|
|
// The caller of this routine must pass in the three arguments supplied
|
|
// to the function referred to in the "sa_sigaction" (not the "sa_handler")
|
|
// field of the structure passed to sigaction(). This routine assumes that
|
|
// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
|
|
//
|
|
// Note that the VM will print warnings if it detects conflicting signal
|
|
// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
|
|
//
|
|
extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
|
|
siginfo_t* siginfo,
|
|
void* ucontext,
|
|
int abort_if_unrecognized);
|
|
|
|
void signalHandler(int sig, siginfo_t* info, void* uc) {
|
|
assert(info != NULL && uc != NULL, "it must be old kernel");
|
|
int orig_errno = errno; // Preserve errno value over signal handler.
|
|
JVM_handle_linux_signal(sig, info, uc, true);
|
|
errno = orig_errno;
|
|
}
|
|
|
|
|
|
// This boolean allows users to forward their own non-matching signals
|
|
// to JVM_handle_linux_signal, harmlessly.
|
|
bool os::Linux::signal_handlers_are_installed = false;
|
|
|
|
// For signal-chaining
|
|
struct sigaction sigact[NSIG];
|
|
uint64_t sigs = 0;
|
|
#if (64 < NSIG-1)
|
|
#error "Not all signals can be encoded in sigs. Adapt its type!"
|
|
#endif
|
|
bool os::Linux::libjsig_is_loaded = false;
|
|
typedef struct sigaction *(*get_signal_t)(int);
|
|
get_signal_t os::Linux::get_signal_action = NULL;
|
|
|
|
struct sigaction* os::Linux::get_chained_signal_action(int sig) {
|
|
struct sigaction *actp = NULL;
|
|
|
|
if (libjsig_is_loaded) {
|
|
// Retrieve the old signal handler from libjsig
|
|
actp = (*get_signal_action)(sig);
|
|
}
|
|
if (actp == NULL) {
|
|
// Retrieve the preinstalled signal handler from jvm
|
|
actp = get_preinstalled_handler(sig);
|
|
}
|
|
|
|
return actp;
|
|
}
|
|
|
|
static bool call_chained_handler(struct sigaction *actp, int sig,
|
|
siginfo_t *siginfo, void *context) {
|
|
// Call the old signal handler
|
|
if (actp->sa_handler == SIG_DFL) {
|
|
// It's more reasonable to let jvm treat it as an unexpected exception
|
|
// instead of taking the default action.
|
|
return false;
|
|
} else if (actp->sa_handler != SIG_IGN) {
|
|
if ((actp->sa_flags & SA_NODEFER) == 0) {
|
|
// automaticlly block the signal
|
|
sigaddset(&(actp->sa_mask), sig);
|
|
}
|
|
|
|
sa_handler_t hand = NULL;
|
|
sa_sigaction_t sa = NULL;
|
|
bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
|
|
// retrieve the chained handler
|
|
if (siginfo_flag_set) {
|
|
sa = actp->sa_sigaction;
|
|
} else {
|
|
hand = actp->sa_handler;
|
|
}
|
|
|
|
if ((actp->sa_flags & SA_RESETHAND) != 0) {
|
|
actp->sa_handler = SIG_DFL;
|
|
}
|
|
|
|
// try to honor the signal mask
|
|
sigset_t oset;
|
|
sigemptyset(&oset);
|
|
pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
|
|
|
|
// call into the chained handler
|
|
if (siginfo_flag_set) {
|
|
(*sa)(sig, siginfo, context);
|
|
} else {
|
|
(*hand)(sig);
|
|
}
|
|
|
|
// restore the signal mask
|
|
pthread_sigmask(SIG_SETMASK, &oset, NULL);
|
|
}
|
|
// Tell jvm's signal handler the signal is taken care of.
|
|
return true;
|
|
}
|
|
|
|
bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
|
|
bool chained = false;
|
|
// signal-chaining
|
|
if (UseSignalChaining) {
|
|
struct sigaction *actp = get_chained_signal_action(sig);
|
|
if (actp != NULL) {
|
|
chained = call_chained_handler(actp, sig, siginfo, context);
|
|
}
|
|
}
|
|
return chained;
|
|
}
|
|
|
|
struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
|
|
if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
|
|
return &sigact[sig];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
|
|
assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
|
|
sigact[sig] = oldAct;
|
|
sigs |= (uint64_t)1 << (sig-1);
|
|
}
|
|
|
|
// for diagnostic
|
|
int sigflags[NSIG];
|
|
|
|
int os::Linux::get_our_sigflags(int sig) {
|
|
assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
|
|
return sigflags[sig];
|
|
}
|
|
|
|
void os::Linux::set_our_sigflags(int sig, int flags) {
|
|
assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
|
|
if (sig > 0 && sig < NSIG) {
|
|
sigflags[sig] = flags;
|
|
}
|
|
}
|
|
|
|
void os::Linux::set_signal_handler(int sig, bool set_installed) {
|
|
// Check for overwrite.
|
|
struct sigaction oldAct;
|
|
sigaction(sig, (struct sigaction*)NULL, &oldAct);
|
|
|
|
void* oldhand = oldAct.sa_sigaction
|
|
? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
|
|
if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
|
|
oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
|
|
oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
|
|
if (AllowUserSignalHandlers || !set_installed) {
|
|
// Do not overwrite; user takes responsibility to forward to us.
|
|
return;
|
|
} else if (UseSignalChaining) {
|
|
// save the old handler in jvm
|
|
save_preinstalled_handler(sig, oldAct);
|
|
// libjsig also interposes the sigaction() call below and saves the
|
|
// old sigaction on it own.
|
|
} else {
|
|
fatal("Encountered unexpected pre-existing sigaction handler "
|
|
"%#lx for signal %d.", (long)oldhand, sig);
|
|
}
|
|
}
|
|
|
|
struct sigaction sigAct;
|
|
sigfillset(&(sigAct.sa_mask));
|
|
sigAct.sa_handler = SIG_DFL;
|
|
if (!set_installed) {
|
|
sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
|
|
} else {
|
|
sigAct.sa_sigaction = signalHandler;
|
|
sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
|
|
}
|
|
// Save flags, which are set by ours
|
|
assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
|
|
sigflags[sig] = sigAct.sa_flags;
|
|
|
|
int ret = sigaction(sig, &sigAct, &oldAct);
|
|
assert(ret == 0, "check");
|
|
|
|
void* oldhand2 = oldAct.sa_sigaction
|
|
? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
|
|
assert(oldhand2 == oldhand, "no concurrent signal handler installation");
|
|
}
|
|
|
|
// install signal handlers for signals that HotSpot needs to
|
|
// handle in order to support Java-level exception handling.
|
|
|
|
void os::Linux::install_signal_handlers() {
|
|
if (!signal_handlers_are_installed) {
|
|
signal_handlers_are_installed = true;
|
|
|
|
// signal-chaining
|
|
typedef void (*signal_setting_t)();
|
|
signal_setting_t begin_signal_setting = NULL;
|
|
signal_setting_t end_signal_setting = NULL;
|
|
begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
|
|
dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
|
|
if (begin_signal_setting != NULL) {
|
|
end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
|
|
dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
|
|
get_signal_action = CAST_TO_FN_PTR(get_signal_t,
|
|
dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
|
|
libjsig_is_loaded = true;
|
|
assert(UseSignalChaining, "should enable signal-chaining");
|
|
}
|
|
if (libjsig_is_loaded) {
|
|
// Tell libjsig jvm is setting signal handlers
|
|
(*begin_signal_setting)();
|
|
}
|
|
|
|
set_signal_handler(SIGSEGV, true);
|
|
set_signal_handler(SIGPIPE, true);
|
|
set_signal_handler(SIGBUS, true);
|
|
set_signal_handler(SIGILL, true);
|
|
set_signal_handler(SIGFPE, true);
|
|
#if defined(PPC64)
|
|
set_signal_handler(SIGTRAP, true);
|
|
#endif
|
|
set_signal_handler(SIGXFSZ, true);
|
|
|
|
if (libjsig_is_loaded) {
|
|
// Tell libjsig jvm finishes setting signal handlers
|
|
(*end_signal_setting)();
|
|
}
|
|
|
|
// We don't activate signal checker if libjsig is in place, we trust ourselves
|
|
// and if UserSignalHandler is installed all bets are off.
|
|
// Log that signal checking is off only if -verbose:jni is specified.
|
|
if (CheckJNICalls) {
|
|
if (libjsig_is_loaded) {
|
|
if (PrintJNIResolving) {
|
|
tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
|
|
}
|
|
check_signals = false;
|
|
}
|
|
if (AllowUserSignalHandlers) {
|
|
if (PrintJNIResolving) {
|
|
tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
|
|
}
|
|
check_signals = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This is the fastest way to get thread cpu time on Linux.
|
|
// Returns cpu time (user+sys) for any thread, not only for current.
|
|
// POSIX compliant clocks are implemented in the kernels 2.6.16+.
|
|
// It might work on 2.6.10+ with a special kernel/glibc patch.
|
|
// For reference, please, see IEEE Std 1003.1-2004:
|
|
// http://www.unix.org/single_unix_specification
|
|
|
|
jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
|
|
struct timespec tp;
|
|
int rc = os::Linux::clock_gettime(clockid, &tp);
|
|
assert(rc == 0, "clock_gettime is expected to return 0 code");
|
|
|
|
return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
|
|
}
|
|
|
|
void os::Linux::initialize_os_info() {
|
|
assert(_os_version == 0, "OS info already initialized");
|
|
|
|
struct utsname _uname;
|
|
|
|
uint32_t major;
|
|
uint32_t minor;
|
|
uint32_t fix;
|
|
|
|
int rc;
|
|
|
|
// Kernel version is unknown if
|
|
// verification below fails.
|
|
_os_version = 0x01000000;
|
|
|
|
rc = uname(&_uname);
|
|
if (rc != -1) {
|
|
|
|
rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
|
|
if (rc == 3) {
|
|
|
|
if (major < 256 && minor < 256 && fix < 256) {
|
|
// Kernel version format is as expected,
|
|
// set it overriding unknown state.
|
|
_os_version = (major << 16) |
|
|
(minor << 8 ) |
|
|
(fix << 0 ) ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t os::Linux::os_version() {
|
|
assert(_os_version != 0, "not initialized");
|
|
return _os_version & 0x00FFFFFF;
|
|
}
|
|
|
|
bool os::Linux::os_version_is_known() {
|
|
assert(_os_version != 0, "not initialized");
|
|
return _os_version & 0x01000000 ? false : true;
|
|
}
|
|
|
|
/////
|
|
// glibc on Linux platform uses non-documented flag
|
|
// to indicate, that some special sort of signal
|
|
// trampoline is used.
|
|
// We will never set this flag, and we should
|
|
// ignore this flag in our diagnostic
|
|
#ifdef SIGNIFICANT_SIGNAL_MASK
|
|
#undef SIGNIFICANT_SIGNAL_MASK
|
|
#endif
|
|
#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
|
|
|
|
static const char* get_signal_handler_name(address handler,
|
|
char* buf, int buflen) {
|
|
int offset = 0;
|
|
bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
|
|
if (found) {
|
|
// skip directory names
|
|
const char *p1, *p2;
|
|
p1 = buf;
|
|
size_t len = strlen(os::file_separator());
|
|
while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
|
|
jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
|
|
} else {
|
|
jio_snprintf(buf, buflen, PTR_FORMAT, handler);
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
static void print_signal_handler(outputStream* st, int sig,
|
|
char* buf, size_t buflen) {
|
|
struct sigaction sa;
|
|
|
|
sigaction(sig, NULL, &sa);
|
|
|
|
// See comment for SIGNIFICANT_SIGNAL_MASK define
|
|
sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
|
|
|
|
st->print("%s: ", os::exception_name(sig, buf, buflen));
|
|
|
|
address handler = (sa.sa_flags & SA_SIGINFO)
|
|
? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(address, sa.sa_handler);
|
|
|
|
if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
|
|
st->print("SIG_DFL");
|
|
} else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
|
|
st->print("SIG_IGN");
|
|
} else {
|
|
st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
|
|
}
|
|
|
|
st->print(", sa_mask[0]=");
|
|
os::Posix::print_signal_set_short(st, &sa.sa_mask);
|
|
|
|
address rh = VMError::get_resetted_sighandler(sig);
|
|
// May be, handler was resetted by VMError?
|
|
if (rh != NULL) {
|
|
handler = rh;
|
|
sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
|
|
}
|
|
|
|
st->print(", sa_flags=");
|
|
os::Posix::print_sa_flags(st, sa.sa_flags);
|
|
|
|
// Check: is it our handler?
|
|
if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
|
|
handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
|
|
// It is our signal handler
|
|
// check for flags, reset system-used one!
|
|
if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
|
|
st->print(
|
|
", flags was changed from " PTR32_FORMAT ", consider using jsig library",
|
|
os::Linux::get_our_sigflags(sig));
|
|
}
|
|
}
|
|
st->cr();
|
|
}
|
|
|
|
|
|
#define DO_SIGNAL_CHECK(sig) \
|
|
do { \
|
|
if (!sigismember(&check_signal_done, sig)) { \
|
|
os::Linux::check_signal_handler(sig); \
|
|
} \
|
|
} while (0)
|
|
|
|
// This method is a periodic task to check for misbehaving JNI applications
|
|
// under CheckJNI, we can add any periodic checks here
|
|
|
|
void os::run_periodic_checks() {
|
|
if (check_signals == false) return;
|
|
|
|
// SEGV and BUS if overridden could potentially prevent
|
|
// generation of hs*.log in the event of a crash, debugging
|
|
// such a case can be very challenging, so we absolutely
|
|
// check the following for a good measure:
|
|
DO_SIGNAL_CHECK(SIGSEGV);
|
|
DO_SIGNAL_CHECK(SIGILL);
|
|
DO_SIGNAL_CHECK(SIGFPE);
|
|
DO_SIGNAL_CHECK(SIGBUS);
|
|
DO_SIGNAL_CHECK(SIGPIPE);
|
|
DO_SIGNAL_CHECK(SIGXFSZ);
|
|
#if defined(PPC64)
|
|
DO_SIGNAL_CHECK(SIGTRAP);
|
|
#endif
|
|
|
|
// ReduceSignalUsage allows the user to override these handlers
|
|
// see comments at the very top and jvm_md.h
|
|
if (!ReduceSignalUsage) {
|
|
DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
|
|
DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
|
|
DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
|
|
DO_SIGNAL_CHECK(BREAK_SIGNAL);
|
|
}
|
|
|
|
DO_SIGNAL_CHECK(SR_signum);
|
|
}
|
|
|
|
typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
|
|
|
|
static os_sigaction_t os_sigaction = NULL;
|
|
|
|
void os::Linux::check_signal_handler(int sig) {
|
|
char buf[O_BUFLEN];
|
|
address jvmHandler = NULL;
|
|
|
|
|
|
struct sigaction act;
|
|
if (os_sigaction == NULL) {
|
|
// only trust the default sigaction, in case it has been interposed
|
|
os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
|
|
if (os_sigaction == NULL) return;
|
|
}
|
|
|
|
os_sigaction(sig, (struct sigaction*)NULL, &act);
|
|
|
|
|
|
act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
|
|
|
|
address thisHandler = (act.sa_flags & SA_SIGINFO)
|
|
? CAST_FROM_FN_PTR(address, act.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(address, act.sa_handler);
|
|
|
|
|
|
switch (sig) {
|
|
case SIGSEGV:
|
|
case SIGBUS:
|
|
case SIGFPE:
|
|
case SIGPIPE:
|
|
case SIGILL:
|
|
case SIGXFSZ:
|
|
jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
|
|
break;
|
|
|
|
case SHUTDOWN1_SIGNAL:
|
|
case SHUTDOWN2_SIGNAL:
|
|
case SHUTDOWN3_SIGNAL:
|
|
case BREAK_SIGNAL:
|
|
jvmHandler = (address)user_handler();
|
|
break;
|
|
|
|
default:
|
|
if (sig == SR_signum) {
|
|
jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
|
|
} else {
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (thisHandler != jvmHandler) {
|
|
tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
|
|
tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
|
|
tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
|
|
// No need to check this sig any longer
|
|
sigaddset(&check_signal_done, sig);
|
|
// Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
|
|
if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
|
|
tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
|
|
exception_name(sig, buf, O_BUFLEN));
|
|
}
|
|
} else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
|
|
tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
|
|
tty->print("expected:");
|
|
os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
|
|
tty->cr();
|
|
tty->print(" found:");
|
|
os::Posix::print_sa_flags(tty, act.sa_flags);
|
|
tty->cr();
|
|
// No need to check this sig any longer
|
|
sigaddset(&check_signal_done, sig);
|
|
}
|
|
|
|
// Dump all the signal
|
|
if (sigismember(&check_signal_done, sig)) {
|
|
print_signal_handlers(tty, buf, O_BUFLEN);
|
|
}
|
|
}
|
|
|
|
extern void report_error(char* file_name, int line_no, char* title,
|
|
char* format, ...);
|
|
|
|
// this is called _before_ the most of global arguments have been parsed
|
|
void os::init(void) {
|
|
char dummy; // used to get a guess on initial stack address
|
|
// first_hrtime = gethrtime();
|
|
|
|
clock_tics_per_sec = sysconf(_SC_CLK_TCK);
|
|
|
|
init_random(1234567);
|
|
|
|
Linux::set_page_size(sysconf(_SC_PAGESIZE));
|
|
if (Linux::page_size() == -1) {
|
|
fatal("os_linux.cpp: os::init: sysconf failed (%s)",
|
|
os::strerror(errno));
|
|
}
|
|
init_page_sizes((size_t) Linux::page_size());
|
|
|
|
Linux::initialize_system_info();
|
|
|
|
Linux::initialize_os_info();
|
|
|
|
// main_thread points to the aboriginal thread
|
|
Linux::_main_thread = pthread_self();
|
|
|
|
Linux::clock_init();
|
|
initial_time_count = javaTimeNanos();
|
|
|
|
// retrieve entry point for pthread_setname_np
|
|
Linux::_pthread_setname_np =
|
|
(int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
|
|
|
|
os::Posix::init();
|
|
}
|
|
|
|
// To install functions for atexit system call
|
|
extern "C" {
|
|
static void perfMemory_exit_helper() {
|
|
perfMemory_exit();
|
|
}
|
|
}
|
|
|
|
// this is called _after_ the global arguments have been parsed
|
|
jint os::init_2(void) {
|
|
|
|
os::Posix::init_2();
|
|
|
|
Linux::fast_thread_clock_init();
|
|
|
|
// Allocate a single page and mark it as readable for safepoint polling
|
|
address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
|
|
|
|
os::set_polling_page(polling_page);
|
|
log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
|
|
|
|
if (!UseMembar) {
|
|
address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
|
|
os::set_memory_serialize_page(mem_serialize_page);
|
|
log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
|
|
}
|
|
|
|
// initialize suspend/resume support - must do this before signal_sets_init()
|
|
if (SR_initialize() != 0) {
|
|
perror("SR_initialize failed");
|
|
return JNI_ERR;
|
|
}
|
|
|
|
Linux::signal_sets_init();
|
|
Linux::install_signal_handlers();
|
|
|
|
// Check and sets minimum stack sizes against command line options
|
|
if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
|
|
return JNI_ERR;
|
|
}
|
|
Linux::capture_initial_stack(JavaThread::stack_size_at_create());
|
|
|
|
#if defined(IA32)
|
|
workaround_expand_exec_shield_cs_limit();
|
|
#endif
|
|
|
|
Linux::libpthread_init();
|
|
Linux::sched_getcpu_init();
|
|
log_info(os)("HotSpot is running with %s, %s",
|
|
Linux::glibc_version(), Linux::libpthread_version());
|
|
|
|
if (UseNUMA) {
|
|
if (!Linux::libnuma_init()) {
|
|
UseNUMA = false;
|
|
} else {
|
|
if ((Linux::numa_max_node() < 1)) {
|
|
// There's only one node(they start from 0), disable NUMA.
|
|
UseNUMA = false;
|
|
}
|
|
}
|
|
// With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
|
|
// we can make the adaptive lgrp chunk resizing work. If the user specified
|
|
// both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
|
|
// disable adaptive resizing.
|
|
if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
|
|
if (FLAG_IS_DEFAULT(UseNUMA)) {
|
|
UseNUMA = false;
|
|
} else {
|
|
if (FLAG_IS_DEFAULT(UseLargePages) &&
|
|
FLAG_IS_DEFAULT(UseSHM) &&
|
|
FLAG_IS_DEFAULT(UseHugeTLBFS)) {
|
|
UseLargePages = false;
|
|
} else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
|
|
warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
|
|
UseAdaptiveSizePolicy = false;
|
|
UseAdaptiveNUMAChunkSizing = false;
|
|
}
|
|
}
|
|
}
|
|
if (!UseNUMA && ForceNUMA) {
|
|
UseNUMA = true;
|
|
}
|
|
}
|
|
|
|
if (MaxFDLimit) {
|
|
// set the number of file descriptors to max. print out error
|
|
// if getrlimit/setrlimit fails but continue regardless.
|
|
struct rlimit nbr_files;
|
|
int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
|
|
if (status != 0) {
|
|
log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
|
|
} else {
|
|
nbr_files.rlim_cur = nbr_files.rlim_max;
|
|
status = setrlimit(RLIMIT_NOFILE, &nbr_files);
|
|
if (status != 0) {
|
|
log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Initialize lock used to serialize thread creation (see os::create_thread)
|
|
Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
|
|
|
|
// at-exit methods are called in the reverse order of their registration.
|
|
// atexit functions are called on return from main or as a result of a
|
|
// call to exit(3C). There can be only 32 of these functions registered
|
|
// and atexit() does not set errno.
|
|
|
|
if (PerfAllowAtExitRegistration) {
|
|
// only register atexit functions if PerfAllowAtExitRegistration is set.
|
|
// atexit functions can be delayed until process exit time, which
|
|
// can be problematic for embedded VM situations. Embedded VMs should
|
|
// call DestroyJavaVM() to assure that VM resources are released.
|
|
|
|
// note: perfMemory_exit_helper atexit function may be removed in
|
|
// the future if the appropriate cleanup code can be added to the
|
|
// VM_Exit VMOperation's doit method.
|
|
if (atexit(perfMemory_exit_helper) != 0) {
|
|
warning("os::init_2 atexit(perfMemory_exit_helper) failed");
|
|
}
|
|
}
|
|
|
|
// initialize thread priority policy
|
|
prio_init();
|
|
|
|
return JNI_OK;
|
|
}
|
|
|
|
// Mark the polling page as unreadable
|
|
void os::make_polling_page_unreadable(void) {
|
|
if (!guard_memory((char*)_polling_page, Linux::page_size())) {
|
|
fatal("Could not disable polling page");
|
|
}
|
|
}
|
|
|
|
// Mark the polling page as readable
|
|
void os::make_polling_page_readable(void) {
|
|
if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
|
|
fatal("Could not enable polling page");
|
|
}
|
|
}
|
|
|
|
// older glibc versions don't have this macro (which expands to
|
|
// an optimized bit-counting function) so we have to roll our own
|
|
#ifndef CPU_COUNT
|
|
|
|
static int _cpu_count(const cpu_set_t* cpus) {
|
|
int count = 0;
|
|
// only look up to the number of configured processors
|
|
for (int i = 0; i < os::processor_count(); i++) {
|
|
if (CPU_ISSET(i, cpus)) {
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
#define CPU_COUNT(cpus) _cpu_count(cpus)
|
|
|
|
#endif // CPU_COUNT
|
|
|
|
// Get the current number of available processors for this process.
|
|
// This value can change at any time during a process's lifetime.
|
|
// sched_getaffinity gives an accurate answer as it accounts for cpusets.
|
|
// If it appears there may be more than 1024 processors then we do a
|
|
// dynamic check - see 6515172 for details.
|
|
// If anything goes wrong we fallback to returning the number of online
|
|
// processors - which can be greater than the number available to the process.
|
|
int os::active_processor_count() {
|
|
cpu_set_t cpus; // can represent at most 1024 (CPU_SETSIZE) processors
|
|
cpu_set_t* cpus_p = &cpus;
|
|
int cpus_size = sizeof(cpu_set_t);
|
|
|
|
int configured_cpus = processor_count(); // upper bound on available cpus
|
|
int cpu_count = 0;
|
|
|
|
// old build platforms may not support dynamic cpu sets
|
|
#ifdef CPU_ALLOC
|
|
|
|
// To enable easy testing of the dynamic path on different platforms we
|
|
// introduce a diagnostic flag: UseCpuAllocPath
|
|
if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
|
|
// kernel may use a mask bigger than cpu_set_t
|
|
log_trace(os)("active_processor_count: using dynamic path %s"
|
|
"- configured processors: %d",
|
|
UseCpuAllocPath ? "(forced) " : "",
|
|
configured_cpus);
|
|
cpus_p = CPU_ALLOC(configured_cpus);
|
|
if (cpus_p != NULL) {
|
|
cpus_size = CPU_ALLOC_SIZE(configured_cpus);
|
|
// zero it just to be safe
|
|
CPU_ZERO_S(cpus_size, cpus_p);
|
|
}
|
|
else {
|
|
// failed to allocate so fallback to online cpus
|
|
int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
|
|
log_trace(os)("active_processor_count: "
|
|
"CPU_ALLOC failed (%s) - using "
|
|
"online processor count: %d",
|
|
os::strerror(errno), online_cpus);
|
|
return online_cpus;
|
|
}
|
|
}
|
|
else {
|
|
log_trace(os)("active_processor_count: using static path - configured processors: %d",
|
|
configured_cpus);
|
|
}
|
|
#else // CPU_ALLOC
|
|
// these stubs won't be executed
|
|
#define CPU_COUNT_S(size, cpus) -1
|
|
#define CPU_FREE(cpus)
|
|
|
|
log_trace(os)("active_processor_count: only static path available - configured processors: %d",
|
|
configured_cpus);
|
|
#endif // CPU_ALLOC
|
|
|
|
// pid 0 means the current thread - which we have to assume represents the process
|
|
if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
|
|
if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
|
|
cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
|
|
}
|
|
else {
|
|
cpu_count = CPU_COUNT(cpus_p);
|
|
}
|
|
log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
|
|
}
|
|
else {
|
|
cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
|
|
warning("sched_getaffinity failed (%s)- using online processor count (%d) "
|
|
"which may exceed available processors", os::strerror(errno), cpu_count);
|
|
}
|
|
|
|
if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
|
|
CPU_FREE(cpus_p);
|
|
}
|
|
|
|
assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
|
|
return cpu_count;
|
|
}
|
|
|
|
void os::set_native_thread_name(const char *name) {
|
|
if (Linux::_pthread_setname_np) {
|
|
char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
|
|
snprintf(buf, sizeof(buf), "%s", name);
|
|
buf[sizeof(buf) - 1] = '\0';
|
|
const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
|
|
// ERANGE should not happen; all other errors should just be ignored.
|
|
assert(rc != ERANGE, "pthread_setname_np failed");
|
|
}
|
|
}
|
|
|
|
bool os::distribute_processes(uint length, uint* distribution) {
|
|
// Not yet implemented.
|
|
return false;
|
|
}
|
|
|
|
bool os::bind_to_processor(uint processor_id) {
|
|
// Not yet implemented.
|
|
return false;
|
|
}
|
|
|
|
///
|
|
|
|
void os::SuspendedThreadTask::internal_do_task() {
|
|
if (do_suspend(_thread->osthread())) {
|
|
SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
|
|
do_task(context);
|
|
do_resume(_thread->osthread());
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// debug support
|
|
|
|
bool os::find(address addr, outputStream* st) {
|
|
Dl_info dlinfo;
|
|
memset(&dlinfo, 0, sizeof(dlinfo));
|
|
if (dladdr(addr, &dlinfo) != 0) {
|
|
st->print(PTR_FORMAT ": ", p2i(addr));
|
|
if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
|
|
st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
|
|
p2i(addr) - p2i(dlinfo.dli_saddr));
|
|
} else if (dlinfo.dli_fbase != NULL) {
|
|
st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
|
|
} else {
|
|
st->print("<absolute address>");
|
|
}
|
|
if (dlinfo.dli_fname != NULL) {
|
|
st->print(" in %s", dlinfo.dli_fname);
|
|
}
|
|
if (dlinfo.dli_fbase != NULL) {
|
|
st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
|
|
}
|
|
st->cr();
|
|
|
|
if (Verbose) {
|
|
// decode some bytes around the PC
|
|
address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
|
|
address end = clamp_address_in_page(addr+40, addr, os::vm_page_size());
|
|
address lowest = (address) dlinfo.dli_sname;
|
|
if (!lowest) lowest = (address) dlinfo.dli_fbase;
|
|
if (begin < lowest) begin = lowest;
|
|
Dl_info dlinfo2;
|
|
if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
|
|
&& end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
|
|
end = (address) dlinfo2.dli_saddr;
|
|
}
|
|
Disassembler::decode(begin, end, st);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// misc
|
|
|
|
// This does not do anything on Linux. This is basically a hook for being
|
|
// able to use structured exception handling (thread-local exception filters)
|
|
// on, e.g., Win32.
|
|
void
|
|
os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
|
|
JavaCallArguments* args, Thread* thread) {
|
|
f(value, method, args, thread);
|
|
}
|
|
|
|
void os::print_statistics() {
|
|
}
|
|
|
|
bool os::message_box(const char* title, const char* message) {
|
|
int i;
|
|
fdStream err(defaultStream::error_fd());
|
|
for (i = 0; i < 78; i++) err.print_raw("=");
|
|
err.cr();
|
|
err.print_raw_cr(title);
|
|
for (i = 0; i < 78; i++) err.print_raw("-");
|
|
err.cr();
|
|
err.print_raw_cr(message);
|
|
for (i = 0; i < 78; i++) err.print_raw("=");
|
|
err.cr();
|
|
|
|
char buf[16];
|
|
// Prevent process from exiting upon "read error" without consuming all CPU
|
|
while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
|
|
|
|
return buf[0] == 'y' || buf[0] == 'Y';
|
|
}
|
|
|
|
int os::stat(const char *path, struct stat *sbuf) {
|
|
char pathbuf[MAX_PATH];
|
|
if (strlen(path) > MAX_PATH - 1) {
|
|
errno = ENAMETOOLONG;
|
|
return -1;
|
|
}
|
|
os::native_path(strcpy(pathbuf, path));
|
|
return ::stat(pathbuf, sbuf);
|
|
}
|
|
|
|
// Is a (classpath) directory empty?
|
|
bool os::dir_is_empty(const char* path) {
|
|
DIR *dir = NULL;
|
|
struct dirent *ptr;
|
|
|
|
dir = opendir(path);
|
|
if (dir == NULL) return true;
|
|
|
|
// Scan the directory
|
|
bool result = true;
|
|
char buf[sizeof(struct dirent) + MAX_PATH];
|
|
while (result && (ptr = ::readdir(dir)) != NULL) {
|
|
if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
|
|
result = false;
|
|
}
|
|
}
|
|
closedir(dir);
|
|
return result;
|
|
}
|
|
|
|
// This code originates from JDK's sysOpen and open64_w
|
|
// from src/solaris/hpi/src/system_md.c
|
|
|
|
int os::open(const char *path, int oflag, int mode) {
|
|
if (strlen(path) > MAX_PATH - 1) {
|
|
errno = ENAMETOOLONG;
|
|
return -1;
|
|
}
|
|
|
|
// All file descriptors that are opened in the Java process and not
|
|
// specifically destined for a subprocess should have the close-on-exec
|
|
// flag set. If we don't set it, then careless 3rd party native code
|
|
// might fork and exec without closing all appropriate file descriptors
|
|
// (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
|
|
// turn might:
|
|
//
|
|
// - cause end-of-file to fail to be detected on some file
|
|
// descriptors, resulting in mysterious hangs, or
|
|
//
|
|
// - might cause an fopen in the subprocess to fail on a system
|
|
// suffering from bug 1085341.
|
|
//
|
|
// (Yes, the default setting of the close-on-exec flag is a Unix
|
|
// design flaw)
|
|
//
|
|
// See:
|
|
// 1085341: 32-bit stdio routines should support file descriptors >255
|
|
// 4843136: (process) pipe file descriptor from Runtime.exec not being closed
|
|
// 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
|
|
//
|
|
// Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
|
|
// O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
|
|
// because it saves a system call and removes a small window where the flag
|
|
// is unset. On ancient Linux kernels the O_CLOEXEC flag will be ignored
|
|
// and we fall back to using FD_CLOEXEC (see below).
|
|
#ifdef O_CLOEXEC
|
|
oflag |= O_CLOEXEC;
|
|
#endif
|
|
|
|
int fd = ::open64(path, oflag, mode);
|
|
if (fd == -1) return -1;
|
|
|
|
//If the open succeeded, the file might still be a directory
|
|
{
|
|
struct stat64 buf64;
|
|
int ret = ::fstat64(fd, &buf64);
|
|
int st_mode = buf64.st_mode;
|
|
|
|
if (ret != -1) {
|
|
if ((st_mode & S_IFMT) == S_IFDIR) {
|
|
errno = EISDIR;
|
|
::close(fd);
|
|
return -1;
|
|
}
|
|
} else {
|
|
::close(fd);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
#ifdef FD_CLOEXEC
|
|
// Validate that the use of the O_CLOEXEC flag on open above worked.
|
|
// With recent kernels, we will perform this check exactly once.
|
|
static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
|
|
if (!O_CLOEXEC_is_known_to_work) {
|
|
int flags = ::fcntl(fd, F_GETFD);
|
|
if (flags != -1) {
|
|
if ((flags & FD_CLOEXEC) != 0)
|
|
O_CLOEXEC_is_known_to_work = 1;
|
|
else
|
|
::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return fd;
|
|
}
|
|
|
|
|
|
// create binary file, rewriting existing file if required
|
|
int os::create_binary_file(const char* path, bool rewrite_existing) {
|
|
int oflags = O_WRONLY | O_CREAT;
|
|
if (!rewrite_existing) {
|
|
oflags |= O_EXCL;
|
|
}
|
|
return ::open64(path, oflags, S_IREAD | S_IWRITE);
|
|
}
|
|
|
|
// return current position of file pointer
|
|
jlong os::current_file_offset(int fd) {
|
|
return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
|
|
}
|
|
|
|
// move file pointer to the specified offset
|
|
jlong os::seek_to_file_offset(int fd, jlong offset) {
|
|
return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
|
|
}
|
|
|
|
// This code originates from JDK's sysAvailable
|
|
// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
|
|
|
|
int os::available(int fd, jlong *bytes) {
|
|
jlong cur, end;
|
|
int mode;
|
|
struct stat64 buf64;
|
|
|
|
if (::fstat64(fd, &buf64) >= 0) {
|
|
mode = buf64.st_mode;
|
|
if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
|
|
int n;
|
|
if (::ioctl(fd, FIONREAD, &n) >= 0) {
|
|
*bytes = n;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
|
|
return 0;
|
|
} else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
|
|
return 0;
|
|
} else if (::lseek64(fd, cur, SEEK_SET) == -1) {
|
|
return 0;
|
|
}
|
|
*bytes = end - cur;
|
|
return 1;
|
|
}
|
|
|
|
// Map a block of memory.
|
|
char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
|
|
char *addr, size_t bytes, bool read_only,
|
|
bool allow_exec) {
|
|
int prot;
|
|
int flags = MAP_PRIVATE;
|
|
|
|
if (read_only) {
|
|
prot = PROT_READ;
|
|
} else {
|
|
prot = PROT_READ | PROT_WRITE;
|
|
}
|
|
|
|
if (allow_exec) {
|
|
prot |= PROT_EXEC;
|
|
}
|
|
|
|
if (addr != NULL) {
|
|
flags |= MAP_FIXED;
|
|
}
|
|
|
|
char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
|
|
fd, file_offset);
|
|
if (mapped_address == MAP_FAILED) {
|
|
return NULL;
|
|
}
|
|
return mapped_address;
|
|
}
|
|
|
|
|
|
// Remap a block of memory.
|
|
char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
|
|
char *addr, size_t bytes, bool read_only,
|
|
bool allow_exec) {
|
|
// same as map_memory() on this OS
|
|
return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
|
|
allow_exec);
|
|
}
|
|
|
|
|
|
// Unmap a block of memory.
|
|
bool os::pd_unmap_memory(char* addr, size_t bytes) {
|
|
return munmap(addr, bytes) == 0;
|
|
}
|
|
|
|
static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
|
|
|
|
static clockid_t thread_cpu_clockid(Thread* thread) {
|
|
pthread_t tid = thread->osthread()->pthread_id();
|
|
clockid_t clockid;
|
|
|
|
// Get thread clockid
|
|
int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
|
|
assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
|
|
return clockid;
|
|
}
|
|
|
|
// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
|
|
// are used by JVM M&M and JVMTI to get user+sys or user CPU time
|
|
// of a thread.
|
|
//
|
|
// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
|
|
// the fast estimate available on the platform.
|
|
|
|
jlong os::current_thread_cpu_time() {
|
|
if (os::Linux::supports_fast_thread_cpu_time()) {
|
|
return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
|
|
} else {
|
|
// return user + sys since the cost is the same
|
|
return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
|
|
}
|
|
}
|
|
|
|
jlong os::thread_cpu_time(Thread* thread) {
|
|
// consistent with what current_thread_cpu_time() returns
|
|
if (os::Linux::supports_fast_thread_cpu_time()) {
|
|
return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
|
|
} else {
|
|
return slow_thread_cpu_time(thread, true /* user + sys */);
|
|
}
|
|
}
|
|
|
|
jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
|
|
if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
|
|
return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
|
|
} else {
|
|
return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
|
|
}
|
|
}
|
|
|
|
jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
|
|
if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
|
|
return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
|
|
} else {
|
|
return slow_thread_cpu_time(thread, user_sys_cpu_time);
|
|
}
|
|
}
|
|
|
|
// -1 on error.
|
|
static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
|
|
pid_t tid = thread->osthread()->thread_id();
|
|
char *s;
|
|
char stat[2048];
|
|
int statlen;
|
|
char proc_name[64];
|
|
int count;
|
|
long sys_time, user_time;
|
|
char cdummy;
|
|
int idummy;
|
|
long ldummy;
|
|
FILE *fp;
|
|
|
|
snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
|
|
fp = fopen(proc_name, "r");
|
|
if (fp == NULL) return -1;
|
|
statlen = fread(stat, 1, 2047, fp);
|
|
stat[statlen] = '\0';
|
|
fclose(fp);
|
|
|
|
// Skip pid and the command string. Note that we could be dealing with
|
|
// weird command names, e.g. user could decide to rename java launcher
|
|
// to "java 1.4.2 :)", then the stat file would look like
|
|
// 1234 (java 1.4.2 :)) R ... ...
|
|
// We don't really need to know the command string, just find the last
|
|
// occurrence of ")" and then start parsing from there. See bug 4726580.
|
|
s = strrchr(stat, ')');
|
|
if (s == NULL) return -1;
|
|
|
|
// Skip blank chars
|
|
do { s++; } while (s && isspace(*s));
|
|
|
|
count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
|
|
&cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
|
|
&ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
|
|
&user_time, &sys_time);
|
|
if (count != 13) return -1;
|
|
if (user_sys_cpu_time) {
|
|
return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
|
|
} else {
|
|
return (jlong)user_time * (1000000000 / clock_tics_per_sec);
|
|
}
|
|
}
|
|
|
|
void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
|
|
info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
|
|
info_ptr->may_skip_backward = false; // elapsed time not wall time
|
|
info_ptr->may_skip_forward = false; // elapsed time not wall time
|
|
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
|
|
}
|
|
|
|
void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
|
|
info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
|
|
info_ptr->may_skip_backward = false; // elapsed time not wall time
|
|
info_ptr->may_skip_forward = false; // elapsed time not wall time
|
|
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
|
|
}
|
|
|
|
bool os::is_thread_cpu_time_supported() {
|
|
return true;
|
|
}
|
|
|
|
// System loadavg support. Returns -1 if load average cannot be obtained.
|
|
// Linux doesn't yet have a (official) notion of processor sets,
|
|
// so just return the system wide load average.
|
|
int os::loadavg(double loadavg[], int nelem) {
|
|
return ::getloadavg(loadavg, nelem);
|
|
}
|
|
|
|
void os::pause() {
|
|
char filename[MAX_PATH];
|
|
if (PauseAtStartupFile && PauseAtStartupFile[0]) {
|
|
jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
|
|
} else {
|
|
jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
|
|
}
|
|
|
|
int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
|
|
if (fd != -1) {
|
|
struct stat buf;
|
|
::close(fd);
|
|
while (::stat(filename, &buf) == 0) {
|
|
(void)::poll(NULL, 0, 100);
|
|
}
|
|
} else {
|
|
jio_fprintf(stderr,
|
|
"Could not open pause file '%s', continuing immediately.\n", filename);
|
|
}
|
|
}
|
|
|
|
extern char** environ;
|
|
|
|
// Run the specified command in a separate process. Return its exit value,
|
|
// or -1 on failure (e.g. can't fork a new process).
|
|
// Unlike system(), this function can be called from signal handler. It
|
|
// doesn't block SIGINT et al.
|
|
int os::fork_and_exec(char* cmd) {
|
|
const char * argv[4] = {"sh", "-c", cmd, NULL};
|
|
|
|
pid_t pid = fork();
|
|
|
|
if (pid < 0) {
|
|
// fork failed
|
|
return -1;
|
|
|
|
} else if (pid == 0) {
|
|
// child process
|
|
|
|
execve("/bin/sh", (char* const*)argv, environ);
|
|
|
|
// execve failed
|
|
_exit(-1);
|
|
|
|
} else {
|
|
// copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
|
|
// care about the actual exit code, for now.
|
|
|
|
int status;
|
|
|
|
// Wait for the child process to exit. This returns immediately if
|
|
// the child has already exited. */
|
|
while (waitpid(pid, &status, 0) < 0) {
|
|
switch (errno) {
|
|
case ECHILD: return 0;
|
|
case EINTR: break;
|
|
default: return -1;
|
|
}
|
|
}
|
|
|
|
if (WIFEXITED(status)) {
|
|
// The child exited normally; get its exit code.
|
|
return WEXITSTATUS(status);
|
|
} else if (WIFSIGNALED(status)) {
|
|
// The child exited because of a signal
|
|
// The best value to return is 0x80 + signal number,
|
|
// because that is what all Unix shells do, and because
|
|
// it allows callers to distinguish between process exit and
|
|
// process death by signal.
|
|
return 0x80 + WTERMSIG(status);
|
|
} else {
|
|
// Unknown exit code; pass it through
|
|
return status;
|
|
}
|
|
}
|
|
}
|
|
|
|
// is_headless_jre()
|
|
//
|
|
// Test for the existence of xawt/libmawt.so or libawt_xawt.so
|
|
// in order to report if we are running in a headless jre
|
|
//
|
|
// Since JDK8 xawt/libmawt.so was moved into the same directory
|
|
// as libawt.so, and renamed libawt_xawt.so
|
|
//
|
|
bool os::is_headless_jre() {
|
|
struct stat statbuf;
|
|
char buf[MAXPATHLEN];
|
|
char libmawtpath[MAXPATHLEN];
|
|
const char *xawtstr = "/xawt/libmawt.so";
|
|
const char *new_xawtstr = "/libawt_xawt.so";
|
|
char *p;
|
|
|
|
// Get path to libjvm.so
|
|
os::jvm_path(buf, sizeof(buf));
|
|
|
|
// Get rid of libjvm.so
|
|
p = strrchr(buf, '/');
|
|
if (p == NULL) {
|
|
return false;
|
|
} else {
|
|
*p = '\0';
|
|
}
|
|
|
|
// Get rid of client or server
|
|
p = strrchr(buf, '/');
|
|
if (p == NULL) {
|
|
return false;
|
|
} else {
|
|
*p = '\0';
|
|
}
|
|
|
|
// check xawt/libmawt.so
|
|
strcpy(libmawtpath, buf);
|
|
strcat(libmawtpath, xawtstr);
|
|
if (::stat(libmawtpath, &statbuf) == 0) return false;
|
|
|
|
// check libawt_xawt.so
|
|
strcpy(libmawtpath, buf);
|
|
strcat(libmawtpath, new_xawtstr);
|
|
if (::stat(libmawtpath, &statbuf) == 0) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Get the default path to the core file
|
|
// Returns the length of the string
|
|
int os::get_core_path(char* buffer, size_t bufferSize) {
|
|
/*
|
|
* Max length of /proc/sys/kernel/core_pattern is 128 characters.
|
|
* See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
|
|
*/
|
|
const int core_pattern_len = 129;
|
|
char core_pattern[core_pattern_len] = {0};
|
|
|
|
int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
|
|
if (core_pattern_file == -1) {
|
|
return -1;
|
|
}
|
|
|
|
ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
|
|
::close(core_pattern_file);
|
|
if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
|
|
return -1;
|
|
}
|
|
if (core_pattern[ret-1] == '\n') {
|
|
core_pattern[ret-1] = '\0';
|
|
} else {
|
|
core_pattern[ret] = '\0';
|
|
}
|
|
|
|
char *pid_pos = strstr(core_pattern, "%p");
|
|
int written;
|
|
|
|
if (core_pattern[0] == '/') {
|
|
written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
|
|
} else {
|
|
char cwd[PATH_MAX];
|
|
|
|
const char* p = get_current_directory(cwd, PATH_MAX);
|
|
if (p == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
if (core_pattern[0] == '|') {
|
|
written = jio_snprintf(buffer, bufferSize,
|
|
"\"%s\" (or dumping to %s/core.%d)",
|
|
&core_pattern[1], p, current_process_id());
|
|
} else {
|
|
written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
|
|
}
|
|
}
|
|
|
|
if (written < 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
|
|
int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
|
|
|
|
if (core_uses_pid_file != -1) {
|
|
char core_uses_pid = 0;
|
|
ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
|
|
::close(core_uses_pid_file);
|
|
|
|
if (core_uses_pid == '1') {
|
|
jio_snprintf(buffer + written, bufferSize - written,
|
|
".%d", current_process_id());
|
|
}
|
|
}
|
|
}
|
|
|
|
return strlen(buffer);
|
|
}
|
|
|
|
bool os::start_debugging(char *buf, int buflen) {
|
|
int len = (int)strlen(buf);
|
|
char *p = &buf[len];
|
|
|
|
jio_snprintf(p, buflen-len,
|
|
"\n\n"
|
|
"Do you want to debug the problem?\n\n"
|
|
"To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
|
|
"Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
|
|
"Otherwise, press RETURN to abort...",
|
|
os::current_process_id(), os::current_process_id(),
|
|
os::current_thread_id(), os::current_thread_id());
|
|
|
|
bool yes = os::message_box("Unexpected Error", buf);
|
|
|
|
if (yes) {
|
|
// yes, user asked VM to launch debugger
|
|
jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
|
|
os::current_process_id(), os::current_process_id());
|
|
|
|
os::fork_and_exec(buf);
|
|
yes = false;
|
|
}
|
|
return yes;
|
|
}
|
|
|
|
|
|
// Java/Compiler thread:
|
|
//
|
|
// Low memory addresses
|
|
// P0 +------------------------+
|
|
// | |\ Java thread created by VM does not have glibc
|
|
// | glibc guard page | - guard page, attached Java thread usually has
|
|
// | |/ 1 glibc guard page.
|
|
// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
|
|
// | |\
|
|
// | HotSpot Guard Pages | - red, yellow and reserved pages
|
|
// | |/
|
|
// +------------------------+ JavaThread::stack_reserved_zone_base()
|
|
// | |\
|
|
// | Normal Stack | -
|
|
// | |/
|
|
// P2 +------------------------+ Thread::stack_base()
|
|
//
|
|
// Non-Java thread:
|
|
//
|
|
// Low memory addresses
|
|
// P0 +------------------------+
|
|
// | |\
|
|
// | glibc guard page | - usually 1 page
|
|
// | |/
|
|
// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
|
|
// | |\
|
|
// | Normal Stack | -
|
|
// | |/
|
|
// P2 +------------------------+ Thread::stack_base()
|
|
//
|
|
// ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
|
|
// returned from pthread_attr_getstack().
|
|
// ** Due to NPTL implementation error, linux takes the glibc guard page out
|
|
// of the stack size given in pthread_attr. We work around this for
|
|
// threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
|
|
//
|
|
#ifndef ZERO
|
|
static void current_stack_region(address * bottom, size_t * size) {
|
|
if (os::Linux::is_initial_thread()) {
|
|
// initial thread needs special handling because pthread_getattr_np()
|
|
// may return bogus value.
|
|
*bottom = os::Linux::initial_thread_stack_bottom();
|
|
*size = os::Linux::initial_thread_stack_size();
|
|
} else {
|
|
pthread_attr_t attr;
|
|
|
|
int rslt = pthread_getattr_np(pthread_self(), &attr);
|
|
|
|
// JVM needs to know exact stack location, abort if it fails
|
|
if (rslt != 0) {
|
|
if (rslt == ENOMEM) {
|
|
vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
|
|
} else {
|
|
fatal("pthread_getattr_np failed with error = %d", rslt);
|
|
}
|
|
}
|
|
|
|
if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
|
|
fatal("Cannot locate current stack attributes!");
|
|
}
|
|
|
|
// Work around NPTL stack guard error.
|
|
size_t guard_size = 0;
|
|
rslt = pthread_attr_getguardsize(&attr, &guard_size);
|
|
if (rslt != 0) {
|
|
fatal("pthread_attr_getguardsize failed with error = %d", rslt);
|
|
}
|
|
*bottom += guard_size;
|
|
*size -= guard_size;
|
|
|
|
pthread_attr_destroy(&attr);
|
|
|
|
}
|
|
assert(os::current_stack_pointer() >= *bottom &&
|
|
os::current_stack_pointer() < *bottom + *size, "just checking");
|
|
}
|
|
|
|
address os::current_stack_base() {
|
|
address bottom;
|
|
size_t size;
|
|
current_stack_region(&bottom, &size);
|
|
return (bottom + size);
|
|
}
|
|
|
|
size_t os::current_stack_size() {
|
|
// This stack size includes the usable stack and HotSpot guard pages
|
|
// (for the threads that have Hotspot guard pages).
|
|
address bottom;
|
|
size_t size;
|
|
current_stack_region(&bottom, &size);
|
|
return size;
|
|
}
|
|
#endif
|
|
|
|
static inline struct timespec get_mtime(const char* filename) {
|
|
struct stat st;
|
|
int ret = os::stat(filename, &st);
|
|
assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
|
|
return st.st_mtim;
|
|
}
|
|
|
|
int os::compare_file_modified_times(const char* file1, const char* file2) {
|
|
struct timespec filetime1 = get_mtime(file1);
|
|
struct timespec filetime2 = get_mtime(file2);
|
|
int diff = filetime1.tv_sec - filetime2.tv_sec;
|
|
if (diff == 0) {
|
|
return filetime1.tv_nsec - filetime2.tv_nsec;
|
|
}
|
|
return diff;
|
|
}
|
|
|
|
/////////////// Unit tests ///////////////
|
|
|
|
#ifndef PRODUCT
|
|
|
|
#define test_log(...) \
|
|
do { \
|
|
if (VerboseInternalVMTests) { \
|
|
tty->print_cr(__VA_ARGS__); \
|
|
tty->flush(); \
|
|
} \
|
|
} while (false)
|
|
|
|
class TestReserveMemorySpecial : AllStatic {
|
|
public:
|
|
static void small_page_write(void* addr, size_t size) {
|
|
size_t page_size = os::vm_page_size();
|
|
|
|
char* end = (char*)addr + size;
|
|
for (char* p = (char*)addr; p < end; p += page_size) {
|
|
*p = 1;
|
|
}
|
|
}
|
|
|
|
static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
|
|
if (!UseHugeTLBFS) {
|
|
return;
|
|
}
|
|
|
|
test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
|
|
|
|
char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
|
|
|
|
if (addr != NULL) {
|
|
small_page_write(addr, size);
|
|
|
|
os::Linux::release_memory_special_huge_tlbfs(addr, size);
|
|
}
|
|
}
|
|
|
|
static void test_reserve_memory_special_huge_tlbfs_only() {
|
|
if (!UseHugeTLBFS) {
|
|
return;
|
|
}
|
|
|
|
size_t lp = os::large_page_size();
|
|
|
|
for (size_t size = lp; size <= lp * 10; size += lp) {
|
|
test_reserve_memory_special_huge_tlbfs_only(size);
|
|
}
|
|
}
|
|
|
|
static void test_reserve_memory_special_huge_tlbfs_mixed() {
|
|
size_t lp = os::large_page_size();
|
|
size_t ag = os::vm_allocation_granularity();
|
|
|
|
// sizes to test
|
|
const size_t sizes[] = {
|
|
lp, lp + ag, lp + lp / 2, lp * 2,
|
|
lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
|
|
lp * 10, lp * 10 + lp / 2
|
|
};
|
|
const int num_sizes = sizeof(sizes) / sizeof(size_t);
|
|
|
|
// For each size/alignment combination, we test three scenarios:
|
|
// 1) with req_addr == NULL
|
|
// 2) with a non-null req_addr at which we expect to successfully allocate
|
|
// 3) with a non-null req_addr which contains a pre-existing mapping, at which we
|
|
// expect the allocation to either fail or to ignore req_addr
|
|
|
|
// Pre-allocate two areas; they shall be as large as the largest allocation
|
|
// and aligned to the largest alignment we will be testing.
|
|
const size_t mapping_size = sizes[num_sizes - 1] * 2;
|
|
char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
|
|
PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
|
|
-1, 0);
|
|
assert(mapping1 != MAP_FAILED, "should work");
|
|
|
|
char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
|
|
PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
|
|
-1, 0);
|
|
assert(mapping2 != MAP_FAILED, "should work");
|
|
|
|
// Unmap the first mapping, but leave the second mapping intact: the first
|
|
// mapping will serve as a value for a "good" req_addr (case 2). The second
|
|
// mapping, still intact, as "bad" req_addr (case 3).
|
|
::munmap(mapping1, mapping_size);
|
|
|
|
// Case 1
|
|
test_log("%s, req_addr NULL:", __FUNCTION__);
|
|
test_log("size align result");
|
|
|
|
for (int i = 0; i < num_sizes; i++) {
|
|
const size_t size = sizes[i];
|
|
for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
|
|
char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
|
|
test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " -> " PTR_FORMAT " %s",
|
|
size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
|
|
if (p != NULL) {
|
|
assert(is_aligned(p, alignment), "must be");
|
|
small_page_write(p, size);
|
|
os::Linux::release_memory_special_huge_tlbfs(p, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Case 2
|
|
test_log("%s, req_addr non-NULL:", __FUNCTION__);
|
|
test_log("size align req_addr result");
|
|
|
|
for (int i = 0; i < num_sizes; i++) {
|
|
const size_t size = sizes[i];
|
|
for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
|
|
char* const req_addr = align_up(mapping1, alignment);
|
|
char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
|
|
test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " -> " PTR_FORMAT " %s",
|
|
size, alignment, p2i(req_addr), p2i(p),
|
|
((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
|
|
if (p != NULL) {
|
|
assert(p == req_addr, "must be");
|
|
small_page_write(p, size);
|
|
os::Linux::release_memory_special_huge_tlbfs(p, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Case 3
|
|
test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
|
|
test_log("size align req_addr result");
|
|
|
|
for (int i = 0; i < num_sizes; i++) {
|
|
const size_t size = sizes[i];
|
|
for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
|
|
char* const req_addr = align_up(mapping2, alignment);
|
|
char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
|
|
test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " -> " PTR_FORMAT " %s",
|
|
size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
|
|
// as the area around req_addr contains already existing mappings, the API should always
|
|
// return NULL (as per contract, it cannot return another address)
|
|
assert(p == NULL, "must be");
|
|
}
|
|
}
|
|
|
|
::munmap(mapping2, mapping_size);
|
|
|
|
}
|
|
|
|
static void test_reserve_memory_special_huge_tlbfs() {
|
|
if (!UseHugeTLBFS) {
|
|
return;
|
|
}
|
|
|
|
test_reserve_memory_special_huge_tlbfs_only();
|
|
test_reserve_memory_special_huge_tlbfs_mixed();
|
|
}
|
|
|
|
static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
|
|
if (!UseSHM) {
|
|
return;
|
|
}
|
|
|
|
test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
|
|
|
|
char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
|
|
|
|
if (addr != NULL) {
|
|
assert(is_aligned(addr, alignment), "Check");
|
|
assert(is_aligned(addr, os::large_page_size()), "Check");
|
|
|
|
small_page_write(addr, size);
|
|
|
|
os::Linux::release_memory_special_shm(addr, size);
|
|
}
|
|
}
|
|
|
|
static void test_reserve_memory_special_shm() {
|
|
size_t lp = os::large_page_size();
|
|
size_t ag = os::vm_allocation_granularity();
|
|
|
|
for (size_t size = ag; size < lp * 3; size += ag) {
|
|
for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
|
|
test_reserve_memory_special_shm(size, alignment);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void test() {
|
|
test_reserve_memory_special_huge_tlbfs();
|
|
test_reserve_memory_special_shm();
|
|
}
|
|
};
|
|
|
|
void TestReserveMemorySpecial_test() {
|
|
TestReserveMemorySpecial::test();
|
|
}
|
|
|
|
#endif
|