mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-26 22:34:27 +02:00
707 lines
28 KiB
Java
707 lines
28 KiB
Java
/*
|
|
* Copyright (c) 2002, 2022, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/* $Id: Rijndael.java,v 1.6 2000/02/10 01:31:41 gelderen Exp $
|
|
*
|
|
* Copyright (C) 1995-2000 The Cryptix Foundation Limited.
|
|
* All rights reserved.
|
|
*
|
|
* Use, modification, copying and distribution of this softwareas is subject
|
|
* the terms and conditions of the Cryptix General Licence. You should have
|
|
* received a copy of the Cryptix General Licence along with this library;
|
|
* if not, you can download a copy from http://www.cryptix.org/ .
|
|
*/
|
|
|
|
package com.sun.crypto.provider;
|
|
|
|
import java.security.InvalidKeyException;
|
|
import java.security.MessageDigest;
|
|
import java.util.Arrays;
|
|
|
|
import jdk.internal.vm.annotation.IntrinsicCandidate;
|
|
|
|
/**
|
|
* Rijndael --pronounced Reindaal-- is a symmetric cipher with a 128-bit
|
|
* block size and variable key-size (128-, 192- and 256-bit).
|
|
* <p>
|
|
* Rijndael was designed by <a href="mailto:rijmen@esat.kuleuven.ac.be">Vincent
|
|
* Rijmen</a> and <a href="mailto:Joan.Daemen@village.uunet.be">Joan Daemen</a>.
|
|
*/
|
|
final class AESCrypt extends SymmetricCipher implements AESConstants
|
|
{
|
|
private boolean ROUNDS_12 = false;
|
|
private boolean ROUNDS_14 = false;
|
|
|
|
/** Session and Sub keys */
|
|
private int[][] sessionK = null;
|
|
private int[] K = null;
|
|
|
|
/** Cipher encryption/decryption key */
|
|
// skip re-generating Session and Sub keys if the cipher key is
|
|
// the same
|
|
private byte[] lastKey = null;
|
|
|
|
/** ROUNDS * 4 */
|
|
private int limit = 0;
|
|
|
|
AESCrypt() {
|
|
// empty
|
|
}
|
|
|
|
/**
|
|
* Returns this cipher's block size.
|
|
*
|
|
* @return this cipher's block size
|
|
*/
|
|
int getBlockSize() {
|
|
return AES_BLOCK_SIZE;
|
|
}
|
|
|
|
void init(boolean decrypting, String algorithm, byte[] key)
|
|
throws InvalidKeyException {
|
|
if (!algorithm.equalsIgnoreCase("AES")
|
|
&& !algorithm.equalsIgnoreCase("Rijndael")) {
|
|
throw new InvalidKeyException
|
|
("Wrong algorithm: AES or Rijndael required");
|
|
}
|
|
|
|
if (key == null) { // Unlikely, but just double check it.
|
|
throw new InvalidKeyException("Empty key");
|
|
}
|
|
|
|
if (!MessageDigest.isEqual(key, lastKey)) {
|
|
// re-generate session key 'sessionK' when cipher key changes
|
|
makeSessionKey(key);
|
|
if (lastKey != null) {
|
|
Arrays.fill(lastKey, (byte)0);
|
|
}
|
|
lastKey = key.clone(); // save cipher key
|
|
}
|
|
|
|
// set sub key to the corresponding session Key
|
|
this.K = sessionK[(decrypting? 1:0)];
|
|
}
|
|
|
|
/**
|
|
* Expand an int[(ROUNDS+1)][4] into int[(ROUNDS+1)*4].
|
|
* For decryption round keys, need to rotate right by 4 ints.
|
|
* @param kr The round keys for encryption or decryption.
|
|
* @param decrypting True if 'kr' is for decryption and false otherwise.
|
|
*/
|
|
private static final int[] expandToSubKey(int[][] kr, boolean decrypting) {
|
|
int total = kr.length;
|
|
int[] expK = new int[total*4];
|
|
if (decrypting) {
|
|
// decrypting, rotate right by 4 ints
|
|
// i.e. i==0
|
|
for(int j=0; j<4; j++) {
|
|
expK[j] = kr[total-1][j];
|
|
}
|
|
for(int i=1; i<total; i++) {
|
|
for(int j=0; j<4; j++) {
|
|
expK[i*4 + j] = kr[i-1][j];
|
|
}
|
|
}
|
|
} else {
|
|
// encrypting, straight expansion
|
|
for(int i=0; i<total; i++) {
|
|
for(int j=0; j<4; j++) {
|
|
expK[i*4 + j] = kr[i][j];
|
|
}
|
|
}
|
|
}
|
|
return expK;
|
|
}
|
|
|
|
private static int[]
|
|
alog = new int[256],
|
|
log = new int[256];
|
|
|
|
private static final byte[]
|
|
S = new byte[256],
|
|
Si = new byte[256];
|
|
|
|
private static final int[]
|
|
T1 = new int[256],
|
|
T2 = new int[256],
|
|
T3 = new int[256],
|
|
T4 = new int[256],
|
|
T5 = new int[256],
|
|
T6 = new int[256],
|
|
T7 = new int[256],
|
|
T8 = new int[256];
|
|
|
|
private static final int[]
|
|
U1 = new int[256],
|
|
U2 = new int[256],
|
|
U3 = new int[256],
|
|
U4 = new int[256];
|
|
|
|
private static final byte[] rcon = new byte[30];
|
|
|
|
|
|
// Static code - to initialise S-boxes and T-boxes
|
|
static
|
|
{
|
|
int ROOT = 0x11B;
|
|
int i, j = 0;
|
|
|
|
//
|
|
// produce log and alog tables, needed for multiplying in the
|
|
// field GF(2^m) (generator = 3)
|
|
//
|
|
alog[0] = 1;
|
|
for (i = 1; i < 256; i++)
|
|
{
|
|
j = (alog[i-1] << 1) ^ alog[i-1];
|
|
if ((j & 0x100) != 0) {
|
|
j ^= ROOT;
|
|
}
|
|
alog[i] = j;
|
|
}
|
|
for (i = 1; i < 255; i++) {
|
|
log[alog[i]] = i;
|
|
}
|
|
byte[][] A = new byte[][]
|
|
{
|
|
{1, 1, 1, 1, 1, 0, 0, 0},
|
|
{0, 1, 1, 1, 1, 1, 0, 0},
|
|
{0, 0, 1, 1, 1, 1, 1, 0},
|
|
{0, 0, 0, 1, 1, 1, 1, 1},
|
|
{1, 0, 0, 0, 1, 1, 1, 1},
|
|
{1, 1, 0, 0, 0, 1, 1, 1},
|
|
{1, 1, 1, 0, 0, 0, 1, 1},
|
|
{1, 1, 1, 1, 0, 0, 0, 1}
|
|
};
|
|
byte[] B = new byte[] { 0, 1, 1, 0, 0, 0, 1, 1};
|
|
|
|
//
|
|
// substitution box based on F^{-1}(x)
|
|
//
|
|
int t;
|
|
byte[][] box = new byte[256][8];
|
|
box[1][7] = 1;
|
|
for (i = 2; i < 256; i++) {
|
|
j = alog[255 - log[i]];
|
|
for (t = 0; t < 8; t++) {
|
|
box[i][t] = (byte)((j >>> (7 - t)) & 0x01);
|
|
}
|
|
}
|
|
//
|
|
// affine transform: box[i] <- B + A*box[i]
|
|
//
|
|
byte[][] cox = new byte[256][8];
|
|
for (i = 0; i < 256; i++) {
|
|
for (t = 0; t < 8; t++) {
|
|
cox[i][t] = B[t];
|
|
for (j = 0; j < 8; j++) {
|
|
cox[i][t] ^= (byte)(A[t][j] * box[i][j]);
|
|
}
|
|
}
|
|
}
|
|
//
|
|
// S-boxes and inverse S-boxes
|
|
//
|
|
for (i = 0; i < 256; i++) {
|
|
S[i] = (byte)(cox[i][0] << 7);
|
|
for (t = 1; t < 8; t++) {
|
|
S[i] ^= (byte)(cox[i][t] << (7-t));
|
|
}
|
|
Si[S[i] & 0xFF] = (byte) i;
|
|
}
|
|
//
|
|
// T-boxes
|
|
//
|
|
byte[][] G = new byte[][] {
|
|
{2, 1, 1, 3},
|
|
{3, 2, 1, 1},
|
|
{1, 3, 2, 1},
|
|
{1, 1, 3, 2}
|
|
};
|
|
byte[][] AA = new byte[4][8];
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) AA[i][j] = G[i][j];
|
|
AA[i][i+4] = 1;
|
|
}
|
|
byte pivot, tmp;
|
|
byte[][] iG = new byte[4][4];
|
|
for (i = 0; i < 4; i++) {
|
|
pivot = AA[i][i];
|
|
if (pivot == 0) {
|
|
t = i + 1;
|
|
while ((AA[t][i] == 0) && (t < 4)) {
|
|
t++;
|
|
}
|
|
if (t == 4) {
|
|
throw new RuntimeException("G matrix is not invertible");
|
|
}
|
|
else {
|
|
for (j = 0; j < 8; j++) {
|
|
tmp = AA[i][j];
|
|
AA[i][j] = AA[t][j];
|
|
AA[t][j] = tmp;
|
|
}
|
|
pivot = AA[i][i];
|
|
}
|
|
}
|
|
for (j = 0; j < 8; j++) {
|
|
if (AA[i][j] != 0) {
|
|
AA[i][j] = (byte)
|
|
alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF])
|
|
% 255];
|
|
}
|
|
}
|
|
for (t = 0; t < 4; t++) {
|
|
if (i != t) {
|
|
for (j = i+1; j < 8; j++) {
|
|
AA[t][j] ^= (byte)(mul(AA[i][j], AA[t][i]));
|
|
}
|
|
AA[t][i] = 0;
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
iG[i][j] = AA[i][j + 4];
|
|
}
|
|
}
|
|
|
|
int s;
|
|
for (t = 0; t < 256; t++) {
|
|
s = S[t];
|
|
T1[t] = mul4(s, G[0]);
|
|
T2[t] = mul4(s, G[1]);
|
|
T3[t] = mul4(s, G[2]);
|
|
T4[t] = mul4(s, G[3]);
|
|
|
|
s = Si[t];
|
|
T5[t] = mul4(s, iG[0]);
|
|
T6[t] = mul4(s, iG[1]);
|
|
T7[t] = mul4(s, iG[2]);
|
|
T8[t] = mul4(s, iG[3]);
|
|
|
|
U1[t] = mul4(t, iG[0]);
|
|
U2[t] = mul4(t, iG[1]);
|
|
U3[t] = mul4(t, iG[2]);
|
|
U4[t] = mul4(t, iG[3]);
|
|
}
|
|
//
|
|
// round constants
|
|
//
|
|
rcon[0] = 1;
|
|
int r = 1;
|
|
for (t = 1; t < 30; t++) {
|
|
r = mul(2, r);
|
|
rcon[t] = (byte) r;
|
|
}
|
|
log = null;
|
|
alog = null;
|
|
}
|
|
|
|
// multiply two elements of GF(2^m)
|
|
private static final int mul (int a, int b) {
|
|
return (a != 0 && b != 0) ?
|
|
alog[(log[a & 0xFF] + log[b & 0xFF]) % 255] :
|
|
0;
|
|
}
|
|
|
|
// convenience method used in generating Transposition boxes
|
|
private static final int mul4 (int a, byte[] b) {
|
|
if (a == 0) return 0;
|
|
a = log[a & 0xFF];
|
|
int a0 = (b[0] != 0) ? alog[(a + log[b[0] & 0xFF]) % 255] & 0xFF : 0;
|
|
int a1 = (b[1] != 0) ? alog[(a + log[b[1] & 0xFF]) % 255] & 0xFF : 0;
|
|
int a2 = (b[2] != 0) ? alog[(a + log[b[2] & 0xFF]) % 255] & 0xFF : 0;
|
|
int a3 = (b[3] != 0) ? alog[(a + log[b[3] & 0xFF]) % 255] & 0xFF : 0;
|
|
return a0 << 24 | a1 << 16 | a2 << 8 | a3;
|
|
}
|
|
|
|
// check if the specified length (in bytes) is a valid keysize for AES
|
|
static final boolean isKeySizeValid(int len) {
|
|
for (int i = 0; i < AES_KEYSIZES.length; i++) {
|
|
if (len == AES_KEYSIZES[i]) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Encrypt exactly one block of plaintext.
|
|
*/
|
|
void encryptBlock(byte[] in, int inOffset,
|
|
byte[] out, int outOffset) {
|
|
// Array bound checks are done in caller code, i.e.
|
|
// FeedbackCipher.encrypt/decrypt(...) to improve performance.
|
|
implEncryptBlock(in, inOffset, out, outOffset);
|
|
}
|
|
|
|
// Encryption operation. Possibly replaced with a compiler intrinsic.
|
|
@IntrinsicCandidate
|
|
private void implEncryptBlock(byte[] in, int inOffset,
|
|
byte[] out, int outOffset)
|
|
{
|
|
int keyOffset = 0;
|
|
int t0 = ((in[inOffset++] ) << 24 |
|
|
(in[inOffset++] & 0xFF) << 16 |
|
|
(in[inOffset++] & 0xFF) << 8 |
|
|
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
|
|
int t1 = ((in[inOffset++] ) << 24 |
|
|
(in[inOffset++] & 0xFF) << 16 |
|
|
(in[inOffset++] & 0xFF) << 8 |
|
|
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
|
|
int t2 = ((in[inOffset++] ) << 24 |
|
|
(in[inOffset++] & 0xFF) << 16 |
|
|
(in[inOffset++] & 0xFF) << 8 |
|
|
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
|
|
int t3 = ((in[inOffset++] ) << 24 |
|
|
(in[inOffset++] & 0xFF) << 16 |
|
|
(in[inOffset++] & 0xFF) << 8 |
|
|
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
|
|
|
|
// apply round transforms
|
|
while( keyOffset < limit )
|
|
{
|
|
int a0, a1, a2;
|
|
a0 = T1[(t0 >>> 24) ] ^
|
|
T2[(t1 >>> 16) & 0xFF] ^
|
|
T3[(t2 >>> 8) & 0xFF] ^
|
|
T4[(t3 ) & 0xFF] ^ K[keyOffset++];
|
|
a1 = T1[(t1 >>> 24) ] ^
|
|
T2[(t2 >>> 16) & 0xFF] ^
|
|
T3[(t3 >>> 8) & 0xFF] ^
|
|
T4[(t0 ) & 0xFF] ^ K[keyOffset++];
|
|
a2 = T1[(t2 >>> 24) ] ^
|
|
T2[(t3 >>> 16) & 0xFF] ^
|
|
T3[(t0 >>> 8) & 0xFF] ^
|
|
T4[(t1 ) & 0xFF] ^ K[keyOffset++];
|
|
t3 = T1[(t3 >>> 24) ] ^
|
|
T2[(t0 >>> 16) & 0xFF] ^
|
|
T3[(t1 >>> 8) & 0xFF] ^
|
|
T4[(t2 ) & 0xFF] ^ K[keyOffset++];
|
|
t0 = a0; t1 = a1; t2 = a2;
|
|
}
|
|
|
|
// last round is special
|
|
int tt = K[keyOffset++];
|
|
out[outOffset++] = (byte)(S[(t0 >>> 24) ] ^ (tt >>> 24));
|
|
out[outOffset++] = (byte)(S[(t1 >>> 16) & 0xFF] ^ (tt >>> 16));
|
|
out[outOffset++] = (byte)(S[(t2 >>> 8) & 0xFF] ^ (tt >>> 8));
|
|
out[outOffset++] = (byte)(S[(t3 ) & 0xFF] ^ (tt ));
|
|
tt = K[keyOffset++];
|
|
out[outOffset++] = (byte)(S[(t1 >>> 24) ] ^ (tt >>> 24));
|
|
out[outOffset++] = (byte)(S[(t2 >>> 16) & 0xFF] ^ (tt >>> 16));
|
|
out[outOffset++] = (byte)(S[(t3 >>> 8) & 0xFF] ^ (tt >>> 8));
|
|
out[outOffset++] = (byte)(S[(t0 ) & 0xFF] ^ (tt ));
|
|
tt = K[keyOffset++];
|
|
out[outOffset++] = (byte)(S[(t2 >>> 24) ] ^ (tt >>> 24));
|
|
out[outOffset++] = (byte)(S[(t3 >>> 16) & 0xFF] ^ (tt >>> 16));
|
|
out[outOffset++] = (byte)(S[(t0 >>> 8) & 0xFF] ^ (tt >>> 8));
|
|
out[outOffset++] = (byte)(S[(t1 ) & 0xFF] ^ (tt ));
|
|
tt = K[keyOffset++];
|
|
out[outOffset++] = (byte)(S[(t3 >>> 24) ] ^ (tt >>> 24));
|
|
out[outOffset++] = (byte)(S[(t0 >>> 16) & 0xFF] ^ (tt >>> 16));
|
|
out[outOffset++] = (byte)(S[(t1 >>> 8) & 0xFF] ^ (tt >>> 8));
|
|
out[outOffset ] = (byte)(S[(t2 ) & 0xFF] ^ (tt ));
|
|
}
|
|
|
|
/**
|
|
* Decrypt exactly one block of plaintext.
|
|
*/
|
|
void decryptBlock(byte[] in, int inOffset,
|
|
byte[] out, int outOffset) {
|
|
// Array bound checks are done in caller code, i.e.
|
|
// FeedbackCipher.encrypt/decrypt(...) to improve performance.
|
|
implDecryptBlock(in, inOffset, out, outOffset);
|
|
}
|
|
|
|
// Decrypt operation. Possibly replaced with a compiler intrinsic.
|
|
@IntrinsicCandidate
|
|
private void implDecryptBlock(byte[] in, int inOffset,
|
|
byte[] out, int outOffset)
|
|
{
|
|
int keyOffset = 4;
|
|
int t0 = ((in[inOffset++] ) << 24 |
|
|
(in[inOffset++] & 0xFF) << 16 |
|
|
(in[inOffset++] & 0xFF) << 8 |
|
|
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
|
|
int t1 = ((in[inOffset++] ) << 24 |
|
|
(in[inOffset++] & 0xFF) << 16 |
|
|
(in[inOffset++] & 0xFF) << 8 |
|
|
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
|
|
int t2 = ((in[inOffset++] ) << 24 |
|
|
(in[inOffset++] & 0xFF) << 16 |
|
|
(in[inOffset++] & 0xFF) << 8 |
|
|
(in[inOffset++] & 0xFF) ) ^ K[keyOffset++];
|
|
int t3 = ((in[inOffset++] ) << 24 |
|
|
(in[inOffset++] & 0xFF) << 16 |
|
|
(in[inOffset++] & 0xFF) << 8 |
|
|
(in[inOffset ] & 0xFF) ) ^ K[keyOffset++];
|
|
|
|
int a0, a1, a2;
|
|
if(ROUNDS_12)
|
|
{
|
|
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
|
|
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
|
|
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
|
|
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
|
|
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
|
|
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
|
|
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
|
|
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
|
|
t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
|
|
T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++];
|
|
t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^
|
|
T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++];
|
|
t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^
|
|
T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
|
|
t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^
|
|
T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++];
|
|
|
|
if(ROUNDS_14)
|
|
{
|
|
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
|
|
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
|
|
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
|
|
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
|
|
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
|
|
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
|
|
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
|
|
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
|
|
t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
|
|
T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++];
|
|
t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^
|
|
T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++];
|
|
t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^
|
|
T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
|
|
t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^
|
|
T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++];
|
|
}
|
|
}
|
|
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
|
|
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
|
|
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
|
|
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
|
|
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
|
|
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
|
|
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
|
|
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
|
|
t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
|
|
T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++];
|
|
t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^
|
|
T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++];
|
|
t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^
|
|
T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
|
|
t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^
|
|
T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++];
|
|
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
|
|
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
|
|
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
|
|
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
|
|
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
|
|
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
|
|
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
|
|
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
|
|
t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
|
|
T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++];
|
|
t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^
|
|
T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++];
|
|
t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^
|
|
T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
|
|
t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^
|
|
T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++];
|
|
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
|
|
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
|
|
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
|
|
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
|
|
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
|
|
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
|
|
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
|
|
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
|
|
t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
|
|
T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++];
|
|
t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^
|
|
T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++];
|
|
t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^
|
|
T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
|
|
t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^
|
|
T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++];
|
|
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
|
|
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
|
|
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
|
|
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
|
|
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
|
|
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
|
|
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
|
|
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
|
|
t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
|
|
T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++];
|
|
t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^
|
|
T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++];
|
|
t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^
|
|
T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
|
|
t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^
|
|
T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++];
|
|
a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^
|
|
T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++];
|
|
a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^
|
|
T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++];
|
|
a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^
|
|
T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++];
|
|
t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^
|
|
T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++];
|
|
|
|
t1 = K[0];
|
|
out[outOffset++] = (byte)(Si[(a0 >>> 24) ] ^ (t1 >>> 24));
|
|
out[outOffset++] = (byte)(Si[(t3 >>> 16) & 0xFF] ^ (t1 >>> 16));
|
|
out[outOffset++] = (byte)(Si[(a2 >>> 8) & 0xFF] ^ (t1 >>> 8));
|
|
out[outOffset++] = (byte)(Si[(a1 ) & 0xFF] ^ (t1 ));
|
|
t1 = K[1];
|
|
out[outOffset++] = (byte)(Si[(a1 >>> 24) ] ^ (t1 >>> 24));
|
|
out[outOffset++] = (byte)(Si[(a0 >>> 16) & 0xFF] ^ (t1 >>> 16));
|
|
out[outOffset++] = (byte)(Si[(t3 >>> 8) & 0xFF] ^ (t1 >>> 8));
|
|
out[outOffset++] = (byte)(Si[(a2 ) & 0xFF] ^ (t1 ));
|
|
t1 = K[2];
|
|
out[outOffset++] = (byte)(Si[(a2 >>> 24) ] ^ (t1 >>> 24));
|
|
out[outOffset++] = (byte)(Si[(a1 >>> 16) & 0xFF] ^ (t1 >>> 16));
|
|
out[outOffset++] = (byte)(Si[(a0 >>> 8) & 0xFF] ^ (t1 >>> 8));
|
|
out[outOffset++] = (byte)(Si[(t3 ) & 0xFF] ^ (t1 ));
|
|
t1 = K[3];
|
|
out[outOffset++] = (byte)(Si[(t3 >>> 24) ] ^ (t1 >>> 24));
|
|
out[outOffset++] = (byte)(Si[(a2 >>> 16) & 0xFF] ^ (t1 >>> 16));
|
|
out[outOffset++] = (byte)(Si[(a1 >>> 8) & 0xFF] ^ (t1 >>> 8));
|
|
out[outOffset ] = (byte)(Si[(a0 ) & 0xFF] ^ (t1 ));
|
|
}
|
|
|
|
/**
|
|
* Expand a user-supplied key material into a session key.
|
|
*
|
|
* @param k The 128/192/256-bit cipher key to use.
|
|
* @exception InvalidKeyException If the key is invalid.
|
|
*/
|
|
private void makeSessionKey(byte[] k) throws InvalidKeyException {
|
|
if (!isKeySizeValid(k.length)) {
|
|
throw new InvalidKeyException("Invalid AES key length: " +
|
|
k.length + " bytes");
|
|
}
|
|
|
|
int ROUNDS = getRounds(k.length);
|
|
int ROUND_KEY_COUNT = (ROUNDS + 1) * 4;
|
|
|
|
int BC = 4;
|
|
int[][] Ke = new int[ROUNDS + 1][4]; // encryption round keys
|
|
int[][] Kd = new int[ROUNDS + 1][4]; // decryption round keys
|
|
|
|
int KC = k.length/4; // keylen in 32-bit elements
|
|
|
|
int[] tk = new int[KC];
|
|
int i, j;
|
|
|
|
// copy user material bytes into temporary ints
|
|
for (i = 0, j = 0; i < KC; i++, j+=4) {
|
|
tk[i] = (k[j] ) << 24 |
|
|
(k[j+1] & 0xFF) << 16 |
|
|
(k[j+2] & 0xFF) << 8 |
|
|
(k[j+3] & 0xFF);
|
|
}
|
|
|
|
// copy values into round key arrays
|
|
int t = 0;
|
|
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
|
|
Ke[t / 4][t % 4] = tk[j];
|
|
Kd[ROUNDS - (t / 4)][t % 4] = tk[j];
|
|
}
|
|
int tt, rconpointer = 0;
|
|
while (t < ROUND_KEY_COUNT) {
|
|
// extrapolate using phi (the round key evolution function)
|
|
tt = tk[KC - 1];
|
|
tk[0] ^= (S[(tt >>> 16) & 0xFF] ) << 24 ^
|
|
(S[(tt >>> 8) & 0xFF] & 0xFF) << 16 ^
|
|
(S[(tt ) & 0xFF] & 0xFF) << 8 ^
|
|
(S[(tt >>> 24) ] & 0xFF) ^
|
|
(rcon[rconpointer++] ) << 24;
|
|
if (KC != 8)
|
|
for (i = 1, j = 0; i < KC; i++, j++) tk[i] ^= tk[j];
|
|
else {
|
|
for (i = 1, j = 0; i < KC / 2; i++, j++) tk[i] ^= tk[j];
|
|
tt = tk[KC / 2 - 1];
|
|
tk[KC / 2] ^= (S[(tt ) & 0xFF] & 0xFF) ^
|
|
(S[(tt >>> 8) & 0xFF] & 0xFF) << 8 ^
|
|
(S[(tt >>> 16) & 0xFF] & 0xFF) << 16 ^
|
|
(S[(tt >>> 24) ] ) << 24;
|
|
for (j = KC / 2, i = j + 1; i < KC; i++, j++) tk[i] ^= tk[j];
|
|
}
|
|
// copy values into round key arrays
|
|
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
|
|
Ke[t / 4][t % 4] = tk[j];
|
|
Kd[ROUNDS - (t / 4)][t % 4] = tk[j];
|
|
}
|
|
}
|
|
for (int r = 1; r < ROUNDS; r++) {
|
|
// inverse MixColumn where needed
|
|
for (j = 0; j < BC; j++) {
|
|
tt = Kd[r][j];
|
|
Kd[r][j] = U1[(tt >>> 24) & 0xFF] ^
|
|
U2[(tt >>> 16) & 0xFF] ^
|
|
U3[(tt >>> 8) & 0xFF] ^
|
|
U4[ tt & 0xFF];
|
|
}
|
|
}
|
|
|
|
// assemble the encryption (Ke) and decryption (Kd) round keys
|
|
// and expand them into arrays of ints.
|
|
int[] expandedKe = expandToSubKey(Ke, false); // decrypting==false
|
|
int[] expandedKd = expandToSubKey(Kd, true); // decrypting==true
|
|
Arrays.fill(tk, 0);
|
|
for (int[] ia: Ke) {
|
|
Arrays.fill(ia, 0);
|
|
}
|
|
for (int[] ia: Kd) {
|
|
Arrays.fill(ia, 0);
|
|
}
|
|
ROUNDS_12 = (ROUNDS>=12);
|
|
ROUNDS_14 = (ROUNDS==14);
|
|
limit = ROUNDS*4;
|
|
|
|
// store the expanded sub keys into 'sessionK'
|
|
if (sessionK != null) {
|
|
// erase the previous values in sessionK
|
|
Arrays.fill(sessionK[0], 0);
|
|
Arrays.fill(sessionK[1], 0);
|
|
}
|
|
sessionK = new int[][] { expandedKe, expandedKd };
|
|
}
|
|
|
|
/**
|
|
* Return The number of rounds for a given Rijndael keysize.
|
|
*
|
|
* @param keySize The size of the user key material in bytes.
|
|
* MUST be one of (16, 24, 32).
|
|
* @return The number of rounds.
|
|
*/
|
|
private static int getRounds(int keySize) {
|
|
return (keySize >> 2) + 6;
|
|
}
|
|
}
|