mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-25 22:04:51 +02:00

Implement Safefetch as stub routines. This reduces compiler and os dependencies. Reviewed-by: twisti, kvn
5583 lines
185 KiB
C++
5583 lines
185 KiB
C++
/*
|
|
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
// Must be at least Windows 2000 or XP to use IsDebuggerPresent
|
|
#define _WIN32_WINNT 0x500
|
|
|
|
// no precompiled headers
|
|
#include "classfile/classLoader.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "compiler/compileBroker.hpp"
|
|
#include "compiler/disassembler.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "jvm_windows.h"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/filemap.hpp"
|
|
#include "mutex_windows.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "os_share_windows.hpp"
|
|
#include "prims/jniFastGetField.hpp"
|
|
#include "prims/jvm.h"
|
|
#include "prims/jvm_misc.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/extendedPC.hpp"
|
|
#include "runtime/globals.hpp"
|
|
#include "runtime/interfaceSupport.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/javaCalls.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "runtime/objectMonitor.hpp"
|
|
#include "runtime/osThread.hpp"
|
|
#include "runtime/perfMemory.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/statSampler.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "runtime/threadCritical.hpp"
|
|
#include "runtime/timer.hpp"
|
|
#include "services/attachListener.hpp"
|
|
#include "services/memTracker.hpp"
|
|
#include "services/runtimeService.hpp"
|
|
#include "utilities/decoder.hpp"
|
|
#include "utilities/defaultStream.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/growableArray.hpp"
|
|
#include "utilities/vmError.hpp"
|
|
|
|
#ifdef _DEBUG
|
|
#include <crtdbg.h>
|
|
#endif
|
|
|
|
|
|
#include <windows.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/timeb.h>
|
|
#include <objidl.h>
|
|
#include <shlobj.h>
|
|
|
|
#include <malloc.h>
|
|
#include <signal.h>
|
|
#include <direct.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <io.h>
|
|
#include <process.h> // For _beginthreadex(), _endthreadex()
|
|
#include <imagehlp.h> // For os::dll_address_to_function_name
|
|
/* for enumerating dll libraries */
|
|
#include <vdmdbg.h>
|
|
|
|
// for timer info max values which include all bits
|
|
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
|
|
|
|
// For DLL loading/load error detection
|
|
// Values of PE COFF
|
|
#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
|
|
#define IMAGE_FILE_SIGNATURE_LENGTH 4
|
|
|
|
static HANDLE main_process;
|
|
static HANDLE main_thread;
|
|
static int main_thread_id;
|
|
|
|
static FILETIME process_creation_time;
|
|
static FILETIME process_exit_time;
|
|
static FILETIME process_user_time;
|
|
static FILETIME process_kernel_time;
|
|
|
|
#ifdef _M_IA64
|
|
#define __CPU__ ia64
|
|
#elif _M_AMD64
|
|
#define __CPU__ amd64
|
|
#else
|
|
#define __CPU__ i486
|
|
#endif
|
|
|
|
// save DLL module handle, used by GetModuleFileName
|
|
|
|
HINSTANCE vm_lib_handle;
|
|
|
|
BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
|
|
switch (reason) {
|
|
case DLL_PROCESS_ATTACH:
|
|
vm_lib_handle = hinst;
|
|
if(ForceTimeHighResolution)
|
|
timeBeginPeriod(1L);
|
|
break;
|
|
case DLL_PROCESS_DETACH:
|
|
if(ForceTimeHighResolution)
|
|
timeEndPeriod(1L);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline double fileTimeAsDouble(FILETIME* time) {
|
|
const double high = (double) ((unsigned int) ~0);
|
|
const double split = 10000000.0;
|
|
double result = (time->dwLowDateTime / split) +
|
|
time->dwHighDateTime * (high/split);
|
|
return result;
|
|
}
|
|
|
|
// Implementation of os
|
|
|
|
bool os::getenv(const char* name, char* buffer, int len) {
|
|
int result = GetEnvironmentVariable(name, buffer, len);
|
|
return result > 0 && result < len;
|
|
}
|
|
|
|
|
|
// No setuid programs under Windows.
|
|
bool os::have_special_privileges() {
|
|
return false;
|
|
}
|
|
|
|
|
|
// This method is a periodic task to check for misbehaving JNI applications
|
|
// under CheckJNI, we can add any periodic checks here.
|
|
// For Windows at the moment does nothing
|
|
void os::run_periodic_checks() {
|
|
return;
|
|
}
|
|
|
|
#ifndef _WIN64
|
|
// previous UnhandledExceptionFilter, if there is one
|
|
static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
|
|
|
|
LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
|
|
#endif
|
|
void os::init_system_properties_values() {
|
|
/* sysclasspath, java_home, dll_dir */
|
|
{
|
|
char *home_path;
|
|
char *dll_path;
|
|
char *pslash;
|
|
char *bin = "\\bin";
|
|
char home_dir[MAX_PATH];
|
|
|
|
if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
|
|
os::jvm_path(home_dir, sizeof(home_dir));
|
|
// Found the full path to jvm.dll.
|
|
// Now cut the path to <java_home>/jre if we can.
|
|
*(strrchr(home_dir, '\\')) = '\0'; /* get rid of \jvm.dll */
|
|
pslash = strrchr(home_dir, '\\');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; /* get rid of \{client|server} */
|
|
pslash = strrchr(home_dir, '\\');
|
|
if (pslash != NULL)
|
|
*pslash = '\0'; /* get rid of \bin */
|
|
}
|
|
}
|
|
|
|
home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
|
|
if (home_path == NULL)
|
|
return;
|
|
strcpy(home_path, home_dir);
|
|
Arguments::set_java_home(home_path);
|
|
|
|
dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
|
|
if (dll_path == NULL)
|
|
return;
|
|
strcpy(dll_path, home_dir);
|
|
strcat(dll_path, bin);
|
|
Arguments::set_dll_dir(dll_path);
|
|
|
|
if (!set_boot_path('\\', ';'))
|
|
return;
|
|
}
|
|
|
|
/* library_path */
|
|
#define EXT_DIR "\\lib\\ext"
|
|
#define BIN_DIR "\\bin"
|
|
#define PACKAGE_DIR "\\Sun\\Java"
|
|
{
|
|
/* Win32 library search order (See the documentation for LoadLibrary):
|
|
*
|
|
* 1. The directory from which application is loaded.
|
|
* 2. The system wide Java Extensions directory (Java only)
|
|
* 3. System directory (GetSystemDirectory)
|
|
* 4. Windows directory (GetWindowsDirectory)
|
|
* 5. The PATH environment variable
|
|
* 6. The current directory
|
|
*/
|
|
|
|
char *library_path;
|
|
char tmp[MAX_PATH];
|
|
char *path_str = ::getenv("PATH");
|
|
|
|
library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
|
|
sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
|
|
|
|
library_path[0] = '\0';
|
|
|
|
GetModuleFileName(NULL, tmp, sizeof(tmp));
|
|
*(strrchr(tmp, '\\')) = '\0';
|
|
strcat(library_path, tmp);
|
|
|
|
GetWindowsDirectory(tmp, sizeof(tmp));
|
|
strcat(library_path, ";");
|
|
strcat(library_path, tmp);
|
|
strcat(library_path, PACKAGE_DIR BIN_DIR);
|
|
|
|
GetSystemDirectory(tmp, sizeof(tmp));
|
|
strcat(library_path, ";");
|
|
strcat(library_path, tmp);
|
|
|
|
GetWindowsDirectory(tmp, sizeof(tmp));
|
|
strcat(library_path, ";");
|
|
strcat(library_path, tmp);
|
|
|
|
if (path_str) {
|
|
strcat(library_path, ";");
|
|
strcat(library_path, path_str);
|
|
}
|
|
|
|
strcat(library_path, ";.");
|
|
|
|
Arguments::set_library_path(library_path);
|
|
FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
|
|
}
|
|
|
|
/* Default extensions directory */
|
|
{
|
|
char path[MAX_PATH];
|
|
char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
|
|
GetWindowsDirectory(path, MAX_PATH);
|
|
sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
|
|
path, PACKAGE_DIR, EXT_DIR);
|
|
Arguments::set_ext_dirs(buf);
|
|
}
|
|
#undef EXT_DIR
|
|
#undef BIN_DIR
|
|
#undef PACKAGE_DIR
|
|
|
|
/* Default endorsed standards directory. */
|
|
{
|
|
#define ENDORSED_DIR "\\lib\\endorsed"
|
|
size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
|
|
char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
|
|
sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
|
|
Arguments::set_endorsed_dirs(buf);
|
|
#undef ENDORSED_DIR
|
|
}
|
|
|
|
#ifndef _WIN64
|
|
// set our UnhandledExceptionFilter and save any previous one
|
|
prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
|
|
#endif
|
|
|
|
// Done
|
|
return;
|
|
}
|
|
|
|
void os::breakpoint() {
|
|
DebugBreak();
|
|
}
|
|
|
|
// Invoked from the BREAKPOINT Macro
|
|
extern "C" void breakpoint() {
|
|
os::breakpoint();
|
|
}
|
|
|
|
/*
|
|
* RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
|
|
* So far, this method is only used by Native Memory Tracking, which is
|
|
* only supported on Windows XP or later.
|
|
*/
|
|
address os::get_caller_pc(int n) {
|
|
#ifdef _NMT_NOINLINE_
|
|
n ++;
|
|
#endif
|
|
address pc;
|
|
if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
|
|
return pc;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
// os::current_stack_base()
|
|
//
|
|
// Returns the base of the stack, which is the stack's
|
|
// starting address. This function must be called
|
|
// while running on the stack of the thread being queried.
|
|
|
|
address os::current_stack_base() {
|
|
MEMORY_BASIC_INFORMATION minfo;
|
|
address stack_bottom;
|
|
size_t stack_size;
|
|
|
|
VirtualQuery(&minfo, &minfo, sizeof(minfo));
|
|
stack_bottom = (address)minfo.AllocationBase;
|
|
stack_size = minfo.RegionSize;
|
|
|
|
// Add up the sizes of all the regions with the same
|
|
// AllocationBase.
|
|
while( 1 )
|
|
{
|
|
VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
|
|
if ( stack_bottom == (address)minfo.AllocationBase )
|
|
stack_size += minfo.RegionSize;
|
|
else
|
|
break;
|
|
}
|
|
|
|
#ifdef _M_IA64
|
|
// IA64 has memory and register stacks
|
|
//
|
|
// This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
|
|
// at thread creation (1MB backing store growing upwards, 1MB memory stack
|
|
// growing downwards, 2MB summed up)
|
|
//
|
|
// ...
|
|
// ------- top of stack (high address) -----
|
|
// |
|
|
// | 1MB
|
|
// | Backing Store (Register Stack)
|
|
// |
|
|
// | / \
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// ------------------------ stack base -----
|
|
// | 1MB
|
|
// | Memory Stack
|
|
// |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// | \ /
|
|
// |
|
|
// ----- bottom of stack (low address) -----
|
|
// ...
|
|
|
|
stack_size = stack_size / 2;
|
|
#endif
|
|
return stack_bottom + stack_size;
|
|
}
|
|
|
|
size_t os::current_stack_size() {
|
|
size_t sz;
|
|
MEMORY_BASIC_INFORMATION minfo;
|
|
VirtualQuery(&minfo, &minfo, sizeof(minfo));
|
|
sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
|
|
return sz;
|
|
}
|
|
|
|
struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
|
|
const struct tm* time_struct_ptr = localtime(clock);
|
|
if (time_struct_ptr != NULL) {
|
|
*res = *time_struct_ptr;
|
|
return res;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
|
|
|
|
// Thread start routine for all new Java threads
|
|
static unsigned __stdcall java_start(Thread* thread) {
|
|
// Try to randomize the cache line index of hot stack frames.
|
|
// This helps when threads of the same stack traces evict each other's
|
|
// cache lines. The threads can be either from the same JVM instance, or
|
|
// from different JVM instances. The benefit is especially true for
|
|
// processors with hyperthreading technology.
|
|
static int counter = 0;
|
|
int pid = os::current_process_id();
|
|
_alloca(((pid ^ counter++) & 7) * 128);
|
|
|
|
OSThread* osthr = thread->osthread();
|
|
assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
|
|
|
|
if (UseNUMA) {
|
|
int lgrp_id = os::numa_get_group_id();
|
|
if (lgrp_id != -1) {
|
|
thread->set_lgrp_id(lgrp_id);
|
|
}
|
|
}
|
|
|
|
|
|
// Install a win32 structured exception handler around every thread created
|
|
// by VM, so VM can genrate error dump when an exception occurred in non-
|
|
// Java thread (e.g. VM thread).
|
|
__try {
|
|
thread->run();
|
|
} __except(topLevelExceptionFilter(
|
|
(_EXCEPTION_POINTERS*)_exception_info())) {
|
|
// Nothing to do.
|
|
}
|
|
|
|
// One less thread is executing
|
|
// When the VMThread gets here, the main thread may have already exited
|
|
// which frees the CodeHeap containing the Atomic::add code
|
|
if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
|
|
Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
|
|
// Allocate the OSThread object
|
|
OSThread* osthread = new OSThread(NULL, NULL);
|
|
if (osthread == NULL) return NULL;
|
|
|
|
// Initialize support for Java interrupts
|
|
HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
|
|
if (interrupt_event == NULL) {
|
|
delete osthread;
|
|
return NULL;
|
|
}
|
|
osthread->set_interrupt_event(interrupt_event);
|
|
|
|
// Store info on the Win32 thread into the OSThread
|
|
osthread->set_thread_handle(thread_handle);
|
|
osthread->set_thread_id(thread_id);
|
|
|
|
if (UseNUMA) {
|
|
int lgrp_id = os::numa_get_group_id();
|
|
if (lgrp_id != -1) {
|
|
thread->set_lgrp_id(lgrp_id);
|
|
}
|
|
}
|
|
|
|
// Initial thread state is INITIALIZED, not SUSPENDED
|
|
osthread->set_state(INITIALIZED);
|
|
|
|
return osthread;
|
|
}
|
|
|
|
|
|
bool os::create_attached_thread(JavaThread* thread) {
|
|
#ifdef ASSERT
|
|
thread->verify_not_published();
|
|
#endif
|
|
HANDLE thread_h;
|
|
if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
|
|
&thread_h, THREAD_ALL_ACCESS, false, 0)) {
|
|
fatal("DuplicateHandle failed\n");
|
|
}
|
|
OSThread* osthread = create_os_thread(thread, thread_h,
|
|
(int)current_thread_id());
|
|
if (osthread == NULL) {
|
|
return false;
|
|
}
|
|
|
|
// Initial thread state is RUNNABLE
|
|
osthread->set_state(RUNNABLE);
|
|
|
|
thread->set_osthread(osthread);
|
|
return true;
|
|
}
|
|
|
|
bool os::create_main_thread(JavaThread* thread) {
|
|
#ifdef ASSERT
|
|
thread->verify_not_published();
|
|
#endif
|
|
if (_starting_thread == NULL) {
|
|
_starting_thread = create_os_thread(thread, main_thread, main_thread_id);
|
|
if (_starting_thread == NULL) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// The primordial thread is runnable from the start)
|
|
_starting_thread->set_state(RUNNABLE);
|
|
|
|
thread->set_osthread(_starting_thread);
|
|
return true;
|
|
}
|
|
|
|
// Allocate and initialize a new OSThread
|
|
bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
|
|
unsigned thread_id;
|
|
|
|
// Allocate the OSThread object
|
|
OSThread* osthread = new OSThread(NULL, NULL);
|
|
if (osthread == NULL) {
|
|
return false;
|
|
}
|
|
|
|
// Initialize support for Java interrupts
|
|
HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
|
|
if (interrupt_event == NULL) {
|
|
delete osthread;
|
|
return NULL;
|
|
}
|
|
osthread->set_interrupt_event(interrupt_event);
|
|
osthread->set_interrupted(false);
|
|
|
|
thread->set_osthread(osthread);
|
|
|
|
if (stack_size == 0) {
|
|
switch (thr_type) {
|
|
case os::java_thread:
|
|
// Java threads use ThreadStackSize which default value can be changed with the flag -Xss
|
|
if (JavaThread::stack_size_at_create() > 0)
|
|
stack_size = JavaThread::stack_size_at_create();
|
|
break;
|
|
case os::compiler_thread:
|
|
if (CompilerThreadStackSize > 0) {
|
|
stack_size = (size_t)(CompilerThreadStackSize * K);
|
|
break;
|
|
} // else fall through:
|
|
// use VMThreadStackSize if CompilerThreadStackSize is not defined
|
|
case os::vm_thread:
|
|
case os::pgc_thread:
|
|
case os::cgc_thread:
|
|
case os::watcher_thread:
|
|
if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Create the Win32 thread
|
|
//
|
|
// Contrary to what MSDN document says, "stack_size" in _beginthreadex()
|
|
// does not specify stack size. Instead, it specifies the size of
|
|
// initially committed space. The stack size is determined by
|
|
// PE header in the executable. If the committed "stack_size" is larger
|
|
// than default value in the PE header, the stack is rounded up to the
|
|
// nearest multiple of 1MB. For example if the launcher has default
|
|
// stack size of 320k, specifying any size less than 320k does not
|
|
// affect the actual stack size at all, it only affects the initial
|
|
// commitment. On the other hand, specifying 'stack_size' larger than
|
|
// default value may cause significant increase in memory usage, because
|
|
// not only the stack space will be rounded up to MB, but also the
|
|
// entire space is committed upfront.
|
|
//
|
|
// Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
|
|
// for CreateThread() that can treat 'stack_size' as stack size. However we
|
|
// are not supposed to call CreateThread() directly according to MSDN
|
|
// document because JVM uses C runtime library. The good news is that the
|
|
// flag appears to work with _beginthredex() as well.
|
|
|
|
#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
|
|
#define STACK_SIZE_PARAM_IS_A_RESERVATION (0x10000)
|
|
#endif
|
|
|
|
HANDLE thread_handle =
|
|
(HANDLE)_beginthreadex(NULL,
|
|
(unsigned)stack_size,
|
|
(unsigned (__stdcall *)(void*)) java_start,
|
|
thread,
|
|
CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
|
|
&thread_id);
|
|
if (thread_handle == NULL) {
|
|
// perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
|
|
// without the flag.
|
|
thread_handle =
|
|
(HANDLE)_beginthreadex(NULL,
|
|
(unsigned)stack_size,
|
|
(unsigned (__stdcall *)(void*)) java_start,
|
|
thread,
|
|
CREATE_SUSPENDED,
|
|
&thread_id);
|
|
}
|
|
if (thread_handle == NULL) {
|
|
// Need to clean up stuff we've allocated so far
|
|
CloseHandle(osthread->interrupt_event());
|
|
thread->set_osthread(NULL);
|
|
delete osthread;
|
|
return NULL;
|
|
}
|
|
|
|
Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
|
|
|
|
// Store info on the Win32 thread into the OSThread
|
|
osthread->set_thread_handle(thread_handle);
|
|
osthread->set_thread_id(thread_id);
|
|
|
|
// Initial thread state is INITIALIZED, not SUSPENDED
|
|
osthread->set_state(INITIALIZED);
|
|
|
|
// The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
|
|
return true;
|
|
}
|
|
|
|
|
|
// Free Win32 resources related to the OSThread
|
|
void os::free_thread(OSThread* osthread) {
|
|
assert(osthread != NULL, "osthread not set");
|
|
CloseHandle(osthread->thread_handle());
|
|
CloseHandle(osthread->interrupt_event());
|
|
delete osthread;
|
|
}
|
|
|
|
|
|
static int has_performance_count = 0;
|
|
static jlong first_filetime;
|
|
static jlong initial_performance_count;
|
|
static jlong performance_frequency;
|
|
|
|
|
|
jlong as_long(LARGE_INTEGER x) {
|
|
jlong result = 0; // initialization to avoid warning
|
|
set_high(&result, x.HighPart);
|
|
set_low(&result, x.LowPart);
|
|
return result;
|
|
}
|
|
|
|
|
|
jlong os::elapsed_counter() {
|
|
LARGE_INTEGER count;
|
|
if (has_performance_count) {
|
|
QueryPerformanceCounter(&count);
|
|
return as_long(count) - initial_performance_count;
|
|
} else {
|
|
FILETIME wt;
|
|
GetSystemTimeAsFileTime(&wt);
|
|
return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
|
|
}
|
|
}
|
|
|
|
|
|
jlong os::elapsed_frequency() {
|
|
if (has_performance_count) {
|
|
return performance_frequency;
|
|
} else {
|
|
// the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
|
|
return 10000000;
|
|
}
|
|
}
|
|
|
|
|
|
julong os::available_memory() {
|
|
return win32::available_memory();
|
|
}
|
|
|
|
julong os::win32::available_memory() {
|
|
// Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
|
|
// value if total memory is larger than 4GB
|
|
MEMORYSTATUSEX ms;
|
|
ms.dwLength = sizeof(ms);
|
|
GlobalMemoryStatusEx(&ms);
|
|
|
|
return (julong)ms.ullAvailPhys;
|
|
}
|
|
|
|
julong os::physical_memory() {
|
|
return win32::physical_memory();
|
|
}
|
|
|
|
bool os::has_allocatable_memory_limit(julong* limit) {
|
|
MEMORYSTATUSEX ms;
|
|
ms.dwLength = sizeof(ms);
|
|
GlobalMemoryStatusEx(&ms);
|
|
#ifdef _LP64
|
|
*limit = (julong)ms.ullAvailVirtual;
|
|
return true;
|
|
#else
|
|
// Limit to 1400m because of the 2gb address space wall
|
|
*limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
// VC6 lacks DWORD_PTR
|
|
#if _MSC_VER < 1300
|
|
typedef UINT_PTR DWORD_PTR;
|
|
#endif
|
|
|
|
int os::active_processor_count() {
|
|
DWORD_PTR lpProcessAffinityMask = 0;
|
|
DWORD_PTR lpSystemAffinityMask = 0;
|
|
int proc_count = processor_count();
|
|
if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
|
|
GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
|
|
// Nof active processors is number of bits in process affinity mask
|
|
int bitcount = 0;
|
|
while (lpProcessAffinityMask != 0) {
|
|
lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
|
|
bitcount++;
|
|
}
|
|
return bitcount;
|
|
} else {
|
|
return proc_count;
|
|
}
|
|
}
|
|
|
|
void os::set_native_thread_name(const char *name) {
|
|
// Not yet implemented.
|
|
return;
|
|
}
|
|
|
|
bool os::distribute_processes(uint length, uint* distribution) {
|
|
// Not yet implemented.
|
|
return false;
|
|
}
|
|
|
|
bool os::bind_to_processor(uint processor_id) {
|
|
// Not yet implemented.
|
|
return false;
|
|
}
|
|
|
|
static void initialize_performance_counter() {
|
|
LARGE_INTEGER count;
|
|
if (QueryPerformanceFrequency(&count)) {
|
|
has_performance_count = 1;
|
|
performance_frequency = as_long(count);
|
|
QueryPerformanceCounter(&count);
|
|
initial_performance_count = as_long(count);
|
|
} else {
|
|
has_performance_count = 0;
|
|
FILETIME wt;
|
|
GetSystemTimeAsFileTime(&wt);
|
|
first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
|
|
}
|
|
}
|
|
|
|
|
|
double os::elapsedTime() {
|
|
return (double) elapsed_counter() / (double) elapsed_frequency();
|
|
}
|
|
|
|
|
|
// Windows format:
|
|
// The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
|
|
// Java format:
|
|
// Java standards require the number of milliseconds since 1/1/1970
|
|
|
|
// Constant offset - calculated using offset()
|
|
static jlong _offset = 116444736000000000;
|
|
// Fake time counter for reproducible results when debugging
|
|
static jlong fake_time = 0;
|
|
|
|
#ifdef ASSERT
|
|
// Just to be safe, recalculate the offset in debug mode
|
|
static jlong _calculated_offset = 0;
|
|
static int _has_calculated_offset = 0;
|
|
|
|
jlong offset() {
|
|
if (_has_calculated_offset) return _calculated_offset;
|
|
SYSTEMTIME java_origin;
|
|
java_origin.wYear = 1970;
|
|
java_origin.wMonth = 1;
|
|
java_origin.wDayOfWeek = 0; // ignored
|
|
java_origin.wDay = 1;
|
|
java_origin.wHour = 0;
|
|
java_origin.wMinute = 0;
|
|
java_origin.wSecond = 0;
|
|
java_origin.wMilliseconds = 0;
|
|
FILETIME jot;
|
|
if (!SystemTimeToFileTime(&java_origin, &jot)) {
|
|
fatal(err_msg("Error = %d\nWindows error", GetLastError()));
|
|
}
|
|
_calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
|
|
_has_calculated_offset = 1;
|
|
assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
|
|
return _calculated_offset;
|
|
}
|
|
#else
|
|
jlong offset() {
|
|
return _offset;
|
|
}
|
|
#endif
|
|
|
|
jlong windows_to_java_time(FILETIME wt) {
|
|
jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
|
|
return (a - offset()) / 10000;
|
|
}
|
|
|
|
FILETIME java_to_windows_time(jlong l) {
|
|
jlong a = (l * 10000) + offset();
|
|
FILETIME result;
|
|
result.dwHighDateTime = high(a);
|
|
result.dwLowDateTime = low(a);
|
|
return result;
|
|
}
|
|
|
|
bool os::supports_vtime() { return true; }
|
|
bool os::enable_vtime() { return false; }
|
|
bool os::vtime_enabled() { return false; }
|
|
|
|
double os::elapsedVTime() {
|
|
FILETIME created;
|
|
FILETIME exited;
|
|
FILETIME kernel;
|
|
FILETIME user;
|
|
if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
|
|
// the resolution of windows_to_java_time() should be sufficient (ms)
|
|
return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
|
|
} else {
|
|
return elapsedTime();
|
|
}
|
|
}
|
|
|
|
jlong os::javaTimeMillis() {
|
|
if (UseFakeTimers) {
|
|
return fake_time++;
|
|
} else {
|
|
FILETIME wt;
|
|
GetSystemTimeAsFileTime(&wt);
|
|
return windows_to_java_time(wt);
|
|
}
|
|
}
|
|
|
|
jlong os::javaTimeNanos() {
|
|
if (!has_performance_count) {
|
|
return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
|
|
} else {
|
|
LARGE_INTEGER current_count;
|
|
QueryPerformanceCounter(¤t_count);
|
|
double current = as_long(current_count);
|
|
double freq = performance_frequency;
|
|
jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
|
|
return time;
|
|
}
|
|
}
|
|
|
|
void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
|
|
if (!has_performance_count) {
|
|
// javaTimeMillis() doesn't have much percision,
|
|
// but it is not going to wrap -- so all 64 bits
|
|
info_ptr->max_value = ALL_64_BITS;
|
|
|
|
// this is a wall clock timer, so may skip
|
|
info_ptr->may_skip_backward = true;
|
|
info_ptr->may_skip_forward = true;
|
|
} else {
|
|
jlong freq = performance_frequency;
|
|
if (freq < NANOSECS_PER_SEC) {
|
|
// the performance counter is 64 bits and we will
|
|
// be multiplying it -- so no wrap in 64 bits
|
|
info_ptr->max_value = ALL_64_BITS;
|
|
} else if (freq > NANOSECS_PER_SEC) {
|
|
// use the max value the counter can reach to
|
|
// determine the max value which could be returned
|
|
julong max_counter = (julong)ALL_64_BITS;
|
|
info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
|
|
} else {
|
|
// the performance counter is 64 bits and we will
|
|
// be using it directly -- so no wrap in 64 bits
|
|
info_ptr->max_value = ALL_64_BITS;
|
|
}
|
|
|
|
// using a counter, so no skipping
|
|
info_ptr->may_skip_backward = false;
|
|
info_ptr->may_skip_forward = false;
|
|
}
|
|
info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
|
|
}
|
|
|
|
char* os::local_time_string(char *buf, size_t buflen) {
|
|
SYSTEMTIME st;
|
|
GetLocalTime(&st);
|
|
jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
|
|
st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
|
|
return buf;
|
|
}
|
|
|
|
bool os::getTimesSecs(double* process_real_time,
|
|
double* process_user_time,
|
|
double* process_system_time) {
|
|
HANDLE h_process = GetCurrentProcess();
|
|
FILETIME create_time, exit_time, kernel_time, user_time;
|
|
BOOL result = GetProcessTimes(h_process,
|
|
&create_time,
|
|
&exit_time,
|
|
&kernel_time,
|
|
&user_time);
|
|
if (result != 0) {
|
|
FILETIME wt;
|
|
GetSystemTimeAsFileTime(&wt);
|
|
jlong rtc_millis = windows_to_java_time(wt);
|
|
jlong user_millis = windows_to_java_time(user_time);
|
|
jlong system_millis = windows_to_java_time(kernel_time);
|
|
*process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
|
|
*process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
|
|
*process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void os::shutdown() {
|
|
|
|
// allow PerfMemory to attempt cleanup of any persistent resources
|
|
perfMemory_exit();
|
|
|
|
// flush buffered output, finish log files
|
|
ostream_abort();
|
|
|
|
// Check for abort hook
|
|
abort_hook_t abort_hook = Arguments::abort_hook();
|
|
if (abort_hook != NULL) {
|
|
abort_hook();
|
|
}
|
|
}
|
|
|
|
|
|
static BOOL (WINAPI *_MiniDumpWriteDump) ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
|
|
PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
|
|
|
|
void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
|
|
HINSTANCE dbghelp;
|
|
EXCEPTION_POINTERS ep;
|
|
MINIDUMP_EXCEPTION_INFORMATION mei;
|
|
MINIDUMP_EXCEPTION_INFORMATION* pmei;
|
|
|
|
HANDLE hProcess = GetCurrentProcess();
|
|
DWORD processId = GetCurrentProcessId();
|
|
HANDLE dumpFile;
|
|
MINIDUMP_TYPE dumpType;
|
|
static const char* cwd;
|
|
|
|
// Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
|
|
#ifndef ASSERT
|
|
// If running on a client version of Windows and user has not explicitly enabled dumping
|
|
if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
|
|
VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
|
|
return;
|
|
// If running on a server version of Windows and user has explictly disabled dumping
|
|
} else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
|
|
VMError::report_coredump_status("Minidump has been disabled from the command line", false);
|
|
return;
|
|
}
|
|
#else
|
|
if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
|
|
VMError::report_coredump_status("Minidump has been disabled from the command line", false);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
|
|
|
|
if (dbghelp == NULL) {
|
|
VMError::report_coredump_status("Failed to load dbghelp.dll", false);
|
|
return;
|
|
}
|
|
|
|
_MiniDumpWriteDump = CAST_TO_FN_PTR(
|
|
BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
|
|
PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
|
|
GetProcAddress(dbghelp, "MiniDumpWriteDump"));
|
|
|
|
if (_MiniDumpWriteDump == NULL) {
|
|
VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
|
|
return;
|
|
}
|
|
|
|
dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
|
|
|
|
// Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
|
|
// API_VERSION_NUMBER 11 or higher contains the ones we want though
|
|
#if API_VERSION_NUMBER >= 11
|
|
dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
|
|
MiniDumpWithUnloadedModules);
|
|
#endif
|
|
|
|
cwd = get_current_directory(NULL, 0);
|
|
jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
|
|
dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
|
|
|
|
if (dumpFile == INVALID_HANDLE_VALUE) {
|
|
VMError::report_coredump_status("Failed to create file for dumping", false);
|
|
return;
|
|
}
|
|
if (exceptionRecord != NULL && contextRecord != NULL) {
|
|
ep.ContextRecord = (PCONTEXT) contextRecord;
|
|
ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
|
|
|
|
mei.ThreadId = GetCurrentThreadId();
|
|
mei.ExceptionPointers = &ep;
|
|
pmei = &mei;
|
|
} else {
|
|
pmei = NULL;
|
|
}
|
|
|
|
|
|
// Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
|
|
// the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
|
|
if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
|
|
_MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
|
|
DWORD error = GetLastError();
|
|
LPTSTR msgbuf = NULL;
|
|
|
|
if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
|
|
FORMAT_MESSAGE_FROM_SYSTEM |
|
|
FORMAT_MESSAGE_IGNORE_INSERTS,
|
|
NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
|
|
|
|
jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
|
|
LocalFree(msgbuf);
|
|
} else {
|
|
// Call to FormatMessage failed, just include the result from GetLastError
|
|
jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
|
|
}
|
|
VMError::report_coredump_status(buffer, false);
|
|
} else {
|
|
VMError::report_coredump_status(buffer, true);
|
|
}
|
|
|
|
CloseHandle(dumpFile);
|
|
}
|
|
|
|
|
|
|
|
void os::abort(bool dump_core)
|
|
{
|
|
os::shutdown();
|
|
// no core dump on Windows
|
|
::exit(1);
|
|
}
|
|
|
|
// Die immediately, no exit hook, no abort hook, no cleanup.
|
|
void os::die() {
|
|
_exit(-1);
|
|
}
|
|
|
|
// Directory routines copied from src/win32/native/java/io/dirent_md.c
|
|
// * dirent_md.c 1.15 00/02/02
|
|
//
|
|
// The declarations for DIR and struct dirent are in jvm_win32.h.
|
|
|
|
/* Caller must have already run dirname through JVM_NativePath, which removes
|
|
duplicate slashes and converts all instances of '/' into '\\'. */
|
|
|
|
DIR *
|
|
os::opendir(const char *dirname)
|
|
{
|
|
assert(dirname != NULL, "just checking"); // hotspot change
|
|
DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
|
|
DWORD fattr; // hotspot change
|
|
char alt_dirname[4] = { 0, 0, 0, 0 };
|
|
|
|
if (dirp == 0) {
|
|
errno = ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Win32 accepts "\" in its POSIX stat(), but refuses to treat it
|
|
* as a directory in FindFirstFile(). We detect this case here and
|
|
* prepend the current drive name.
|
|
*/
|
|
if (dirname[1] == '\0' && dirname[0] == '\\') {
|
|
alt_dirname[0] = _getdrive() + 'A' - 1;
|
|
alt_dirname[1] = ':';
|
|
alt_dirname[2] = '\\';
|
|
alt_dirname[3] = '\0';
|
|
dirname = alt_dirname;
|
|
}
|
|
|
|
dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
|
|
if (dirp->path == 0) {
|
|
free(dirp, mtInternal);
|
|
errno = ENOMEM;
|
|
return 0;
|
|
}
|
|
strcpy(dirp->path, dirname);
|
|
|
|
fattr = GetFileAttributes(dirp->path);
|
|
if (fattr == 0xffffffff) {
|
|
free(dirp->path, mtInternal);
|
|
free(dirp, mtInternal);
|
|
errno = ENOENT;
|
|
return 0;
|
|
} else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
|
|
free(dirp->path, mtInternal);
|
|
free(dirp, mtInternal);
|
|
errno = ENOTDIR;
|
|
return 0;
|
|
}
|
|
|
|
/* Append "*.*", or possibly "\\*.*", to path */
|
|
if (dirp->path[1] == ':'
|
|
&& (dirp->path[2] == '\0'
|
|
|| (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
|
|
/* No '\\' needed for cases like "Z:" or "Z:\" */
|
|
strcat(dirp->path, "*.*");
|
|
} else {
|
|
strcat(dirp->path, "\\*.*");
|
|
}
|
|
|
|
dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
|
|
if (dirp->handle == INVALID_HANDLE_VALUE) {
|
|
if (GetLastError() != ERROR_FILE_NOT_FOUND) {
|
|
free(dirp->path, mtInternal);
|
|
free(dirp, mtInternal);
|
|
errno = EACCES;
|
|
return 0;
|
|
}
|
|
}
|
|
return dirp;
|
|
}
|
|
|
|
/* parameter dbuf unused on Windows */
|
|
|
|
struct dirent *
|
|
os::readdir(DIR *dirp, dirent *dbuf)
|
|
{
|
|
assert(dirp != NULL, "just checking"); // hotspot change
|
|
if (dirp->handle == INVALID_HANDLE_VALUE) {
|
|
return 0;
|
|
}
|
|
|
|
strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
|
|
|
|
if (!FindNextFile(dirp->handle, &dirp->find_data)) {
|
|
if (GetLastError() == ERROR_INVALID_HANDLE) {
|
|
errno = EBADF;
|
|
return 0;
|
|
}
|
|
FindClose(dirp->handle);
|
|
dirp->handle = INVALID_HANDLE_VALUE;
|
|
}
|
|
|
|
return &dirp->dirent;
|
|
}
|
|
|
|
int
|
|
os::closedir(DIR *dirp)
|
|
{
|
|
assert(dirp != NULL, "just checking"); // hotspot change
|
|
if (dirp->handle != INVALID_HANDLE_VALUE) {
|
|
if (!FindClose(dirp->handle)) {
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
dirp->handle = INVALID_HANDLE_VALUE;
|
|
}
|
|
free(dirp->path, mtInternal);
|
|
free(dirp, mtInternal);
|
|
return 0;
|
|
}
|
|
|
|
// This must be hard coded because it's the system's temporary
|
|
// directory not the java application's temp directory, ala java.io.tmpdir.
|
|
const char* os::get_temp_directory() {
|
|
static char path_buf[MAX_PATH];
|
|
if (GetTempPath(MAX_PATH, path_buf)>0)
|
|
return path_buf;
|
|
else{
|
|
path_buf[0]='\0';
|
|
return path_buf;
|
|
}
|
|
}
|
|
|
|
static bool file_exists(const char* filename) {
|
|
if (filename == NULL || strlen(filename) == 0) {
|
|
return false;
|
|
}
|
|
return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
|
|
}
|
|
|
|
bool os::dll_build_name(char *buffer, size_t buflen,
|
|
const char* pname, const char* fname) {
|
|
bool retval = false;
|
|
const size_t pnamelen = pname ? strlen(pname) : 0;
|
|
const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
|
|
|
|
// Return error on buffer overflow.
|
|
if (pnamelen + strlen(fname) + 10 > buflen) {
|
|
return retval;
|
|
}
|
|
|
|
if (pnamelen == 0) {
|
|
jio_snprintf(buffer, buflen, "%s.dll", fname);
|
|
retval = true;
|
|
} else if (c == ':' || c == '\\') {
|
|
jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
|
|
retval = true;
|
|
} else if (strchr(pname, *os::path_separator()) != NULL) {
|
|
int n;
|
|
char** pelements = split_path(pname, &n);
|
|
if (pelements == NULL) {
|
|
return false;
|
|
}
|
|
for (int i = 0 ; i < n ; i++) {
|
|
char* path = pelements[i];
|
|
// Really shouldn't be NULL, but check can't hurt
|
|
size_t plen = (path == NULL) ? 0 : strlen(path);
|
|
if (plen == 0) {
|
|
continue; // skip the empty path values
|
|
}
|
|
const char lastchar = path[plen - 1];
|
|
if (lastchar == ':' || lastchar == '\\') {
|
|
jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
|
|
} else {
|
|
jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
|
|
}
|
|
if (file_exists(buffer)) {
|
|
retval = true;
|
|
break;
|
|
}
|
|
}
|
|
// release the storage
|
|
for (int i = 0 ; i < n ; i++) {
|
|
if (pelements[i] != NULL) {
|
|
FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
|
|
}
|
|
}
|
|
if (pelements != NULL) {
|
|
FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
|
|
}
|
|
} else {
|
|
jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
|
|
retval = true;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
// Needs to be in os specific directory because windows requires another
|
|
// header file <direct.h>
|
|
const char* os::get_current_directory(char *buf, size_t buflen) {
|
|
int n = static_cast<int>(buflen);
|
|
if (buflen > INT_MAX) n = INT_MAX;
|
|
return _getcwd(buf, n);
|
|
}
|
|
|
|
//-----------------------------------------------------------
|
|
// Helper functions for fatal error handler
|
|
#ifdef _WIN64
|
|
// Helper routine which returns true if address in
|
|
// within the NTDLL address space.
|
|
//
|
|
static bool _addr_in_ntdll( address addr )
|
|
{
|
|
HMODULE hmod;
|
|
MODULEINFO minfo;
|
|
|
|
hmod = GetModuleHandle("NTDLL.DLL");
|
|
if ( hmod == NULL ) return false;
|
|
if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
|
|
&minfo, sizeof(MODULEINFO)) )
|
|
return false;
|
|
|
|
if ( (addr >= minfo.lpBaseOfDll) &&
|
|
(addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
|
|
// Enumerate all modules for a given process ID
|
|
//
|
|
// Notice that Windows 95/98/Me and Windows NT/2000/XP have
|
|
// different API for doing this. We use PSAPI.DLL on NT based
|
|
// Windows and ToolHelp on 95/98/Me.
|
|
|
|
// Callback function that is called by enumerate_modules() on
|
|
// every DLL module.
|
|
// Input parameters:
|
|
// int pid,
|
|
// char* module_file_name,
|
|
// address module_base_addr,
|
|
// unsigned module_size,
|
|
// void* param
|
|
typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
|
|
|
|
// enumerate_modules for Windows NT, using PSAPI
|
|
static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
|
|
{
|
|
HANDLE hProcess ;
|
|
|
|
# define MAX_NUM_MODULES 128
|
|
HMODULE modules[MAX_NUM_MODULES];
|
|
static char filename[ MAX_PATH ];
|
|
int result = 0;
|
|
|
|
if (!os::PSApiDll::PSApiAvailable()) {
|
|
return 0;
|
|
}
|
|
|
|
hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
|
|
FALSE, pid ) ;
|
|
if (hProcess == NULL) return 0;
|
|
|
|
DWORD size_needed;
|
|
if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
|
|
sizeof(modules), &size_needed)) {
|
|
CloseHandle( hProcess );
|
|
return 0;
|
|
}
|
|
|
|
// number of modules that are currently loaded
|
|
int num_modules = size_needed / sizeof(HMODULE);
|
|
|
|
for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
|
|
// Get Full pathname:
|
|
if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
|
|
filename, sizeof(filename))) {
|
|
filename[0] = '\0';
|
|
}
|
|
|
|
MODULEINFO modinfo;
|
|
if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
|
|
&modinfo, sizeof(modinfo))) {
|
|
modinfo.lpBaseOfDll = NULL;
|
|
modinfo.SizeOfImage = 0;
|
|
}
|
|
|
|
// Invoke callback function
|
|
result = func(pid, filename, (address)modinfo.lpBaseOfDll,
|
|
modinfo.SizeOfImage, param);
|
|
if (result) break;
|
|
}
|
|
|
|
CloseHandle( hProcess ) ;
|
|
return result;
|
|
}
|
|
|
|
|
|
// enumerate_modules for Windows 95/98/ME, using TOOLHELP
|
|
static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
|
|
{
|
|
HANDLE hSnapShot ;
|
|
static MODULEENTRY32 modentry ;
|
|
int result = 0;
|
|
|
|
if (!os::Kernel32Dll::HelpToolsAvailable()) {
|
|
return 0;
|
|
}
|
|
|
|
// Get a handle to a Toolhelp snapshot of the system
|
|
hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
|
|
if( hSnapShot == INVALID_HANDLE_VALUE ) {
|
|
return FALSE ;
|
|
}
|
|
|
|
// iterate through all modules
|
|
modentry.dwSize = sizeof(MODULEENTRY32) ;
|
|
bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
|
|
|
|
while( not_done ) {
|
|
// invoke the callback
|
|
result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
|
|
modentry.modBaseSize, param);
|
|
if (result) break;
|
|
|
|
modentry.dwSize = sizeof(MODULEENTRY32) ;
|
|
not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
|
|
}
|
|
|
|
CloseHandle(hSnapShot);
|
|
return result;
|
|
}
|
|
|
|
int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
|
|
{
|
|
// Get current process ID if caller doesn't provide it.
|
|
if (!pid) pid = os::current_process_id();
|
|
|
|
if (os::win32::is_nt()) return _enumerate_modules_winnt (pid, func, param);
|
|
else return _enumerate_modules_windows(pid, func, param);
|
|
}
|
|
|
|
struct _modinfo {
|
|
address addr;
|
|
char* full_path; // point to a char buffer
|
|
int buflen; // size of the buffer
|
|
address base_addr;
|
|
};
|
|
|
|
static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
|
|
unsigned size, void * param) {
|
|
struct _modinfo *pmod = (struct _modinfo *)param;
|
|
if (!pmod) return -1;
|
|
|
|
if (base_addr <= pmod->addr &&
|
|
base_addr+size > pmod->addr) {
|
|
// if a buffer is provided, copy path name to the buffer
|
|
if (pmod->full_path) {
|
|
jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
|
|
}
|
|
pmod->base_addr = base_addr;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool os::dll_address_to_library_name(address addr, char* buf,
|
|
int buflen, int* offset) {
|
|
// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
|
|
// return the full path to the DLL file, sometimes it returns path
|
|
// to the corresponding PDB file (debug info); sometimes it only
|
|
// returns partial path, which makes life painful.
|
|
|
|
struct _modinfo mi;
|
|
mi.addr = addr;
|
|
mi.full_path = buf;
|
|
mi.buflen = buflen;
|
|
int pid = os::current_process_id();
|
|
if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
|
|
// buf already contains path name
|
|
if (offset) *offset = addr - mi.base_addr;
|
|
return true;
|
|
} else {
|
|
if (buf) buf[0] = '\0';
|
|
if (offset) *offset = -1;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool os::dll_address_to_function_name(address addr, char *buf,
|
|
int buflen, int *offset) {
|
|
if (Decoder::decode(addr, buf, buflen, offset)) {
|
|
return true;
|
|
}
|
|
if (offset != NULL) *offset = -1;
|
|
if (buf != NULL) buf[0] = '\0';
|
|
return false;
|
|
}
|
|
|
|
// save the start and end address of jvm.dll into param[0] and param[1]
|
|
static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
|
|
unsigned size, void * param) {
|
|
if (!param) return -1;
|
|
|
|
if (base_addr <= (address)_locate_jvm_dll &&
|
|
base_addr+size > (address)_locate_jvm_dll) {
|
|
((address*)param)[0] = base_addr;
|
|
((address*)param)[1] = base_addr + size;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
address vm_lib_location[2]; // start and end address of jvm.dll
|
|
|
|
// check if addr is inside jvm.dll
|
|
bool os::address_is_in_vm(address addr) {
|
|
if (!vm_lib_location[0] || !vm_lib_location[1]) {
|
|
int pid = os::current_process_id();
|
|
if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
|
|
assert(false, "Can't find jvm module.");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
|
|
}
|
|
|
|
// print module info; param is outputStream*
|
|
static int _print_module(int pid, char* fname, address base,
|
|
unsigned size, void* param) {
|
|
if (!param) return -1;
|
|
|
|
outputStream* st = (outputStream*)param;
|
|
|
|
address end_addr = base + size;
|
|
st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
|
|
return 0;
|
|
}
|
|
|
|
// Loads .dll/.so and
|
|
// in case of error it checks if .dll/.so was built for the
|
|
// same architecture as Hotspot is running on
|
|
void * os::dll_load(const char *name, char *ebuf, int ebuflen)
|
|
{
|
|
void * result = LoadLibrary(name);
|
|
if (result != NULL)
|
|
{
|
|
return result;
|
|
}
|
|
|
|
DWORD errcode = GetLastError();
|
|
if (errcode == ERROR_MOD_NOT_FOUND) {
|
|
strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
|
|
ebuf[ebuflen-1]='\0';
|
|
return NULL;
|
|
}
|
|
|
|
// Parsing dll below
|
|
// If we can read dll-info and find that dll was built
|
|
// for an architecture other than Hotspot is running in
|
|
// - then print to buffer "DLL was built for a different architecture"
|
|
// else call os::lasterror to obtain system error message
|
|
|
|
// Read system error message into ebuf
|
|
// It may or may not be overwritten below (in the for loop and just above)
|
|
lasterror(ebuf, (size_t) ebuflen);
|
|
ebuf[ebuflen-1]='\0';
|
|
int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
|
|
if (file_descriptor<0)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
uint32_t signature_offset;
|
|
uint16_t lib_arch=0;
|
|
bool failed_to_get_lib_arch=
|
|
(
|
|
//Go to position 3c in the dll
|
|
(os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
|
|
||
|
|
// Read loacation of signature
|
|
(sizeof(signature_offset)!=
|
|
(os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
|
|
||
|
|
//Go to COFF File Header in dll
|
|
//that is located after"signature" (4 bytes long)
|
|
(os::seek_to_file_offset(file_descriptor,
|
|
signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
|
|
||
|
|
//Read field that contains code of architecture
|
|
// that dll was build for
|
|
(sizeof(lib_arch)!=
|
|
(os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
|
|
);
|
|
|
|
::close(file_descriptor);
|
|
if (failed_to_get_lib_arch)
|
|
{
|
|
// file i/o error - report os::lasterror(...) msg
|
|
return NULL;
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
uint16_t arch_code;
|
|
char* arch_name;
|
|
} arch_t;
|
|
|
|
static const arch_t arch_array[]={
|
|
{IMAGE_FILE_MACHINE_I386, (char*)"IA 32"},
|
|
{IMAGE_FILE_MACHINE_AMD64, (char*)"AMD 64"},
|
|
{IMAGE_FILE_MACHINE_IA64, (char*)"IA 64"}
|
|
};
|
|
#if (defined _M_IA64)
|
|
static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
|
|
#elif (defined _M_AMD64)
|
|
static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
|
|
#elif (defined _M_IX86)
|
|
static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
|
|
#else
|
|
#error Method os::dll_load requires that one of following \
|
|
is defined :_M_IA64,_M_AMD64 or _M_IX86
|
|
#endif
|
|
|
|
|
|
// Obtain a string for printf operation
|
|
// lib_arch_str shall contain string what platform this .dll was built for
|
|
// running_arch_str shall string contain what platform Hotspot was built for
|
|
char *running_arch_str=NULL,*lib_arch_str=NULL;
|
|
for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
|
|
{
|
|
if (lib_arch==arch_array[i].arch_code)
|
|
lib_arch_str=arch_array[i].arch_name;
|
|
if (running_arch==arch_array[i].arch_code)
|
|
running_arch_str=arch_array[i].arch_name;
|
|
}
|
|
|
|
assert(running_arch_str,
|
|
"Didn't find runing architecture code in arch_array");
|
|
|
|
// If the architure is right
|
|
// but some other error took place - report os::lasterror(...) msg
|
|
if (lib_arch == running_arch)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
if (lib_arch_str!=NULL)
|
|
{
|
|
::_snprintf(ebuf, ebuflen-1,
|
|
"Can't load %s-bit .dll on a %s-bit platform",
|
|
lib_arch_str,running_arch_str);
|
|
}
|
|
else
|
|
{
|
|
// don't know what architecture this dll was build for
|
|
::_snprintf(ebuf, ebuflen-1,
|
|
"Can't load this .dll (machine code=0x%x) on a %s-bit platform",
|
|
lib_arch,running_arch_str);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void os::print_dll_info(outputStream *st) {
|
|
int pid = os::current_process_id();
|
|
st->print_cr("Dynamic libraries:");
|
|
enumerate_modules(pid, _print_module, (void *)st);
|
|
}
|
|
|
|
void os::print_os_info_brief(outputStream* st) {
|
|
os::print_os_info(st);
|
|
}
|
|
|
|
void os::print_os_info(outputStream* st) {
|
|
st->print("OS:");
|
|
|
|
os::win32::print_windows_version(st);
|
|
}
|
|
|
|
void os::win32::print_windows_version(outputStream* st) {
|
|
OSVERSIONINFOEX osvi;
|
|
ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
|
|
osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
|
|
|
|
if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
|
|
st->print_cr("N/A");
|
|
return;
|
|
}
|
|
|
|
int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
|
|
if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
|
|
switch (os_vers) {
|
|
case 3051: st->print(" Windows NT 3.51"); break;
|
|
case 4000: st->print(" Windows NT 4.0"); break;
|
|
case 5000: st->print(" Windows 2000"); break;
|
|
case 5001: st->print(" Windows XP"); break;
|
|
case 5002:
|
|
case 6000:
|
|
case 6001:
|
|
case 6002: {
|
|
// Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
|
|
// find out whether we are running on 64 bit processor or not.
|
|
SYSTEM_INFO si;
|
|
ZeroMemory(&si, sizeof(SYSTEM_INFO));
|
|
if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
|
|
GetSystemInfo(&si);
|
|
} else {
|
|
os::Kernel32Dll::GetNativeSystemInfo(&si);
|
|
}
|
|
if (os_vers == 5002) {
|
|
if (osvi.wProductType == VER_NT_WORKSTATION &&
|
|
si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
|
|
st->print(" Windows XP x64 Edition");
|
|
else
|
|
st->print(" Windows Server 2003 family");
|
|
} else if (os_vers == 6000) {
|
|
if (osvi.wProductType == VER_NT_WORKSTATION)
|
|
st->print(" Windows Vista");
|
|
else
|
|
st->print(" Windows Server 2008");
|
|
if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
|
|
st->print(" , 64 bit");
|
|
} else if (os_vers == 6001) {
|
|
if (osvi.wProductType == VER_NT_WORKSTATION) {
|
|
st->print(" Windows 7");
|
|
} else {
|
|
// Unrecognized windows, print out its major and minor versions
|
|
st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
|
|
}
|
|
if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
|
|
st->print(" , 64 bit");
|
|
} else if (os_vers == 6002) {
|
|
if (osvi.wProductType == VER_NT_WORKSTATION) {
|
|
st->print(" Windows 8");
|
|
} else {
|
|
st->print(" Windows Server 2012");
|
|
}
|
|
if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
|
|
st->print(" , 64 bit");
|
|
} else { // future os
|
|
// Unrecognized windows, print out its major and minor versions
|
|
st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
|
|
if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
|
|
st->print(" , 64 bit");
|
|
}
|
|
break;
|
|
}
|
|
default: // future windows, print out its major and minor versions
|
|
st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
|
|
}
|
|
} else {
|
|
switch (os_vers) {
|
|
case 4000: st->print(" Windows 95"); break;
|
|
case 4010: st->print(" Windows 98"); break;
|
|
case 4090: st->print(" Windows Me"); break;
|
|
default: // future windows, print out its major and minor versions
|
|
st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
|
|
}
|
|
}
|
|
st->print(" Build %d", osvi.dwBuildNumber);
|
|
st->print(" %s", osvi.szCSDVersion); // service pack
|
|
st->cr();
|
|
}
|
|
|
|
void os::pd_print_cpu_info(outputStream* st) {
|
|
// Nothing to do for now.
|
|
}
|
|
|
|
void os::print_memory_info(outputStream* st) {
|
|
st->print("Memory:");
|
|
st->print(" %dk page", os::vm_page_size()>>10);
|
|
|
|
// Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
|
|
// value if total memory is larger than 4GB
|
|
MEMORYSTATUSEX ms;
|
|
ms.dwLength = sizeof(ms);
|
|
GlobalMemoryStatusEx(&ms);
|
|
|
|
st->print(", physical %uk", os::physical_memory() >> 10);
|
|
st->print("(%uk free)", os::available_memory() >> 10);
|
|
|
|
st->print(", swap %uk", ms.ullTotalPageFile >> 10);
|
|
st->print("(%uk free)", ms.ullAvailPageFile >> 10);
|
|
st->cr();
|
|
}
|
|
|
|
void os::print_siginfo(outputStream *st, void *siginfo) {
|
|
EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
|
|
st->print("siginfo:");
|
|
st->print(" ExceptionCode=0x%x", er->ExceptionCode);
|
|
|
|
if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
|
|
er->NumberParameters >= 2) {
|
|
switch (er->ExceptionInformation[0]) {
|
|
case 0: st->print(", reading address"); break;
|
|
case 1: st->print(", writing address"); break;
|
|
default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
|
|
er->ExceptionInformation[0]);
|
|
}
|
|
st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
|
|
} else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
|
|
er->NumberParameters >= 2 && UseSharedSpaces) {
|
|
FileMapInfo* mapinfo = FileMapInfo::current_info();
|
|
if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
|
|
st->print("\n\nError accessing class data sharing archive." \
|
|
" Mapped file inaccessible during execution, " \
|
|
" possible disk/network problem.");
|
|
}
|
|
} else {
|
|
int num = er->NumberParameters;
|
|
if (num > 0) {
|
|
st->print(", ExceptionInformation=");
|
|
for (int i = 0; i < num; i++) {
|
|
st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
|
|
}
|
|
}
|
|
}
|
|
st->cr();
|
|
}
|
|
|
|
void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
|
|
// do nothing
|
|
}
|
|
|
|
static char saved_jvm_path[MAX_PATH] = {0};
|
|
|
|
// Find the full path to the current module, jvm.dll
|
|
void os::jvm_path(char *buf, jint buflen) {
|
|
// Error checking.
|
|
if (buflen < MAX_PATH) {
|
|
assert(false, "must use a large-enough buffer");
|
|
buf[0] = '\0';
|
|
return;
|
|
}
|
|
// Lazy resolve the path to current module.
|
|
if (saved_jvm_path[0] != 0) {
|
|
strcpy(buf, saved_jvm_path);
|
|
return;
|
|
}
|
|
|
|
buf[0] = '\0';
|
|
if (Arguments::created_by_gamma_launcher()) {
|
|
// Support for the gamma launcher. Check for an
|
|
// JAVA_HOME environment variable
|
|
// and fix up the path so it looks like
|
|
// libjvm.so is installed there (append a fake suffix
|
|
// hotspot/libjvm.so).
|
|
char* java_home_var = ::getenv("JAVA_HOME");
|
|
if (java_home_var != NULL && java_home_var[0] != 0) {
|
|
|
|
strncpy(buf, java_home_var, buflen);
|
|
|
|
// determine if this is a legacy image or modules image
|
|
// modules image doesn't have "jre" subdirectory
|
|
size_t len = strlen(buf);
|
|
char* jrebin_p = buf + len;
|
|
jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
|
|
if (0 != _access(buf, 0)) {
|
|
jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
|
|
}
|
|
len = strlen(buf);
|
|
jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
|
|
}
|
|
}
|
|
|
|
if(buf[0] == '\0') {
|
|
GetModuleFileName(vm_lib_handle, buf, buflen);
|
|
}
|
|
strcpy(saved_jvm_path, buf);
|
|
}
|
|
|
|
|
|
void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
|
|
#ifndef _WIN64
|
|
st->print("_");
|
|
#endif
|
|
}
|
|
|
|
|
|
void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
|
|
#ifndef _WIN64
|
|
st->print("@%d", args_size * sizeof(int));
|
|
#endif
|
|
}
|
|
|
|
// This method is a copy of JDK's sysGetLastErrorString
|
|
// from src/windows/hpi/src/system_md.c
|
|
|
|
size_t os::lasterror(char* buf, size_t len) {
|
|
DWORD errval;
|
|
|
|
if ((errval = GetLastError()) != 0) {
|
|
// DOS error
|
|
size_t n = (size_t)FormatMessage(
|
|
FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
|
|
NULL,
|
|
errval,
|
|
0,
|
|
buf,
|
|
(DWORD)len,
|
|
NULL);
|
|
if (n > 3) {
|
|
// Drop final '.', CR, LF
|
|
if (buf[n - 1] == '\n') n--;
|
|
if (buf[n - 1] == '\r') n--;
|
|
if (buf[n - 1] == '.') n--;
|
|
buf[n] = '\0';
|
|
}
|
|
return n;
|
|
}
|
|
|
|
if (errno != 0) {
|
|
// C runtime error that has no corresponding DOS error code
|
|
const char* s = strerror(errno);
|
|
size_t n = strlen(s);
|
|
if (n >= len) n = len - 1;
|
|
strncpy(buf, s, n);
|
|
buf[n] = '\0';
|
|
return n;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int os::get_last_error() {
|
|
DWORD error = GetLastError();
|
|
if (error == 0)
|
|
error = errno;
|
|
return (int)error;
|
|
}
|
|
|
|
// sun.misc.Signal
|
|
// NOTE that this is a workaround for an apparent kernel bug where if
|
|
// a signal handler for SIGBREAK is installed then that signal handler
|
|
// takes priority over the console control handler for CTRL_CLOSE_EVENT.
|
|
// See bug 4416763.
|
|
static void (*sigbreakHandler)(int) = NULL;
|
|
|
|
static void UserHandler(int sig, void *siginfo, void *context) {
|
|
os::signal_notify(sig);
|
|
// We need to reinstate the signal handler each time...
|
|
os::signal(sig, (void*)UserHandler);
|
|
}
|
|
|
|
void* os::user_handler() {
|
|
return (void*) UserHandler;
|
|
}
|
|
|
|
void* os::signal(int signal_number, void* handler) {
|
|
if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
|
|
void (*oldHandler)(int) = sigbreakHandler;
|
|
sigbreakHandler = (void (*)(int)) handler;
|
|
return (void*) oldHandler;
|
|
} else {
|
|
return (void*)::signal(signal_number, (void (*)(int))handler);
|
|
}
|
|
}
|
|
|
|
void os::signal_raise(int signal_number) {
|
|
raise(signal_number);
|
|
}
|
|
|
|
// The Win32 C runtime library maps all console control events other than ^C
|
|
// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
|
|
// logoff, and shutdown events. We therefore install our own console handler
|
|
// that raises SIGTERM for the latter cases.
|
|
//
|
|
static BOOL WINAPI consoleHandler(DWORD event) {
|
|
switch(event) {
|
|
case CTRL_C_EVENT:
|
|
if (is_error_reported()) {
|
|
// Ctrl-C is pressed during error reporting, likely because the error
|
|
// handler fails to abort. Let VM die immediately.
|
|
os::die();
|
|
}
|
|
|
|
os::signal_raise(SIGINT);
|
|
return TRUE;
|
|
break;
|
|
case CTRL_BREAK_EVENT:
|
|
if (sigbreakHandler != NULL) {
|
|
(*sigbreakHandler)(SIGBREAK);
|
|
}
|
|
return TRUE;
|
|
break;
|
|
case CTRL_LOGOFF_EVENT: {
|
|
// Don't terminate JVM if it is running in a non-interactive session,
|
|
// such as a service process.
|
|
USEROBJECTFLAGS flags;
|
|
HANDLE handle = GetProcessWindowStation();
|
|
if (handle != NULL &&
|
|
GetUserObjectInformation(handle, UOI_FLAGS, &flags,
|
|
sizeof( USEROBJECTFLAGS), NULL)) {
|
|
// If it is a non-interactive session, let next handler to deal
|
|
// with it.
|
|
if ((flags.dwFlags & WSF_VISIBLE) == 0) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
case CTRL_CLOSE_EVENT:
|
|
case CTRL_SHUTDOWN_EVENT:
|
|
os::signal_raise(SIGTERM);
|
|
return TRUE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* The following code is moved from os.cpp for making this
|
|
* code platform specific, which it is by its very nature.
|
|
*/
|
|
|
|
// Return maximum OS signal used + 1 for internal use only
|
|
// Used as exit signal for signal_thread
|
|
int os::sigexitnum_pd(){
|
|
return NSIG;
|
|
}
|
|
|
|
// a counter for each possible signal value, including signal_thread exit signal
|
|
static volatile jint pending_signals[NSIG+1] = { 0 };
|
|
static HANDLE sig_sem = NULL;
|
|
|
|
void os::signal_init_pd() {
|
|
// Initialize signal structures
|
|
memset((void*)pending_signals, 0, sizeof(pending_signals));
|
|
|
|
sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
|
|
|
|
// Programs embedding the VM do not want it to attempt to receive
|
|
// events like CTRL_LOGOFF_EVENT, which are used to implement the
|
|
// shutdown hooks mechanism introduced in 1.3. For example, when
|
|
// the VM is run as part of a Windows NT service (i.e., a servlet
|
|
// engine in a web server), the correct behavior is for any console
|
|
// control handler to return FALSE, not TRUE, because the OS's
|
|
// "final" handler for such events allows the process to continue if
|
|
// it is a service (while terminating it if it is not a service).
|
|
// To make this behavior uniform and the mechanism simpler, we
|
|
// completely disable the VM's usage of these console events if -Xrs
|
|
// (=ReduceSignalUsage) is specified. This means, for example, that
|
|
// the CTRL-BREAK thread dump mechanism is also disabled in this
|
|
// case. See bugs 4323062, 4345157, and related bugs.
|
|
|
|
if (!ReduceSignalUsage) {
|
|
// Add a CTRL-C handler
|
|
SetConsoleCtrlHandler(consoleHandler, TRUE);
|
|
}
|
|
}
|
|
|
|
void os::signal_notify(int signal_number) {
|
|
BOOL ret;
|
|
if (sig_sem != NULL) {
|
|
Atomic::inc(&pending_signals[signal_number]);
|
|
ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
|
|
assert(ret != 0, "ReleaseSemaphore() failed");
|
|
}
|
|
}
|
|
|
|
static int check_pending_signals(bool wait_for_signal) {
|
|
DWORD ret;
|
|
while (true) {
|
|
for (int i = 0; i < NSIG + 1; i++) {
|
|
jint n = pending_signals[i];
|
|
if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
|
|
return i;
|
|
}
|
|
}
|
|
if (!wait_for_signal) {
|
|
return -1;
|
|
}
|
|
|
|
JavaThread *thread = JavaThread::current();
|
|
|
|
ThreadBlockInVM tbivm(thread);
|
|
|
|
bool threadIsSuspended;
|
|
do {
|
|
thread->set_suspend_equivalent();
|
|
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
|
|
ret = ::WaitForSingleObject(sig_sem, INFINITE);
|
|
assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
|
|
|
|
// were we externally suspended while we were waiting?
|
|
threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
|
|
if (threadIsSuspended) {
|
|
//
|
|
// The semaphore has been incremented, but while we were waiting
|
|
// another thread suspended us. We don't want to continue running
|
|
// while suspended because that would surprise the thread that
|
|
// suspended us.
|
|
//
|
|
ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
|
|
assert(ret != 0, "ReleaseSemaphore() failed");
|
|
|
|
thread->java_suspend_self();
|
|
}
|
|
} while (threadIsSuspended);
|
|
}
|
|
}
|
|
|
|
int os::signal_lookup() {
|
|
return check_pending_signals(false);
|
|
}
|
|
|
|
int os::signal_wait() {
|
|
return check_pending_signals(true);
|
|
}
|
|
|
|
// Implicit OS exception handling
|
|
|
|
LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
|
|
JavaThread* thread = JavaThread::current();
|
|
// Save pc in thread
|
|
#ifdef _M_IA64
|
|
// Do not blow up if no thread info available.
|
|
if (thread) {
|
|
// Saving PRECISE pc (with slot information) in thread.
|
|
uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
|
|
// Convert precise PC into "Unix" format
|
|
precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
|
|
thread->set_saved_exception_pc((address)precise_pc);
|
|
}
|
|
// Set pc to handler
|
|
exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
|
|
// Clear out psr.ri (= Restart Instruction) in order to continue
|
|
// at the beginning of the target bundle.
|
|
exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
|
|
assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
|
|
#elif _M_AMD64
|
|
// Do not blow up if no thread info available.
|
|
if (thread) {
|
|
thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
|
|
}
|
|
// Set pc to handler
|
|
exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
|
|
#else
|
|
// Do not blow up if no thread info available.
|
|
if (thread) {
|
|
thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
|
|
}
|
|
// Set pc to handler
|
|
exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
|
|
#endif
|
|
|
|
// Continue the execution
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
|
|
|
|
// Used for PostMortemDump
|
|
extern "C" void safepoints();
|
|
extern "C" void find(int x);
|
|
extern "C" void events();
|
|
|
|
// According to Windows API documentation, an illegal instruction sequence should generate
|
|
// the 0xC000001C exception code. However, real world experience shows that occasionnaly
|
|
// the execution of an illegal instruction can generate the exception code 0xC000001E. This
|
|
// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
|
|
|
|
#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
|
|
|
|
// From "Execution Protection in the Windows Operating System" draft 0.35
|
|
// Once a system header becomes available, the "real" define should be
|
|
// included or copied here.
|
|
#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
|
|
|
|
// Handle NAT Bit consumption on IA64.
|
|
#ifdef _M_IA64
|
|
#define EXCEPTION_REG_NAT_CONSUMPTION STATUS_REG_NAT_CONSUMPTION
|
|
#endif
|
|
|
|
// Windows Vista/2008 heap corruption check
|
|
#define EXCEPTION_HEAP_CORRUPTION 0xC0000374
|
|
|
|
#define def_excpt(val) #val, val
|
|
|
|
struct siglabel {
|
|
char *name;
|
|
int number;
|
|
};
|
|
|
|
// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
|
|
// C++ compiler contain this error code. Because this is a compiler-generated
|
|
// error, the code is not listed in the Win32 API header files.
|
|
// The code is actually a cryptic mnemonic device, with the initial "E"
|
|
// standing for "exception" and the final 3 bytes (0x6D7363) representing the
|
|
// ASCII values of "msc".
|
|
|
|
#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION 0xE06D7363
|
|
|
|
|
|
struct siglabel exceptlabels[] = {
|
|
def_excpt(EXCEPTION_ACCESS_VIOLATION),
|
|
def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
|
|
def_excpt(EXCEPTION_BREAKPOINT),
|
|
def_excpt(EXCEPTION_SINGLE_STEP),
|
|
def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
|
|
def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
|
|
def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
|
|
def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
|
|
def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
|
|
def_excpt(EXCEPTION_FLT_OVERFLOW),
|
|
def_excpt(EXCEPTION_FLT_STACK_CHECK),
|
|
def_excpt(EXCEPTION_FLT_UNDERFLOW),
|
|
def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
|
|
def_excpt(EXCEPTION_INT_OVERFLOW),
|
|
def_excpt(EXCEPTION_PRIV_INSTRUCTION),
|
|
def_excpt(EXCEPTION_IN_PAGE_ERROR),
|
|
def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
|
|
def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
|
|
def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
|
|
def_excpt(EXCEPTION_STACK_OVERFLOW),
|
|
def_excpt(EXCEPTION_INVALID_DISPOSITION),
|
|
def_excpt(EXCEPTION_GUARD_PAGE),
|
|
def_excpt(EXCEPTION_INVALID_HANDLE),
|
|
def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
|
|
def_excpt(EXCEPTION_HEAP_CORRUPTION),
|
|
#ifdef _M_IA64
|
|
def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
|
|
#endif
|
|
NULL, 0
|
|
};
|
|
|
|
const char* os::exception_name(int exception_code, char *buf, size_t size) {
|
|
for (int i = 0; exceptlabels[i].name != NULL; i++) {
|
|
if (exceptlabels[i].number == exception_code) {
|
|
jio_snprintf(buf, size, "%s", exceptlabels[i].name);
|
|
return buf;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
|
|
// handle exception caused by idiv; should only happen for -MinInt/-1
|
|
// (division by zero is handled explicitly)
|
|
#ifdef _M_IA64
|
|
assert(0, "Fix Handle_IDiv_Exception");
|
|
#elif _M_AMD64
|
|
PCONTEXT ctx = exceptionInfo->ContextRecord;
|
|
address pc = (address)ctx->Rip;
|
|
assert(pc[0] == 0xF7, "not an idiv opcode");
|
|
assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
|
|
assert(ctx->Rax == min_jint, "unexpected idiv exception");
|
|
// set correct result values and continue after idiv instruction
|
|
ctx->Rip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
|
|
ctx->Rax = (DWORD)min_jint; // result
|
|
ctx->Rdx = (DWORD)0; // remainder
|
|
// Continue the execution
|
|
#else
|
|
PCONTEXT ctx = exceptionInfo->ContextRecord;
|
|
address pc = (address)ctx->Eip;
|
|
assert(pc[0] == 0xF7, "not an idiv opcode");
|
|
assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
|
|
assert(ctx->Eax == min_jint, "unexpected idiv exception");
|
|
// set correct result values and continue after idiv instruction
|
|
ctx->Eip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
|
|
ctx->Eax = (DWORD)min_jint; // result
|
|
ctx->Edx = (DWORD)0; // remainder
|
|
// Continue the execution
|
|
#endif
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
|
|
#ifndef _WIN64
|
|
//-----------------------------------------------------------------------------
|
|
LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
|
|
// handle exception caused by native method modifying control word
|
|
PCONTEXT ctx = exceptionInfo->ContextRecord;
|
|
DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
|
|
|
|
switch (exception_code) {
|
|
case EXCEPTION_FLT_DENORMAL_OPERAND:
|
|
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
|
|
case EXCEPTION_FLT_INEXACT_RESULT:
|
|
case EXCEPTION_FLT_INVALID_OPERATION:
|
|
case EXCEPTION_FLT_OVERFLOW:
|
|
case EXCEPTION_FLT_STACK_CHECK:
|
|
case EXCEPTION_FLT_UNDERFLOW:
|
|
jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
|
|
if (fp_control_word != ctx->FloatSave.ControlWord) {
|
|
// Restore FPCW and mask out FLT exceptions
|
|
ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
|
|
// Mask out pending FLT exceptions
|
|
ctx->FloatSave.StatusWord &= 0xffffff00;
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
}
|
|
|
|
if (prev_uef_handler != NULL) {
|
|
// We didn't handle this exception so pass it to the previous
|
|
// UnhandledExceptionFilter.
|
|
return (prev_uef_handler)(exceptionInfo);
|
|
}
|
|
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
#else //_WIN64
|
|
/*
|
|
On Windows, the mxcsr control bits are non-volatile across calls
|
|
See also CR 6192333
|
|
If EXCEPTION_FLT_* happened after some native method modified
|
|
mxcsr - it is not a jvm fault.
|
|
However should we decide to restore of mxcsr after a faulty
|
|
native method we can uncomment following code
|
|
jint MxCsr = INITIAL_MXCSR;
|
|
// we can't use StubRoutines::addr_mxcsr_std()
|
|
// because in Win64 mxcsr is not saved there
|
|
if (MxCsr != ctx->MxCsr) {
|
|
ctx->MxCsr = MxCsr;
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
|
|
*/
|
|
#endif //_WIN64
|
|
|
|
|
|
// Fatal error reporting is single threaded so we can make this a
|
|
// static and preallocated. If it's more than MAX_PATH silently ignore
|
|
// it.
|
|
static char saved_error_file[MAX_PATH] = {0};
|
|
|
|
void os::set_error_file(const char *logfile) {
|
|
if (strlen(logfile) <= MAX_PATH) {
|
|
strncpy(saved_error_file, logfile, MAX_PATH);
|
|
}
|
|
}
|
|
|
|
static inline void report_error(Thread* t, DWORD exception_code,
|
|
address addr, void* siginfo, void* context) {
|
|
VMError err(t, exception_code, addr, siginfo, context);
|
|
err.report_and_die();
|
|
|
|
// If UseOsErrorReporting, this will return here and save the error file
|
|
// somewhere where we can find it in the minidump.
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
|
|
if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
|
|
DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
|
|
#ifdef _M_IA64
|
|
// On Itanium, we need the "precise pc", which has the slot number coded
|
|
// into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
|
|
address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
|
|
// Convert the pc to "Unix format", which has the slot number coded
|
|
// into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
|
|
// This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
|
|
// information is saved in the Unix format.
|
|
address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
|
|
#elif _M_AMD64
|
|
address pc = (address) exceptionInfo->ContextRecord->Rip;
|
|
#else
|
|
address pc = (address) exceptionInfo->ContextRecord->Eip;
|
|
#endif
|
|
Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady
|
|
|
|
// Handle SafeFetch32 and SafeFetchN exceptions.
|
|
if (StubRoutines::is_safefetch_fault(pc)) {
|
|
return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
|
|
}
|
|
|
|
#ifndef _WIN64
|
|
// Execution protection violation - win32 running on AMD64 only
|
|
// Handled first to avoid misdiagnosis as a "normal" access violation;
|
|
// This is safe to do because we have a new/unique ExceptionInformation
|
|
// code for this condition.
|
|
if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
|
|
PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
|
|
int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
|
|
address addr = (address) exceptionRecord->ExceptionInformation[1];
|
|
|
|
if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
|
|
int page_size = os::vm_page_size();
|
|
|
|
// Make sure the pc and the faulting address are sane.
|
|
//
|
|
// If an instruction spans a page boundary, and the page containing
|
|
// the beginning of the instruction is executable but the following
|
|
// page is not, the pc and the faulting address might be slightly
|
|
// different - we still want to unguard the 2nd page in this case.
|
|
//
|
|
// 15 bytes seems to be a (very) safe value for max instruction size.
|
|
bool pc_is_near_addr =
|
|
(pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
|
|
bool instr_spans_page_boundary =
|
|
(align_size_down((intptr_t) pc ^ (intptr_t) addr,
|
|
(intptr_t) page_size) > 0);
|
|
|
|
if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
|
|
static volatile address last_addr =
|
|
(address) os::non_memory_address_word();
|
|
|
|
// In conservative mode, don't unguard unless the address is in the VM
|
|
if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
|
|
(UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
|
|
|
|
// Set memory to RWX and retry
|
|
address page_start =
|
|
(address) align_size_down((intptr_t) addr, (intptr_t) page_size);
|
|
bool res = os::protect_memory((char*) page_start, page_size,
|
|
os::MEM_PROT_RWX);
|
|
|
|
if (PrintMiscellaneous && Verbose) {
|
|
char buf[256];
|
|
jio_snprintf(buf, sizeof(buf), "Execution protection violation "
|
|
"at " INTPTR_FORMAT
|
|
", unguarding " INTPTR_FORMAT ": %s", addr,
|
|
page_start, (res ? "success" : strerror(errno)));
|
|
tty->print_raw_cr(buf);
|
|
}
|
|
|
|
// Set last_addr so if we fault again at the same address, we don't
|
|
// end up in an endless loop.
|
|
//
|
|
// There are two potential complications here. Two threads trapping
|
|
// at the same address at the same time could cause one of the
|
|
// threads to think it already unguarded, and abort the VM. Likely
|
|
// very rare.
|
|
//
|
|
// The other race involves two threads alternately trapping at
|
|
// different addresses and failing to unguard the page, resulting in
|
|
// an endless loop. This condition is probably even more unlikely
|
|
// than the first.
|
|
//
|
|
// Although both cases could be avoided by using locks or thread
|
|
// local last_addr, these solutions are unnecessary complication:
|
|
// this handler is a best-effort safety net, not a complete solution.
|
|
// It is disabled by default and should only be used as a workaround
|
|
// in case we missed any no-execute-unsafe VM code.
|
|
|
|
last_addr = addr;
|
|
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
}
|
|
|
|
// Last unguard failed or not unguarding
|
|
tty->print_raw_cr("Execution protection violation");
|
|
report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
|
|
exceptionInfo->ContextRecord);
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
}
|
|
#endif // _WIN64
|
|
|
|
// Check to see if we caught the safepoint code in the
|
|
// process of write protecting the memory serialization page.
|
|
// It write enables the page immediately after protecting it
|
|
// so just return.
|
|
if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
|
|
JavaThread* thread = (JavaThread*) t;
|
|
PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
|
|
address addr = (address) exceptionRecord->ExceptionInformation[1];
|
|
if ( os::is_memory_serialize_page(thread, addr) ) {
|
|
// Block current thread until the memory serialize page permission restored.
|
|
os::block_on_serialize_page_trap();
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
}
|
|
|
|
if (t != NULL && t->is_Java_thread()) {
|
|
JavaThread* thread = (JavaThread*) t;
|
|
bool in_java = thread->thread_state() == _thread_in_Java;
|
|
|
|
// Handle potential stack overflows up front.
|
|
if (exception_code == EXCEPTION_STACK_OVERFLOW) {
|
|
if (os::uses_stack_guard_pages()) {
|
|
#ifdef _M_IA64
|
|
// Use guard page for register stack.
|
|
PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
|
|
address addr = (address) exceptionRecord->ExceptionInformation[1];
|
|
// Check for a register stack overflow on Itanium
|
|
if (thread->addr_inside_register_stack_red_zone(addr)) {
|
|
// Fatal red zone violation happens if the Java program
|
|
// catches a StackOverflow error and does so much processing
|
|
// that it runs beyond the unprotected yellow guard zone. As
|
|
// a result, we are out of here.
|
|
fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
|
|
} else if(thread->addr_inside_register_stack(addr)) {
|
|
// Disable the yellow zone which sets the state that
|
|
// we've got a stack overflow problem.
|
|
if (thread->stack_yellow_zone_enabled()) {
|
|
thread->disable_stack_yellow_zone();
|
|
}
|
|
// Give us some room to process the exception.
|
|
thread->disable_register_stack_guard();
|
|
// Tracing with +Verbose.
|
|
if (Verbose) {
|
|
tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
|
|
tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
|
|
tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
|
|
tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
|
|
thread->register_stack_base(),
|
|
thread->register_stack_base() + thread->stack_size());
|
|
}
|
|
|
|
// Reguard the permanent register stack red zone just to be sure.
|
|
// We saw Windows silently disabling this without telling us.
|
|
thread->enable_register_stack_red_zone();
|
|
|
|
return Handle_Exception(exceptionInfo,
|
|
SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
|
|
}
|
|
#endif
|
|
if (thread->stack_yellow_zone_enabled()) {
|
|
// Yellow zone violation. The o/s has unprotected the first yellow
|
|
// zone page for us. Note: must call disable_stack_yellow_zone to
|
|
// update the enabled status, even if the zone contains only one page.
|
|
thread->disable_stack_yellow_zone();
|
|
// If not in java code, return and hope for the best.
|
|
return in_java ? Handle_Exception(exceptionInfo,
|
|
SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
|
|
: EXCEPTION_CONTINUE_EXECUTION;
|
|
} else {
|
|
// Fatal red zone violation.
|
|
thread->disable_stack_red_zone();
|
|
tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
|
|
report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
|
|
exceptionInfo->ContextRecord);
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
} else if (in_java) {
|
|
// JVM-managed guard pages cannot be used on win95/98. The o/s provides
|
|
// a one-time-only guard page, which it has released to us. The next
|
|
// stack overflow on this thread will result in an ACCESS_VIOLATION.
|
|
return Handle_Exception(exceptionInfo,
|
|
SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
|
|
} else {
|
|
// Can only return and hope for the best. Further stack growth will
|
|
// result in an ACCESS_VIOLATION.
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
} else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
|
|
// Either stack overflow or null pointer exception.
|
|
if (in_java) {
|
|
PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
|
|
address addr = (address) exceptionRecord->ExceptionInformation[1];
|
|
address stack_end = thread->stack_base() - thread->stack_size();
|
|
if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
|
|
// Stack overflow.
|
|
assert(!os::uses_stack_guard_pages(),
|
|
"should be caught by red zone code above.");
|
|
return Handle_Exception(exceptionInfo,
|
|
SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
|
|
}
|
|
//
|
|
// Check for safepoint polling and implicit null
|
|
// We only expect null pointers in the stubs (vtable)
|
|
// the rest are checked explicitly now.
|
|
//
|
|
CodeBlob* cb = CodeCache::find_blob(pc);
|
|
if (cb != NULL) {
|
|
if (os::is_poll_address(addr)) {
|
|
address stub = SharedRuntime::get_poll_stub(pc);
|
|
return Handle_Exception(exceptionInfo, stub);
|
|
}
|
|
}
|
|
{
|
|
#ifdef _WIN64
|
|
//
|
|
// If it's a legal stack address map the entire region in
|
|
//
|
|
PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
|
|
address addr = (address) exceptionRecord->ExceptionInformation[1];
|
|
if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
|
|
addr = (address)((uintptr_t)addr &
|
|
(~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
|
|
os::commit_memory((char *)addr, thread->stack_base() - addr,
|
|
!ExecMem);
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// Null pointer exception.
|
|
#ifdef _M_IA64
|
|
// Process implicit null checks in compiled code. Note: Implicit null checks
|
|
// can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
|
|
if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
|
|
CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
|
|
// Handle implicit null check in UEP method entry
|
|
if (cb && (cb->is_frame_complete_at(pc) ||
|
|
(cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
|
|
if (Verbose) {
|
|
intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
|
|
tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
|
|
tty->print_cr(" to addr " INTPTR_FORMAT, addr);
|
|
tty->print_cr(" bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
|
|
*(bundle_start + 1), *bundle_start);
|
|
}
|
|
return Handle_Exception(exceptionInfo,
|
|
SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
|
|
}
|
|
}
|
|
|
|
// Implicit null checks were processed above. Hence, we should not reach
|
|
// here in the usual case => die!
|
|
if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
|
|
report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
|
|
exceptionInfo->ContextRecord);
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
|
|
#else // !IA64
|
|
|
|
// Windows 98 reports faulting addresses incorrectly
|
|
if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
|
|
!os::win32::is_nt()) {
|
|
address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
|
|
if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
|
|
}
|
|
report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
|
|
exceptionInfo->ContextRecord);
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef _WIN64
|
|
// Special care for fast JNI field accessors.
|
|
// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
|
|
// in and the heap gets shrunk before the field access.
|
|
if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
|
|
address addr = JNI_FastGetField::find_slowcase_pc(pc);
|
|
if (addr != (address)-1) {
|
|
return Handle_Exception(exceptionInfo, addr);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Stack overflow or null pointer exception in native code.
|
|
report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
|
|
exceptionInfo->ContextRecord);
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
} // /EXCEPTION_ACCESS_VIOLATION
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
#if defined _M_IA64
|
|
else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
|
|
exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
|
|
M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
|
|
|
|
// Compiled method patched to be non entrant? Following conditions must apply:
|
|
// 1. must be first instruction in bundle
|
|
// 2. must be a break instruction with appropriate code
|
|
if((((uint64_t) pc & 0x0F) == 0) &&
|
|
(((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
|
|
return Handle_Exception(exceptionInfo,
|
|
(address)SharedRuntime::get_handle_wrong_method_stub());
|
|
}
|
|
} // /EXCEPTION_ILLEGAL_INSTRUCTION
|
|
#endif
|
|
|
|
|
|
if (in_java) {
|
|
switch (exception_code) {
|
|
case EXCEPTION_INT_DIVIDE_BY_ZERO:
|
|
return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
|
|
|
|
case EXCEPTION_INT_OVERFLOW:
|
|
return Handle_IDiv_Exception(exceptionInfo);
|
|
|
|
} // switch
|
|
}
|
|
#ifndef _WIN64
|
|
if (((thread->thread_state() == _thread_in_Java) ||
|
|
(thread->thread_state() == _thread_in_native)) &&
|
|
exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
|
|
{
|
|
LONG result=Handle_FLT_Exception(exceptionInfo);
|
|
if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
|
|
}
|
|
#endif //_WIN64
|
|
}
|
|
|
|
if (exception_code != EXCEPTION_BREAKPOINT) {
|
|
report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
|
|
exceptionInfo->ContextRecord);
|
|
}
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
|
|
#ifndef _WIN64
|
|
// Special care for fast JNI accessors.
|
|
// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
|
|
// the heap gets shrunk before the field access.
|
|
// Need to install our own structured exception handler since native code may
|
|
// install its own.
|
|
LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
|
|
DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
|
|
if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
|
|
address pc = (address) exceptionInfo->ContextRecord->Eip;
|
|
address addr = JNI_FastGetField::find_slowcase_pc(pc);
|
|
if (addr != (address)-1) {
|
|
return Handle_Exception(exceptionInfo, addr);
|
|
}
|
|
}
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
|
|
#define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
|
|
Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
|
|
__try { \
|
|
return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
|
|
} __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
|
|
} \
|
|
return 0; \
|
|
}
|
|
|
|
DEFINE_FAST_GETFIELD(jboolean, bool, Boolean)
|
|
DEFINE_FAST_GETFIELD(jbyte, byte, Byte)
|
|
DEFINE_FAST_GETFIELD(jchar, char, Char)
|
|
DEFINE_FAST_GETFIELD(jshort, short, Short)
|
|
DEFINE_FAST_GETFIELD(jint, int, Int)
|
|
DEFINE_FAST_GETFIELD(jlong, long, Long)
|
|
DEFINE_FAST_GETFIELD(jfloat, float, Float)
|
|
DEFINE_FAST_GETFIELD(jdouble, double, Double)
|
|
|
|
address os::win32::fast_jni_accessor_wrapper(BasicType type) {
|
|
switch (type) {
|
|
case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
|
|
case T_BYTE: return (address)jni_fast_GetByteField_wrapper;
|
|
case T_CHAR: return (address)jni_fast_GetCharField_wrapper;
|
|
case T_SHORT: return (address)jni_fast_GetShortField_wrapper;
|
|
case T_INT: return (address)jni_fast_GetIntField_wrapper;
|
|
case T_LONG: return (address)jni_fast_GetLongField_wrapper;
|
|
case T_FLOAT: return (address)jni_fast_GetFloatField_wrapper;
|
|
case T_DOUBLE: return (address)jni_fast_GetDoubleField_wrapper;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
return (address)-1;
|
|
}
|
|
#endif
|
|
|
|
// Virtual Memory
|
|
|
|
int os::vm_page_size() { return os::win32::vm_page_size(); }
|
|
int os::vm_allocation_granularity() {
|
|
return os::win32::vm_allocation_granularity();
|
|
}
|
|
|
|
// Windows large page support is available on Windows 2003. In order to use
|
|
// large page memory, the administrator must first assign additional privilege
|
|
// to the user:
|
|
// + select Control Panel -> Administrative Tools -> Local Security Policy
|
|
// + select Local Policies -> User Rights Assignment
|
|
// + double click "Lock pages in memory", add users and/or groups
|
|
// + reboot
|
|
// Note the above steps are needed for administrator as well, as administrators
|
|
// by default do not have the privilege to lock pages in memory.
|
|
//
|
|
// Note about Windows 2003: although the API supports committing large page
|
|
// memory on a page-by-page basis and VirtualAlloc() returns success under this
|
|
// scenario, I found through experiment it only uses large page if the entire
|
|
// memory region is reserved and committed in a single VirtualAlloc() call.
|
|
// This makes Windows large page support more or less like Solaris ISM, in
|
|
// that the entire heap must be committed upfront. This probably will change
|
|
// in the future, if so the code below needs to be revisited.
|
|
|
|
#ifndef MEM_LARGE_PAGES
|
|
#define MEM_LARGE_PAGES 0x20000000
|
|
#endif
|
|
|
|
static HANDLE _hProcess;
|
|
static HANDLE _hToken;
|
|
|
|
// Container for NUMA node list info
|
|
class NUMANodeListHolder {
|
|
private:
|
|
int *_numa_used_node_list; // allocated below
|
|
int _numa_used_node_count;
|
|
|
|
void free_node_list() {
|
|
if (_numa_used_node_list != NULL) {
|
|
FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
|
|
}
|
|
}
|
|
|
|
public:
|
|
NUMANodeListHolder() {
|
|
_numa_used_node_count = 0;
|
|
_numa_used_node_list = NULL;
|
|
// do rest of initialization in build routine (after function pointers are set up)
|
|
}
|
|
|
|
~NUMANodeListHolder() {
|
|
free_node_list();
|
|
}
|
|
|
|
bool build() {
|
|
DWORD_PTR proc_aff_mask;
|
|
DWORD_PTR sys_aff_mask;
|
|
if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
|
|
ULONG highest_node_number;
|
|
if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
|
|
free_node_list();
|
|
_numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
|
|
for (unsigned int i = 0; i <= highest_node_number; i++) {
|
|
ULONGLONG proc_mask_numa_node;
|
|
if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
|
|
if ((proc_aff_mask & proc_mask_numa_node)!=0) {
|
|
_numa_used_node_list[_numa_used_node_count++] = i;
|
|
}
|
|
}
|
|
return (_numa_used_node_count > 1);
|
|
}
|
|
|
|
int get_count() {return _numa_used_node_count;}
|
|
int get_node_list_entry(int n) {
|
|
// for indexes out of range, returns -1
|
|
return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
|
|
}
|
|
|
|
} numa_node_list_holder;
|
|
|
|
|
|
|
|
static size_t _large_page_size = 0;
|
|
|
|
static bool resolve_functions_for_large_page_init() {
|
|
return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
|
|
os::Advapi32Dll::AdvapiAvailable();
|
|
}
|
|
|
|
static bool request_lock_memory_privilege() {
|
|
_hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
|
|
os::current_process_id());
|
|
|
|
LUID luid;
|
|
if (_hProcess != NULL &&
|
|
os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
|
|
os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
|
|
|
|
TOKEN_PRIVILEGES tp;
|
|
tp.PrivilegeCount = 1;
|
|
tp.Privileges[0].Luid = luid;
|
|
tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
|
|
|
|
// AdjustTokenPrivileges() may return TRUE even when it couldn't change the
|
|
// privilege. Check GetLastError() too. See MSDN document.
|
|
if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
|
|
(GetLastError() == ERROR_SUCCESS)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void cleanup_after_large_page_init() {
|
|
if (_hProcess) CloseHandle(_hProcess);
|
|
_hProcess = NULL;
|
|
if (_hToken) CloseHandle(_hToken);
|
|
_hToken = NULL;
|
|
}
|
|
|
|
static bool numa_interleaving_init() {
|
|
bool success = false;
|
|
bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
|
|
|
|
// print a warning if UseNUMAInterleaving flag is specified on command line
|
|
bool warn_on_failure = use_numa_interleaving_specified;
|
|
# define WARN(msg) if (warn_on_failure) { warning(msg); }
|
|
|
|
// NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
|
|
size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
|
|
NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
|
|
|
|
if (os::Kernel32Dll::NumaCallsAvailable()) {
|
|
if (numa_node_list_holder.build()) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
|
|
for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
|
|
tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
|
|
}
|
|
tty->print("\n");
|
|
}
|
|
success = true;
|
|
} else {
|
|
WARN("Process does not cover multiple NUMA nodes.");
|
|
}
|
|
} else {
|
|
WARN("NUMA Interleaving is not supported by the operating system.");
|
|
}
|
|
if (!success) {
|
|
if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
|
|
}
|
|
return success;
|
|
#undef WARN
|
|
}
|
|
|
|
// this routine is used whenever we need to reserve a contiguous VA range
|
|
// but we need to make separate VirtualAlloc calls for each piece of the range
|
|
// Reasons for doing this:
|
|
// * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
|
|
// * UseNUMAInterleaving requires a separate node for each piece
|
|
static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
|
|
bool should_inject_error=false) {
|
|
char * p_buf;
|
|
// note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
|
|
size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
|
|
size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
|
|
|
|
// first reserve enough address space in advance since we want to be
|
|
// able to break a single contiguous virtual address range into multiple
|
|
// large page commits but WS2003 does not allow reserving large page space
|
|
// so we just use 4K pages for reserve, this gives us a legal contiguous
|
|
// address space. then we will deallocate that reservation, and re alloc
|
|
// using large pages
|
|
const size_t size_of_reserve = bytes + chunk_size;
|
|
if (bytes > size_of_reserve) {
|
|
// Overflowed.
|
|
return NULL;
|
|
}
|
|
p_buf = (char *) VirtualAlloc(addr,
|
|
size_of_reserve, // size of Reserve
|
|
MEM_RESERVE,
|
|
PAGE_READWRITE);
|
|
// If reservation failed, return NULL
|
|
if (p_buf == NULL) return NULL;
|
|
MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, mtNone, CALLER_PC);
|
|
os::release_memory(p_buf, bytes + chunk_size);
|
|
|
|
// we still need to round up to a page boundary (in case we are using large pages)
|
|
// but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
|
|
// instead we handle this in the bytes_to_rq computation below
|
|
p_buf = (char *) align_size_up((size_t)p_buf, page_size);
|
|
|
|
// now go through and allocate one chunk at a time until all bytes are
|
|
// allocated
|
|
size_t bytes_remaining = bytes;
|
|
// An overflow of align_size_up() would have been caught above
|
|
// in the calculation of size_of_reserve.
|
|
char * next_alloc_addr = p_buf;
|
|
HANDLE hProc = GetCurrentProcess();
|
|
|
|
#ifdef ASSERT
|
|
// Variable for the failure injection
|
|
long ran_num = os::random();
|
|
size_t fail_after = ran_num % bytes;
|
|
#endif
|
|
|
|
int count=0;
|
|
while (bytes_remaining) {
|
|
// select bytes_to_rq to get to the next chunk_size boundary
|
|
|
|
size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
|
|
// Note allocate and commit
|
|
char * p_new;
|
|
|
|
#ifdef ASSERT
|
|
bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
|
|
#else
|
|
const bool inject_error_now = false;
|
|
#endif
|
|
|
|
if (inject_error_now) {
|
|
p_new = NULL;
|
|
} else {
|
|
if (!UseNUMAInterleaving) {
|
|
p_new = (char *) VirtualAlloc(next_alloc_addr,
|
|
bytes_to_rq,
|
|
flags,
|
|
prot);
|
|
} else {
|
|
// get the next node to use from the used_node_list
|
|
assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
|
|
DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
|
|
p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
|
|
next_alloc_addr,
|
|
bytes_to_rq,
|
|
flags,
|
|
prot,
|
|
node);
|
|
}
|
|
}
|
|
|
|
if (p_new == NULL) {
|
|
// Free any allocated pages
|
|
if (next_alloc_addr > p_buf) {
|
|
// Some memory was committed so release it.
|
|
size_t bytes_to_release = bytes - bytes_remaining;
|
|
// NMT has yet to record any individual blocks, so it
|
|
// need to create a dummy 'reserve' record to match
|
|
// the release.
|
|
MemTracker::record_virtual_memory_reserve((address)p_buf,
|
|
bytes_to_release, mtNone, CALLER_PC);
|
|
os::release_memory(p_buf, bytes_to_release);
|
|
}
|
|
#ifdef ASSERT
|
|
if (should_inject_error) {
|
|
if (TracePageSizes && Verbose) {
|
|
tty->print_cr("Reserving pages individually failed.");
|
|
}
|
|
}
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
bytes_remaining -= bytes_to_rq;
|
|
next_alloc_addr += bytes_to_rq;
|
|
count++;
|
|
}
|
|
// Although the memory is allocated individually, it is returned as one.
|
|
// NMT records it as one block.
|
|
address pc = CALLER_PC;
|
|
if ((flags & MEM_COMMIT) != 0) {
|
|
MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, mtNone, pc);
|
|
} else {
|
|
MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, mtNone, pc);
|
|
}
|
|
|
|
// made it this far, success
|
|
return p_buf;
|
|
}
|
|
|
|
|
|
|
|
void os::large_page_init() {
|
|
if (!UseLargePages) return;
|
|
|
|
// print a warning if any large page related flag is specified on command line
|
|
bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
|
|
!FLAG_IS_DEFAULT(LargePageSizeInBytes);
|
|
bool success = false;
|
|
|
|
# define WARN(msg) if (warn_on_failure) { warning(msg); }
|
|
if (resolve_functions_for_large_page_init()) {
|
|
if (request_lock_memory_privilege()) {
|
|
size_t s = os::Kernel32Dll::GetLargePageMinimum();
|
|
if (s) {
|
|
#if defined(IA32) || defined(AMD64)
|
|
if (s > 4*M || LargePageSizeInBytes > 4*M) {
|
|
WARN("JVM cannot use large pages bigger than 4mb.");
|
|
} else {
|
|
#endif
|
|
if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
|
|
_large_page_size = LargePageSizeInBytes;
|
|
} else {
|
|
_large_page_size = s;
|
|
}
|
|
success = true;
|
|
#if defined(IA32) || defined(AMD64)
|
|
}
|
|
#endif
|
|
} else {
|
|
WARN("Large page is not supported by the processor.");
|
|
}
|
|
} else {
|
|
WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
|
|
}
|
|
} else {
|
|
WARN("Large page is not supported by the operating system.");
|
|
}
|
|
#undef WARN
|
|
|
|
const size_t default_page_size = (size_t) vm_page_size();
|
|
if (success && _large_page_size > default_page_size) {
|
|
_page_sizes[0] = _large_page_size;
|
|
_page_sizes[1] = default_page_size;
|
|
_page_sizes[2] = 0;
|
|
}
|
|
|
|
cleanup_after_large_page_init();
|
|
UseLargePages = success;
|
|
}
|
|
|
|
// On win32, one cannot release just a part of reserved memory, it's an
|
|
// all or nothing deal. When we split a reservation, we must break the
|
|
// reservation into two reservations.
|
|
void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
|
|
bool realloc) {
|
|
if (size > 0) {
|
|
release_memory(base, size);
|
|
if (realloc) {
|
|
reserve_memory(split, base);
|
|
}
|
|
if (size != split) {
|
|
reserve_memory(size - split, base + split);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Multiple threads can race in this code but it's not possible to unmap small sections of
|
|
// virtual space to get requested alignment, like posix-like os's.
|
|
// Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
|
|
char* os::reserve_memory_aligned(size_t size, size_t alignment) {
|
|
assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
|
|
"Alignment must be a multiple of allocation granularity (page size)");
|
|
assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
|
|
|
|
size_t extra_size = size + alignment;
|
|
assert(extra_size >= size, "overflow, size is too large to allow alignment");
|
|
|
|
char* aligned_base = NULL;
|
|
|
|
do {
|
|
char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
|
|
if (extra_base == NULL) {
|
|
return NULL;
|
|
}
|
|
// Do manual alignment
|
|
aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
|
|
|
|
os::release_memory(extra_base, extra_size);
|
|
|
|
aligned_base = os::reserve_memory(size, aligned_base);
|
|
|
|
} while (aligned_base == NULL);
|
|
|
|
return aligned_base;
|
|
}
|
|
|
|
char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
|
|
assert((size_t)addr % os::vm_allocation_granularity() == 0,
|
|
"reserve alignment");
|
|
assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
|
|
char* res;
|
|
// note that if UseLargePages is on, all the areas that require interleaving
|
|
// will go thru reserve_memory_special rather than thru here.
|
|
bool use_individual = (UseNUMAInterleaving && !UseLargePages);
|
|
if (!use_individual) {
|
|
res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
|
|
} else {
|
|
elapsedTimer reserveTimer;
|
|
if( Verbose && PrintMiscellaneous ) reserveTimer.start();
|
|
// in numa interleaving, we have to allocate pages individually
|
|
// (well really chunks of NUMAInterleaveGranularity size)
|
|
res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
|
|
if (res == NULL) {
|
|
warning("NUMA page allocation failed");
|
|
}
|
|
if( Verbose && PrintMiscellaneous ) {
|
|
reserveTimer.stop();
|
|
tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
|
|
reserveTimer.milliseconds(), reserveTimer.ticks());
|
|
}
|
|
}
|
|
assert(res == NULL || addr == NULL || addr == res,
|
|
"Unexpected address from reserve.");
|
|
|
|
return res;
|
|
}
|
|
|
|
// Reserve memory at an arbitrary address, only if that area is
|
|
// available (and not reserved for something else).
|
|
char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
|
|
// Windows os::reserve_memory() fails of the requested address range is
|
|
// not avilable.
|
|
return reserve_memory(bytes, requested_addr);
|
|
}
|
|
|
|
size_t os::large_page_size() {
|
|
return _large_page_size;
|
|
}
|
|
|
|
bool os::can_commit_large_page_memory() {
|
|
// Windows only uses large page memory when the entire region is reserved
|
|
// and committed in a single VirtualAlloc() call. This may change in the
|
|
// future, but with Windows 2003 it's not possible to commit on demand.
|
|
return false;
|
|
}
|
|
|
|
bool os::can_execute_large_page_memory() {
|
|
return true;
|
|
}
|
|
|
|
char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
|
|
|
|
const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
|
|
const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
|
|
|
|
// with large pages, there are two cases where we need to use Individual Allocation
|
|
// 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
|
|
// 2) NUMA Interleaving is enabled, in which case we use a different node for each page
|
|
if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
|
|
if (TracePageSizes && Verbose) {
|
|
tty->print_cr("Reserving large pages individually.");
|
|
}
|
|
char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
|
|
if (p_buf == NULL) {
|
|
// give an appropriate warning message
|
|
if (UseNUMAInterleaving) {
|
|
warning("NUMA large page allocation failed, UseLargePages flag ignored");
|
|
}
|
|
if (UseLargePagesIndividualAllocation) {
|
|
warning("Individually allocated large pages failed, "
|
|
"use -XX:-UseLargePagesIndividualAllocation to turn off");
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
return p_buf;
|
|
|
|
} else {
|
|
// normal policy just allocate it all at once
|
|
DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
|
|
char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
|
|
if (res != NULL) {
|
|
address pc = CALLER_PC;
|
|
MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, mtNone, pc);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
}
|
|
|
|
bool os::release_memory_special(char* base, size_t bytes) {
|
|
assert(base != NULL, "Sanity check");
|
|
return release_memory(base, bytes);
|
|
}
|
|
|
|
void os::print_statistics() {
|
|
}
|
|
|
|
static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
|
|
int err = os::get_last_error();
|
|
char buf[256];
|
|
size_t buf_len = os::lasterror(buf, sizeof(buf));
|
|
warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
|
|
", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
|
|
exec, buf_len != 0 ? buf : "<no_error_string>", err);
|
|
}
|
|
|
|
bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
|
|
if (bytes == 0) {
|
|
// Don't bother the OS with noops.
|
|
return true;
|
|
}
|
|
assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
|
|
assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
|
|
// Don't attempt to print anything if the OS call fails. We're
|
|
// probably low on resources, so the print itself may cause crashes.
|
|
|
|
// unless we have NUMAInterleaving enabled, the range of a commit
|
|
// is always within a reserve covered by a single VirtualAlloc
|
|
// in that case we can just do a single commit for the requested size
|
|
if (!UseNUMAInterleaving) {
|
|
if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
|
|
NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
|
|
return false;
|
|
}
|
|
if (exec) {
|
|
DWORD oldprot;
|
|
// Windows doc says to use VirtualProtect to get execute permissions
|
|
if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
|
|
NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
} else {
|
|
|
|
// when NUMAInterleaving is enabled, the commit might cover a range that
|
|
// came from multiple VirtualAlloc reserves (using allocate_pages_individually).
|
|
// VirtualQuery can help us determine that. The RegionSize that VirtualQuery
|
|
// returns represents the number of bytes that can be committed in one step.
|
|
size_t bytes_remaining = bytes;
|
|
char * next_alloc_addr = addr;
|
|
while (bytes_remaining > 0) {
|
|
MEMORY_BASIC_INFORMATION alloc_info;
|
|
VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
|
|
size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
|
|
if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
|
|
PAGE_READWRITE) == NULL) {
|
|
NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
|
|
exec);)
|
|
return false;
|
|
}
|
|
if (exec) {
|
|
DWORD oldprot;
|
|
if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
|
|
PAGE_EXECUTE_READWRITE, &oldprot)) {
|
|
NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
|
|
exec);)
|
|
return false;
|
|
}
|
|
}
|
|
bytes_remaining -= bytes_to_rq;
|
|
next_alloc_addr += bytes_to_rq;
|
|
}
|
|
}
|
|
// if we made it this far, return true
|
|
return true;
|
|
}
|
|
|
|
bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
|
|
bool exec) {
|
|
// alignment_hint is ignored on this OS
|
|
return pd_commit_memory(addr, size, exec);
|
|
}
|
|
|
|
void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
|
|
const char* mesg) {
|
|
assert(mesg != NULL, "mesg must be specified");
|
|
if (!pd_commit_memory(addr, size, exec)) {
|
|
warn_fail_commit_memory(addr, size, exec);
|
|
vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
|
|
}
|
|
}
|
|
|
|
void os::pd_commit_memory_or_exit(char* addr, size_t size,
|
|
size_t alignment_hint, bool exec,
|
|
const char* mesg) {
|
|
// alignment_hint is ignored on this OS
|
|
pd_commit_memory_or_exit(addr, size, exec, mesg);
|
|
}
|
|
|
|
bool os::pd_uncommit_memory(char* addr, size_t bytes) {
|
|
if (bytes == 0) {
|
|
// Don't bother the OS with noops.
|
|
return true;
|
|
}
|
|
assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
|
|
assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
|
|
return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
|
|
}
|
|
|
|
bool os::pd_release_memory(char* addr, size_t bytes) {
|
|
return VirtualFree(addr, 0, MEM_RELEASE) != 0;
|
|
}
|
|
|
|
bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
|
|
return os::commit_memory(addr, size, !ExecMem);
|
|
}
|
|
|
|
bool os::remove_stack_guard_pages(char* addr, size_t size) {
|
|
return os::uncommit_memory(addr, size);
|
|
}
|
|
|
|
// Set protections specified
|
|
bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
|
|
bool is_committed) {
|
|
unsigned int p = 0;
|
|
switch (prot) {
|
|
case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
|
|
case MEM_PROT_READ: p = PAGE_READONLY; break;
|
|
case MEM_PROT_RW: p = PAGE_READWRITE; break;
|
|
case MEM_PROT_RWX: p = PAGE_EXECUTE_READWRITE; break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
DWORD old_status;
|
|
|
|
// Strange enough, but on Win32 one can change protection only for committed
|
|
// memory, not a big deal anyway, as bytes less or equal than 64K
|
|
if (!is_committed) {
|
|
commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
|
|
"cannot commit protection page");
|
|
}
|
|
// One cannot use os::guard_memory() here, as on Win32 guard page
|
|
// have different (one-shot) semantics, from MSDN on PAGE_GUARD:
|
|
//
|
|
// Pages in the region become guard pages. Any attempt to access a guard page
|
|
// causes the system to raise a STATUS_GUARD_PAGE exception and turn off
|
|
// the guard page status. Guard pages thus act as a one-time access alarm.
|
|
return VirtualProtect(addr, bytes, p, &old_status) != 0;
|
|
}
|
|
|
|
bool os::guard_memory(char* addr, size_t bytes) {
|
|
DWORD old_status;
|
|
return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
|
|
}
|
|
|
|
bool os::unguard_memory(char* addr, size_t bytes) {
|
|
DWORD old_status;
|
|
return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
|
|
}
|
|
|
|
void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
|
|
void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
|
|
void os::numa_make_global(char *addr, size_t bytes) { }
|
|
void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { }
|
|
bool os::numa_topology_changed() { return false; }
|
|
size_t os::numa_get_groups_num() { return MAX2(numa_node_list_holder.get_count(), 1); }
|
|
int os::numa_get_group_id() { return 0; }
|
|
size_t os::numa_get_leaf_groups(int *ids, size_t size) {
|
|
if (numa_node_list_holder.get_count() == 0 && size > 0) {
|
|
// Provide an answer for UMA systems
|
|
ids[0] = 0;
|
|
return 1;
|
|
} else {
|
|
// check for size bigger than actual groups_num
|
|
size = MIN2(size, numa_get_groups_num());
|
|
for (int i = 0; i < (int)size; i++) {
|
|
ids[i] = numa_node_list_holder.get_node_list_entry(i);
|
|
}
|
|
return size;
|
|
}
|
|
}
|
|
|
|
bool os::get_page_info(char *start, page_info* info) {
|
|
return false;
|
|
}
|
|
|
|
char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
|
|
return end;
|
|
}
|
|
|
|
char* os::non_memory_address_word() {
|
|
// Must never look like an address returned by reserve_memory,
|
|
// even in its subfields (as defined by the CPU immediate fields,
|
|
// if the CPU splits constants across multiple instructions).
|
|
return (char*)-1;
|
|
}
|
|
|
|
#define MAX_ERROR_COUNT 100
|
|
#define SYS_THREAD_ERROR 0xffffffffUL
|
|
|
|
void os::pd_start_thread(Thread* thread) {
|
|
DWORD ret = ResumeThread(thread->osthread()->thread_handle());
|
|
// Returns previous suspend state:
|
|
// 0: Thread was not suspended
|
|
// 1: Thread is running now
|
|
// >1: Thread is still suspended.
|
|
assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
|
|
}
|
|
|
|
class HighResolutionInterval : public CHeapObj<mtThread> {
|
|
// The default timer resolution seems to be 10 milliseconds.
|
|
// (Where is this written down?)
|
|
// If someone wants to sleep for only a fraction of the default,
|
|
// then we set the timer resolution down to 1 millisecond for
|
|
// the duration of their interval.
|
|
// We carefully set the resolution back, since otherwise we
|
|
// seem to incur an overhead (3%?) that we don't need.
|
|
// CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
|
|
// Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
|
|
// Alternatively, we could compute the relative error (503/500 = .6%) and only use
|
|
// timeBeginPeriod() if the relative error exceeded some threshold.
|
|
// timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
|
|
// to decreased efficiency related to increased timer "tick" rates. We want to minimize
|
|
// (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
|
|
// resolution timers running.
|
|
private:
|
|
jlong resolution;
|
|
public:
|
|
HighResolutionInterval(jlong ms) {
|
|
resolution = ms % 10L;
|
|
if (resolution != 0) {
|
|
MMRESULT result = timeBeginPeriod(1L);
|
|
}
|
|
}
|
|
~HighResolutionInterval() {
|
|
if (resolution != 0) {
|
|
MMRESULT result = timeEndPeriod(1L);
|
|
}
|
|
resolution = 0L;
|
|
}
|
|
};
|
|
|
|
int os::sleep(Thread* thread, jlong ms, bool interruptable) {
|
|
jlong limit = (jlong) MAXDWORD;
|
|
|
|
while(ms > limit) {
|
|
int res;
|
|
if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
|
|
return res;
|
|
ms -= limit;
|
|
}
|
|
|
|
assert(thread == Thread::current(), "thread consistency check");
|
|
OSThread* osthread = thread->osthread();
|
|
OSThreadWaitState osts(osthread, false /* not Object.wait() */);
|
|
int result;
|
|
if (interruptable) {
|
|
assert(thread->is_Java_thread(), "must be java thread");
|
|
JavaThread *jt = (JavaThread *) thread;
|
|
ThreadBlockInVM tbivm(jt);
|
|
|
|
jt->set_suspend_equivalent();
|
|
// cleared by handle_special_suspend_equivalent_condition() or
|
|
// java_suspend_self() via check_and_wait_while_suspended()
|
|
|
|
HANDLE events[1];
|
|
events[0] = osthread->interrupt_event();
|
|
HighResolutionInterval *phri=NULL;
|
|
if(!ForceTimeHighResolution)
|
|
phri = new HighResolutionInterval( ms );
|
|
if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
|
|
result = OS_TIMEOUT;
|
|
} else {
|
|
ResetEvent(osthread->interrupt_event());
|
|
osthread->set_interrupted(false);
|
|
result = OS_INTRPT;
|
|
}
|
|
delete phri; //if it is NULL, harmless
|
|
|
|
// were we externally suspended while we were waiting?
|
|
jt->check_and_wait_while_suspended();
|
|
} else {
|
|
assert(!thread->is_Java_thread(), "must not be java thread");
|
|
Sleep((long) ms);
|
|
result = OS_TIMEOUT;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Sleep forever; naked call to OS-specific sleep; use with CAUTION
|
|
void os::infinite_sleep() {
|
|
while (true) { // sleep forever ...
|
|
Sleep(100000); // ... 100 seconds at a time
|
|
}
|
|
}
|
|
|
|
typedef BOOL (WINAPI * STTSignature)(void) ;
|
|
|
|
os::YieldResult os::NakedYield() {
|
|
// Use either SwitchToThread() or Sleep(0)
|
|
// Consider passing back the return value from SwitchToThread().
|
|
if (os::Kernel32Dll::SwitchToThreadAvailable()) {
|
|
return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
|
|
} else {
|
|
Sleep(0);
|
|
}
|
|
return os::YIELD_UNKNOWN ;
|
|
}
|
|
|
|
void os::yield() { os::NakedYield(); }
|
|
|
|
void os::yield_all(int attempts) {
|
|
// Yields to all threads, including threads with lower priorities
|
|
Sleep(1);
|
|
}
|
|
|
|
// Win32 only gives you access to seven real priorities at a time,
|
|
// so we compress Java's ten down to seven. It would be better
|
|
// if we dynamically adjusted relative priorities.
|
|
|
|
int os::java_to_os_priority[CriticalPriority + 1] = {
|
|
THREAD_PRIORITY_IDLE, // 0 Entry should never be used
|
|
THREAD_PRIORITY_LOWEST, // 1 MinPriority
|
|
THREAD_PRIORITY_LOWEST, // 2
|
|
THREAD_PRIORITY_BELOW_NORMAL, // 3
|
|
THREAD_PRIORITY_BELOW_NORMAL, // 4
|
|
THREAD_PRIORITY_NORMAL, // 5 NormPriority
|
|
THREAD_PRIORITY_NORMAL, // 6
|
|
THREAD_PRIORITY_ABOVE_NORMAL, // 7
|
|
THREAD_PRIORITY_ABOVE_NORMAL, // 8
|
|
THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
|
|
THREAD_PRIORITY_HIGHEST, // 10 MaxPriority
|
|
THREAD_PRIORITY_HIGHEST // 11 CriticalPriority
|
|
};
|
|
|
|
int prio_policy1[CriticalPriority + 1] = {
|
|
THREAD_PRIORITY_IDLE, // 0 Entry should never be used
|
|
THREAD_PRIORITY_LOWEST, // 1 MinPriority
|
|
THREAD_PRIORITY_LOWEST, // 2
|
|
THREAD_PRIORITY_BELOW_NORMAL, // 3
|
|
THREAD_PRIORITY_BELOW_NORMAL, // 4
|
|
THREAD_PRIORITY_NORMAL, // 5 NormPriority
|
|
THREAD_PRIORITY_ABOVE_NORMAL, // 6
|
|
THREAD_PRIORITY_ABOVE_NORMAL, // 7
|
|
THREAD_PRIORITY_HIGHEST, // 8
|
|
THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
|
|
THREAD_PRIORITY_TIME_CRITICAL, // 10 MaxPriority
|
|
THREAD_PRIORITY_TIME_CRITICAL // 11 CriticalPriority
|
|
};
|
|
|
|
static int prio_init() {
|
|
// If ThreadPriorityPolicy is 1, switch tables
|
|
if (ThreadPriorityPolicy == 1) {
|
|
int i;
|
|
for (i = 0; i < CriticalPriority + 1; i++) {
|
|
os::java_to_os_priority[i] = prio_policy1[i];
|
|
}
|
|
}
|
|
if (UseCriticalJavaThreadPriority) {
|
|
os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
OSReturn os::set_native_priority(Thread* thread, int priority) {
|
|
if (!UseThreadPriorities) return OS_OK;
|
|
bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
|
|
return ret ? OS_OK : OS_ERR;
|
|
}
|
|
|
|
OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
|
|
if ( !UseThreadPriorities ) {
|
|
*priority_ptr = java_to_os_priority[NormPriority];
|
|
return OS_OK;
|
|
}
|
|
int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
|
|
if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
|
|
assert(false, "GetThreadPriority failed");
|
|
return OS_ERR;
|
|
}
|
|
*priority_ptr = os_prio;
|
|
return OS_OK;
|
|
}
|
|
|
|
|
|
// Hint to the underlying OS that a task switch would not be good.
|
|
// Void return because it's a hint and can fail.
|
|
void os::hint_no_preempt() {}
|
|
|
|
void os::interrupt(Thread* thread) {
|
|
assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
|
|
"possibility of dangling Thread pointer");
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
osthread->set_interrupted(true);
|
|
// More than one thread can get here with the same value of osthread,
|
|
// resulting in multiple notifications. We do, however, want the store
|
|
// to interrupted() to be visible to other threads before we post
|
|
// the interrupt event.
|
|
OrderAccess::release();
|
|
SetEvent(osthread->interrupt_event());
|
|
// For JSR166: unpark after setting status
|
|
if (thread->is_Java_thread())
|
|
((JavaThread*)thread)->parker()->unpark();
|
|
|
|
ParkEvent * ev = thread->_ParkEvent ;
|
|
if (ev != NULL) ev->unpark() ;
|
|
|
|
}
|
|
|
|
|
|
bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
|
|
assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
|
|
"possibility of dangling Thread pointer");
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
bool interrupted = osthread->interrupted();
|
|
// There is no synchronization between the setting of the interrupt
|
|
// and it being cleared here. It is critical - see 6535709 - that
|
|
// we only clear the interrupt state, and reset the interrupt event,
|
|
// if we are going to report that we were indeed interrupted - else
|
|
// an interrupt can be "lost", leading to spurious wakeups or lost wakeups
|
|
// depending on the timing
|
|
if (interrupted && clear_interrupted) {
|
|
osthread->set_interrupted(false);
|
|
ResetEvent(osthread->interrupt_event());
|
|
} // Otherwise leave the interrupted state alone
|
|
|
|
return interrupted;
|
|
}
|
|
|
|
// Get's a pc (hint) for a running thread. Currently used only for profiling.
|
|
ExtendedPC os::get_thread_pc(Thread* thread) {
|
|
CONTEXT context;
|
|
context.ContextFlags = CONTEXT_CONTROL;
|
|
HANDLE handle = thread->osthread()->thread_handle();
|
|
#ifdef _M_IA64
|
|
assert(0, "Fix get_thread_pc");
|
|
return ExtendedPC(NULL);
|
|
#else
|
|
if (GetThreadContext(handle, &context)) {
|
|
#ifdef _M_AMD64
|
|
return ExtendedPC((address) context.Rip);
|
|
#else
|
|
return ExtendedPC((address) context.Eip);
|
|
#endif
|
|
} else {
|
|
return ExtendedPC(NULL);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// GetCurrentThreadId() returns DWORD
|
|
intx os::current_thread_id() { return GetCurrentThreadId(); }
|
|
|
|
static int _initial_pid = 0;
|
|
|
|
int os::current_process_id()
|
|
{
|
|
return (_initial_pid ? _initial_pid : _getpid());
|
|
}
|
|
|
|
int os::win32::_vm_page_size = 0;
|
|
int os::win32::_vm_allocation_granularity = 0;
|
|
int os::win32::_processor_type = 0;
|
|
// Processor level is not available on non-NT systems, use vm_version instead
|
|
int os::win32::_processor_level = 0;
|
|
julong os::win32::_physical_memory = 0;
|
|
size_t os::win32::_default_stack_size = 0;
|
|
|
|
intx os::win32::_os_thread_limit = 0;
|
|
volatile intx os::win32::_os_thread_count = 0;
|
|
|
|
bool os::win32::_is_nt = false;
|
|
bool os::win32::_is_windows_2003 = false;
|
|
bool os::win32::_is_windows_server = false;
|
|
|
|
void os::win32::initialize_system_info() {
|
|
SYSTEM_INFO si;
|
|
GetSystemInfo(&si);
|
|
_vm_page_size = si.dwPageSize;
|
|
_vm_allocation_granularity = si.dwAllocationGranularity;
|
|
_processor_type = si.dwProcessorType;
|
|
_processor_level = si.wProcessorLevel;
|
|
set_processor_count(si.dwNumberOfProcessors);
|
|
|
|
MEMORYSTATUSEX ms;
|
|
ms.dwLength = sizeof(ms);
|
|
|
|
// also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
|
|
// dwMemoryLoad (% of memory in use)
|
|
GlobalMemoryStatusEx(&ms);
|
|
_physical_memory = ms.ullTotalPhys;
|
|
|
|
OSVERSIONINFOEX oi;
|
|
oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
|
|
GetVersionEx((OSVERSIONINFO*)&oi);
|
|
switch(oi.dwPlatformId) {
|
|
case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
|
|
case VER_PLATFORM_WIN32_NT:
|
|
_is_nt = true;
|
|
{
|
|
int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
|
|
if (os_vers == 5002) {
|
|
_is_windows_2003 = true;
|
|
}
|
|
if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
|
|
oi.wProductType == VER_NT_SERVER) {
|
|
_is_windows_server = true;
|
|
}
|
|
}
|
|
break;
|
|
default: fatal("Unknown platform");
|
|
}
|
|
|
|
_default_stack_size = os::current_stack_size();
|
|
assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
|
|
assert((_default_stack_size & (_vm_page_size - 1)) == 0,
|
|
"stack size not a multiple of page size");
|
|
|
|
initialize_performance_counter();
|
|
|
|
// Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
|
|
// known to deadlock the system, if the VM issues to thread operations with
|
|
// a too high frequency, e.g., such as changing the priorities.
|
|
// The 6000 seems to work well - no deadlocks has been notices on the test
|
|
// programs that we have seen experience this problem.
|
|
if (!os::win32::is_nt()) {
|
|
StarvationMonitorInterval = 6000;
|
|
}
|
|
}
|
|
|
|
|
|
HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
|
|
char path[MAX_PATH];
|
|
DWORD size;
|
|
DWORD pathLen = (DWORD)sizeof(path);
|
|
HINSTANCE result = NULL;
|
|
|
|
// only allow library name without path component
|
|
assert(strchr(name, '\\') == NULL, "path not allowed");
|
|
assert(strchr(name, ':') == NULL, "path not allowed");
|
|
if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
|
|
jio_snprintf(ebuf, ebuflen,
|
|
"Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
|
|
return NULL;
|
|
}
|
|
|
|
// search system directory
|
|
if ((size = GetSystemDirectory(path, pathLen)) > 0) {
|
|
strcat(path, "\\");
|
|
strcat(path, name);
|
|
if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// try Windows directory
|
|
if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
|
|
strcat(path, "\\");
|
|
strcat(path, name);
|
|
if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
jio_snprintf(ebuf, ebuflen,
|
|
"os::win32::load_windows_dll() cannot load %s from system directories.", name);
|
|
return NULL;
|
|
}
|
|
|
|
void os::win32::setmode_streams() {
|
|
_setmode(_fileno(stdin), _O_BINARY);
|
|
_setmode(_fileno(stdout), _O_BINARY);
|
|
_setmode(_fileno(stderr), _O_BINARY);
|
|
}
|
|
|
|
|
|
bool os::is_debugger_attached() {
|
|
return IsDebuggerPresent() ? true : false;
|
|
}
|
|
|
|
|
|
void os::wait_for_keypress_at_exit(void) {
|
|
if (PauseAtExit) {
|
|
fprintf(stderr, "Press any key to continue...\n");
|
|
fgetc(stdin);
|
|
}
|
|
}
|
|
|
|
|
|
int os::message_box(const char* title, const char* message) {
|
|
int result = MessageBox(NULL, message, title,
|
|
MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
|
|
return result == IDYES;
|
|
}
|
|
|
|
int os::allocate_thread_local_storage() {
|
|
return TlsAlloc();
|
|
}
|
|
|
|
|
|
void os::free_thread_local_storage(int index) {
|
|
TlsFree(index);
|
|
}
|
|
|
|
|
|
void os::thread_local_storage_at_put(int index, void* value) {
|
|
TlsSetValue(index, value);
|
|
assert(thread_local_storage_at(index) == value, "Just checking");
|
|
}
|
|
|
|
|
|
void* os::thread_local_storage_at(int index) {
|
|
return TlsGetValue(index);
|
|
}
|
|
|
|
|
|
#ifndef PRODUCT
|
|
#ifndef _WIN64
|
|
// Helpers to check whether NX protection is enabled
|
|
int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
|
|
if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
|
|
pex->ExceptionRecord->NumberParameters > 0 &&
|
|
pex->ExceptionRecord->ExceptionInformation[0] ==
|
|
EXCEPTION_INFO_EXEC_VIOLATION) {
|
|
return EXCEPTION_EXECUTE_HANDLER;
|
|
}
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
|
|
void nx_check_protection() {
|
|
// If NX is enabled we'll get an exception calling into code on the stack
|
|
char code[] = { (char)0xC3 }; // ret
|
|
void *code_ptr = (void *)code;
|
|
__try {
|
|
__asm call code_ptr
|
|
} __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
|
|
tty->print_raw_cr("NX protection detected.");
|
|
}
|
|
}
|
|
#endif // _WIN64
|
|
#endif // PRODUCT
|
|
|
|
// this is called _before_ the global arguments have been parsed
|
|
void os::init(void) {
|
|
_initial_pid = _getpid();
|
|
|
|
init_random(1234567);
|
|
|
|
win32::initialize_system_info();
|
|
win32::setmode_streams();
|
|
init_page_sizes((size_t) win32::vm_page_size());
|
|
|
|
// For better scalability on MP systems (must be called after initialize_system_info)
|
|
#ifndef PRODUCT
|
|
if (is_MP()) {
|
|
NoYieldsInMicrolock = true;
|
|
}
|
|
#endif
|
|
// This may be overridden later when argument processing is done.
|
|
FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
|
|
os::win32::is_windows_2003());
|
|
|
|
// Initialize main_process and main_thread
|
|
main_process = GetCurrentProcess(); // Remember main_process is a pseudo handle
|
|
if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
|
|
&main_thread, THREAD_ALL_ACCESS, false, 0)) {
|
|
fatal("DuplicateHandle failed\n");
|
|
}
|
|
main_thread_id = (int) GetCurrentThreadId();
|
|
}
|
|
|
|
// To install functions for atexit processing
|
|
extern "C" {
|
|
static void perfMemory_exit_helper() {
|
|
perfMemory_exit();
|
|
}
|
|
}
|
|
|
|
static jint initSock();
|
|
|
|
// this is called _after_ the global arguments have been parsed
|
|
jint os::init_2(void) {
|
|
// Allocate a single page and mark it as readable for safepoint polling
|
|
address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
|
|
guarantee( polling_page != NULL, "Reserve Failed for polling page");
|
|
|
|
address return_page = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
|
|
guarantee( return_page != NULL, "Commit Failed for polling page");
|
|
|
|
os::set_polling_page( polling_page );
|
|
|
|
#ifndef PRODUCT
|
|
if( Verbose && PrintMiscellaneous )
|
|
tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
|
|
#endif
|
|
|
|
if (!UseMembar) {
|
|
address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
|
|
guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
|
|
|
|
return_page = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
|
|
guarantee( return_page != NULL, "Commit Failed for memory serialize page");
|
|
|
|
os::set_memory_serialize_page( mem_serialize_page );
|
|
|
|
#ifndef PRODUCT
|
|
if(Verbose && PrintMiscellaneous)
|
|
tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
|
|
#endif
|
|
}
|
|
|
|
os::large_page_init();
|
|
|
|
// Setup Windows Exceptions
|
|
|
|
// for debugging float code generation bugs
|
|
if (ForceFloatExceptions) {
|
|
#ifndef _WIN64
|
|
static long fp_control_word = 0;
|
|
__asm { fstcw fp_control_word }
|
|
// see Intel PPro Manual, Vol. 2, p 7-16
|
|
const long precision = 0x20;
|
|
const long underflow = 0x10;
|
|
const long overflow = 0x08;
|
|
const long zero_div = 0x04;
|
|
const long denorm = 0x02;
|
|
const long invalid = 0x01;
|
|
fp_control_word |= invalid;
|
|
__asm { fldcw fp_control_word }
|
|
#endif
|
|
}
|
|
|
|
// If stack_commit_size is 0, windows will reserve the default size,
|
|
// but only commit a small portion of it.
|
|
size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
|
|
size_t default_reserve_size = os::win32::default_stack_size();
|
|
size_t actual_reserve_size = stack_commit_size;
|
|
if (stack_commit_size < default_reserve_size) {
|
|
// If stack_commit_size == 0, we want this too
|
|
actual_reserve_size = default_reserve_size;
|
|
}
|
|
|
|
// Check minimum allowable stack size for thread creation and to initialize
|
|
// the java system classes, including StackOverflowError - depends on page
|
|
// size. Add a page for compiler2 recursion in main thread.
|
|
// Add in 2*BytesPerWord times page size to account for VM stack during
|
|
// class initialization depending on 32 or 64 bit VM.
|
|
size_t min_stack_allowed =
|
|
(size_t)(StackYellowPages+StackRedPages+StackShadowPages+
|
|
2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
|
|
if (actual_reserve_size < min_stack_allowed) {
|
|
tty->print_cr("\nThe stack size specified is too small, "
|
|
"Specify at least %dk",
|
|
min_stack_allowed / K);
|
|
return JNI_ERR;
|
|
}
|
|
|
|
JavaThread::set_stack_size_at_create(stack_commit_size);
|
|
|
|
// Calculate theoretical max. size of Threads to guard gainst artifical
|
|
// out-of-memory situations, where all available address-space has been
|
|
// reserved by thread stacks.
|
|
assert(actual_reserve_size != 0, "Must have a stack");
|
|
|
|
// Calculate the thread limit when we should start doing Virtual Memory
|
|
// banging. Currently when the threads will have used all but 200Mb of space.
|
|
//
|
|
// TODO: consider performing a similar calculation for commit size instead
|
|
// as reserve size, since on a 64-bit platform we'll run into that more
|
|
// often than running out of virtual memory space. We can use the
|
|
// lower value of the two calculations as the os_thread_limit.
|
|
size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
|
|
win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
|
|
|
|
// at exit methods are called in the reverse order of their registration.
|
|
// there is no limit to the number of functions registered. atexit does
|
|
// not set errno.
|
|
|
|
if (PerfAllowAtExitRegistration) {
|
|
// only register atexit functions if PerfAllowAtExitRegistration is set.
|
|
// atexit functions can be delayed until process exit time, which
|
|
// can be problematic for embedded VM situations. Embedded VMs should
|
|
// call DestroyJavaVM() to assure that VM resources are released.
|
|
|
|
// note: perfMemory_exit_helper atexit function may be removed in
|
|
// the future if the appropriate cleanup code can be added to the
|
|
// VM_Exit VMOperation's doit method.
|
|
if (atexit(perfMemory_exit_helper) != 0) {
|
|
warning("os::init_2 atexit(perfMemory_exit_helper) failed");
|
|
}
|
|
}
|
|
|
|
#ifndef _WIN64
|
|
// Print something if NX is enabled (win32 on AMD64)
|
|
NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
|
|
#endif
|
|
|
|
// initialize thread priority policy
|
|
prio_init();
|
|
|
|
if (UseNUMA && !ForceNUMA) {
|
|
UseNUMA = false; // We don't fully support this yet
|
|
}
|
|
|
|
if (UseNUMAInterleaving) {
|
|
// first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
|
|
bool success = numa_interleaving_init();
|
|
if (!success) UseNUMAInterleaving = false;
|
|
}
|
|
|
|
if (initSock() != JNI_OK) {
|
|
return JNI_ERR;
|
|
}
|
|
|
|
return JNI_OK;
|
|
}
|
|
|
|
void os::init_3(void) {
|
|
return;
|
|
}
|
|
|
|
// Mark the polling page as unreadable
|
|
void os::make_polling_page_unreadable(void) {
|
|
DWORD old_status;
|
|
if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
|
|
fatal("Could not disable polling page");
|
|
};
|
|
|
|
// Mark the polling page as readable
|
|
void os::make_polling_page_readable(void) {
|
|
DWORD old_status;
|
|
if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
|
|
fatal("Could not enable polling page");
|
|
};
|
|
|
|
|
|
int os::stat(const char *path, struct stat *sbuf) {
|
|
char pathbuf[MAX_PATH];
|
|
if (strlen(path) > MAX_PATH - 1) {
|
|
errno = ENAMETOOLONG;
|
|
return -1;
|
|
}
|
|
os::native_path(strcpy(pathbuf, path));
|
|
int ret = ::stat(pathbuf, sbuf);
|
|
if (sbuf != NULL && UseUTCFileTimestamp) {
|
|
// Fix for 6539723. st_mtime returned from stat() is dependent on
|
|
// the system timezone and so can return different values for the
|
|
// same file if/when daylight savings time changes. This adjustment
|
|
// makes sure the same timestamp is returned regardless of the TZ.
|
|
//
|
|
// See:
|
|
// http://msdn.microsoft.com/library/
|
|
// default.asp?url=/library/en-us/sysinfo/base/
|
|
// time_zone_information_str.asp
|
|
// and
|
|
// http://msdn.microsoft.com/library/default.asp?url=
|
|
// /library/en-us/sysinfo/base/settimezoneinformation.asp
|
|
//
|
|
// NOTE: there is a insidious bug here: If the timezone is changed
|
|
// after the call to stat() but before 'GetTimeZoneInformation()', then
|
|
// the adjustment we do here will be wrong and we'll return the wrong
|
|
// value (which will likely end up creating an invalid class data
|
|
// archive). Absent a better API for this, or some time zone locking
|
|
// mechanism, we'll have to live with this risk.
|
|
TIME_ZONE_INFORMATION tz;
|
|
DWORD tzid = GetTimeZoneInformation(&tz);
|
|
int daylightBias =
|
|
(tzid == TIME_ZONE_ID_DAYLIGHT) ? tz.DaylightBias : tz.StandardBias;
|
|
sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
#define FT2INT64(ft) \
|
|
((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
|
|
|
|
|
|
// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
|
|
// are used by JVM M&M and JVMTI to get user+sys or user CPU time
|
|
// of a thread.
|
|
//
|
|
// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
|
|
// the fast estimate available on the platform.
|
|
|
|
// current_thread_cpu_time() is not optimized for Windows yet
|
|
jlong os::current_thread_cpu_time() {
|
|
// return user + sys since the cost is the same
|
|
return os::thread_cpu_time(Thread::current(), true /* user+sys */);
|
|
}
|
|
|
|
jlong os::thread_cpu_time(Thread* thread) {
|
|
// consistent with what current_thread_cpu_time() returns.
|
|
return os::thread_cpu_time(thread, true /* user+sys */);
|
|
}
|
|
|
|
jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
|
|
return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
|
|
}
|
|
|
|
jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
|
|
// This code is copy from clasic VM -> hpi::sysThreadCPUTime
|
|
// If this function changes, os::is_thread_cpu_time_supported() should too
|
|
if (os::win32::is_nt()) {
|
|
FILETIME CreationTime;
|
|
FILETIME ExitTime;
|
|
FILETIME KernelTime;
|
|
FILETIME UserTime;
|
|
|
|
if ( GetThreadTimes(thread->osthread()->thread_handle(),
|
|
&CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
|
|
return -1;
|
|
else
|
|
if (user_sys_cpu_time) {
|
|
return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
|
|
} else {
|
|
return FT2INT64(UserTime) * 100;
|
|
}
|
|
} else {
|
|
return (jlong) timeGetTime() * 1000000;
|
|
}
|
|
}
|
|
|
|
void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
|
|
info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
|
|
info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
|
|
info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
|
|
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
|
|
}
|
|
|
|
void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
|
|
info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
|
|
info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
|
|
info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
|
|
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
|
|
}
|
|
|
|
bool os::is_thread_cpu_time_supported() {
|
|
// see os::thread_cpu_time
|
|
if (os::win32::is_nt()) {
|
|
FILETIME CreationTime;
|
|
FILETIME ExitTime;
|
|
FILETIME KernelTime;
|
|
FILETIME UserTime;
|
|
|
|
if ( GetThreadTimes(GetCurrentThread(),
|
|
&CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
|
|
return false;
|
|
else
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Windows does't provide a loadavg primitive so this is stubbed out for now.
|
|
// It does have primitives (PDH API) to get CPU usage and run queue length.
|
|
// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
|
|
// If we wanted to implement loadavg on Windows, we have a few options:
|
|
//
|
|
// a) Query CPU usage and run queue length and "fake" an answer by
|
|
// returning the CPU usage if it's under 100%, and the run queue
|
|
// length otherwise. It turns out that querying is pretty slow
|
|
// on Windows, on the order of 200 microseconds on a fast machine.
|
|
// Note that on the Windows the CPU usage value is the % usage
|
|
// since the last time the API was called (and the first call
|
|
// returns 100%), so we'd have to deal with that as well.
|
|
//
|
|
// b) Sample the "fake" answer using a sampling thread and store
|
|
// the answer in a global variable. The call to loadavg would
|
|
// just return the value of the global, avoiding the slow query.
|
|
//
|
|
// c) Sample a better answer using exponential decay to smooth the
|
|
// value. This is basically the algorithm used by UNIX kernels.
|
|
//
|
|
// Note that sampling thread starvation could affect both (b) and (c).
|
|
int os::loadavg(double loadavg[], int nelem) {
|
|
return -1;
|
|
}
|
|
|
|
|
|
// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
|
|
bool os::dont_yield() {
|
|
return DontYieldALot;
|
|
}
|
|
|
|
// This method is a slightly reworked copy of JDK's sysOpen
|
|
// from src/windows/hpi/src/sys_api_md.c
|
|
|
|
int os::open(const char *path, int oflag, int mode) {
|
|
char pathbuf[MAX_PATH];
|
|
|
|
if (strlen(path) > MAX_PATH - 1) {
|
|
errno = ENAMETOOLONG;
|
|
return -1;
|
|
}
|
|
os::native_path(strcpy(pathbuf, path));
|
|
return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
|
|
}
|
|
|
|
FILE* os::open(int fd, const char* mode) {
|
|
return ::_fdopen(fd, mode);
|
|
}
|
|
|
|
// Is a (classpath) directory empty?
|
|
bool os::dir_is_empty(const char* path) {
|
|
WIN32_FIND_DATA fd;
|
|
HANDLE f = FindFirstFile(path, &fd);
|
|
if (f == INVALID_HANDLE_VALUE) {
|
|
return true;
|
|
}
|
|
FindClose(f);
|
|
return false;
|
|
}
|
|
|
|
// create binary file, rewriting existing file if required
|
|
int os::create_binary_file(const char* path, bool rewrite_existing) {
|
|
int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
|
|
if (!rewrite_existing) {
|
|
oflags |= _O_EXCL;
|
|
}
|
|
return ::open(path, oflags, _S_IREAD | _S_IWRITE);
|
|
}
|
|
|
|
// return current position of file pointer
|
|
jlong os::current_file_offset(int fd) {
|
|
return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
|
|
}
|
|
|
|
// move file pointer to the specified offset
|
|
jlong os::seek_to_file_offset(int fd, jlong offset) {
|
|
return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
|
|
}
|
|
|
|
|
|
jlong os::lseek(int fd, jlong offset, int whence) {
|
|
return (jlong) ::_lseeki64(fd, offset, whence);
|
|
}
|
|
|
|
// This method is a slightly reworked copy of JDK's sysNativePath
|
|
// from src/windows/hpi/src/path_md.c
|
|
|
|
/* Convert a pathname to native format. On win32, this involves forcing all
|
|
separators to be '\\' rather than '/' (both are legal inputs, but Win95
|
|
sometimes rejects '/') and removing redundant separators. The input path is
|
|
assumed to have been converted into the character encoding used by the local
|
|
system. Because this might be a double-byte encoding, care is taken to
|
|
treat double-byte lead characters correctly.
|
|
|
|
This procedure modifies the given path in place, as the result is never
|
|
longer than the original. There is no error return; this operation always
|
|
succeeds. */
|
|
char * os::native_path(char *path) {
|
|
char *src = path, *dst = path, *end = path;
|
|
char *colon = NULL; /* If a drive specifier is found, this will
|
|
point to the colon following the drive
|
|
letter */
|
|
|
|
/* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
|
|
assert(((!::IsDBCSLeadByte('/'))
|
|
&& (!::IsDBCSLeadByte('\\'))
|
|
&& (!::IsDBCSLeadByte(':'))),
|
|
"Illegal lead byte");
|
|
|
|
/* Check for leading separators */
|
|
#define isfilesep(c) ((c) == '/' || (c) == '\\')
|
|
while (isfilesep(*src)) {
|
|
src++;
|
|
}
|
|
|
|
if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
|
|
/* Remove leading separators if followed by drive specifier. This
|
|
hack is necessary to support file URLs containing drive
|
|
specifiers (e.g., "file://c:/path"). As a side effect,
|
|
"/c:/path" can be used as an alternative to "c:/path". */
|
|
*dst++ = *src++;
|
|
colon = dst;
|
|
*dst++ = ':';
|
|
src++;
|
|
} else {
|
|
src = path;
|
|
if (isfilesep(src[0]) && isfilesep(src[1])) {
|
|
/* UNC pathname: Retain first separator; leave src pointed at
|
|
second separator so that further separators will be collapsed
|
|
into the second separator. The result will be a pathname
|
|
beginning with "\\\\" followed (most likely) by a host name. */
|
|
src = dst = path + 1;
|
|
path[0] = '\\'; /* Force first separator to '\\' */
|
|
}
|
|
}
|
|
|
|
end = dst;
|
|
|
|
/* Remove redundant separators from remainder of path, forcing all
|
|
separators to be '\\' rather than '/'. Also, single byte space
|
|
characters are removed from the end of the path because those
|
|
are not legal ending characters on this operating system.
|
|
*/
|
|
while (*src != '\0') {
|
|
if (isfilesep(*src)) {
|
|
*dst++ = '\\'; src++;
|
|
while (isfilesep(*src)) src++;
|
|
if (*src == '\0') {
|
|
/* Check for trailing separator */
|
|
end = dst;
|
|
if (colon == dst - 2) break; /* "z:\\" */
|
|
if (dst == path + 1) break; /* "\\" */
|
|
if (dst == path + 2 && isfilesep(path[0])) {
|
|
/* "\\\\" is not collapsed to "\\" because "\\\\" marks the
|
|
beginning of a UNC pathname. Even though it is not, by
|
|
itself, a valid UNC pathname, we leave it as is in order
|
|
to be consistent with the path canonicalizer as well
|
|
as the win32 APIs, which treat this case as an invalid
|
|
UNC pathname rather than as an alias for the root
|
|
directory of the current drive. */
|
|
break;
|
|
}
|
|
end = --dst; /* Path does not denote a root directory, so
|
|
remove trailing separator */
|
|
break;
|
|
}
|
|
end = dst;
|
|
} else {
|
|
if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
|
|
*dst++ = *src++;
|
|
if (*src) *dst++ = *src++;
|
|
end = dst;
|
|
} else { /* Copy a single-byte character */
|
|
char c = *src++;
|
|
*dst++ = c;
|
|
/* Space is not a legal ending character */
|
|
if (c != ' ') end = dst;
|
|
}
|
|
}
|
|
}
|
|
|
|
*end = '\0';
|
|
|
|
/* For "z:", add "." to work around a bug in the C runtime library */
|
|
if (colon == dst - 1) {
|
|
path[2] = '.';
|
|
path[3] = '\0';
|
|
}
|
|
|
|
return path;
|
|
}
|
|
|
|
// This code is a copy of JDK's sysSetLength
|
|
// from src/windows/hpi/src/sys_api_md.c
|
|
|
|
int os::ftruncate(int fd, jlong length) {
|
|
HANDLE h = (HANDLE)::_get_osfhandle(fd);
|
|
long high = (long)(length >> 32);
|
|
DWORD ret;
|
|
|
|
if (h == (HANDLE)(-1)) {
|
|
return -1;
|
|
}
|
|
|
|
ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
|
|
if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
|
|
return -1;
|
|
}
|
|
|
|
if (::SetEndOfFile(h) == FALSE) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// This code is a copy of JDK's sysSync
|
|
// from src/windows/hpi/src/sys_api_md.c
|
|
// except for the legacy workaround for a bug in Win 98
|
|
|
|
int os::fsync(int fd) {
|
|
HANDLE handle = (HANDLE)::_get_osfhandle(fd);
|
|
|
|
if ( (!::FlushFileBuffers(handle)) &&
|
|
(GetLastError() != ERROR_ACCESS_DENIED) ) {
|
|
/* from winerror.h */
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int nonSeekAvailable(int, long *);
|
|
static int stdinAvailable(int, long *);
|
|
|
|
#define S_ISCHR(mode) (((mode) & _S_IFCHR) == _S_IFCHR)
|
|
#define S_ISFIFO(mode) (((mode) & _S_IFIFO) == _S_IFIFO)
|
|
|
|
// This code is a copy of JDK's sysAvailable
|
|
// from src/windows/hpi/src/sys_api_md.c
|
|
|
|
int os::available(int fd, jlong *bytes) {
|
|
jlong cur, end;
|
|
struct _stati64 stbuf64;
|
|
|
|
if (::_fstati64(fd, &stbuf64) >= 0) {
|
|
int mode = stbuf64.st_mode;
|
|
if (S_ISCHR(mode) || S_ISFIFO(mode)) {
|
|
int ret;
|
|
long lpbytes;
|
|
if (fd == 0) {
|
|
ret = stdinAvailable(fd, &lpbytes);
|
|
} else {
|
|
ret = nonSeekAvailable(fd, &lpbytes);
|
|
}
|
|
(*bytes) = (jlong)(lpbytes);
|
|
return ret;
|
|
}
|
|
if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
|
|
return FALSE;
|
|
} else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
|
|
return FALSE;
|
|
} else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
|
|
return FALSE;
|
|
}
|
|
*bytes = end - cur;
|
|
return TRUE;
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
// This code is a copy of JDK's nonSeekAvailable
|
|
// from src/windows/hpi/src/sys_api_md.c
|
|
|
|
static int nonSeekAvailable(int fd, long *pbytes) {
|
|
/* This is used for available on non-seekable devices
|
|
* (like both named and anonymous pipes, such as pipes
|
|
* connected to an exec'd process).
|
|
* Standard Input is a special case.
|
|
*
|
|
*/
|
|
HANDLE han;
|
|
|
|
if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
|
|
/* PeekNamedPipe fails when at EOF. In that case we
|
|
* simply make *pbytes = 0 which is consistent with the
|
|
* behavior we get on Solaris when an fd is at EOF.
|
|
* The only alternative is to raise an Exception,
|
|
* which isn't really warranted.
|
|
*/
|
|
if (::GetLastError() != ERROR_BROKEN_PIPE) {
|
|
return FALSE;
|
|
}
|
|
*pbytes = 0;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
#define MAX_INPUT_EVENTS 2000
|
|
|
|
// This code is a copy of JDK's stdinAvailable
|
|
// from src/windows/hpi/src/sys_api_md.c
|
|
|
|
static int stdinAvailable(int fd, long *pbytes) {
|
|
HANDLE han;
|
|
DWORD numEventsRead = 0; /* Number of events read from buffer */
|
|
DWORD numEvents = 0; /* Number of events in buffer */
|
|
DWORD i = 0; /* Loop index */
|
|
DWORD curLength = 0; /* Position marker */
|
|
DWORD actualLength = 0; /* Number of bytes readable */
|
|
BOOL error = FALSE; /* Error holder */
|
|
INPUT_RECORD *lpBuffer; /* Pointer to records of input events */
|
|
|
|
if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
|
|
return FALSE;
|
|
}
|
|
|
|
/* Construct an array of input records in the console buffer */
|
|
error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
|
|
if (error == 0) {
|
|
return nonSeekAvailable(fd, pbytes);
|
|
}
|
|
|
|
/* lpBuffer must fit into 64K or else PeekConsoleInput fails */
|
|
if (numEvents > MAX_INPUT_EVENTS) {
|
|
numEvents = MAX_INPUT_EVENTS;
|
|
}
|
|
|
|
lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
|
|
if (lpBuffer == NULL) {
|
|
return FALSE;
|
|
}
|
|
|
|
error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
|
|
if (error == 0) {
|
|
os::free(lpBuffer, mtInternal);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Examine input records for the number of bytes available */
|
|
for(i=0; i<numEvents; i++) {
|
|
if (lpBuffer[i].EventType == KEY_EVENT) {
|
|
|
|
KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
|
|
&(lpBuffer[i].Event);
|
|
if (keyRecord->bKeyDown == TRUE) {
|
|
CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
|
|
curLength++;
|
|
if (*keyPressed == '\r') {
|
|
actualLength = curLength;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(lpBuffer != NULL) {
|
|
os::free(lpBuffer, mtInternal);
|
|
}
|
|
|
|
*pbytes = (long) actualLength;
|
|
return TRUE;
|
|
}
|
|
|
|
// Map a block of memory.
|
|
char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
|
|
char *addr, size_t bytes, bool read_only,
|
|
bool allow_exec) {
|
|
HANDLE hFile;
|
|
char* base;
|
|
|
|
hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
|
|
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
|
|
if (hFile == NULL) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
DWORD err = GetLastError();
|
|
tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
if (allow_exec) {
|
|
// CreateFileMapping/MapViewOfFileEx can't map executable memory
|
|
// unless it comes from a PE image (which the shared archive is not.)
|
|
// Even VirtualProtect refuses to give execute access to mapped memory
|
|
// that was not previously executable.
|
|
//
|
|
// Instead, stick the executable region in anonymous memory. Yuck.
|
|
// Penalty is that ~4 pages will not be shareable - in the future
|
|
// we might consider DLLizing the shared archive with a proper PE
|
|
// header so that mapping executable + sharing is possible.
|
|
|
|
base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
|
|
PAGE_READWRITE);
|
|
if (base == NULL) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
DWORD err = GetLastError();
|
|
tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
|
|
}
|
|
CloseHandle(hFile);
|
|
return NULL;
|
|
}
|
|
|
|
DWORD bytes_read;
|
|
OVERLAPPED overlapped;
|
|
overlapped.Offset = (DWORD)file_offset;
|
|
overlapped.OffsetHigh = 0;
|
|
overlapped.hEvent = NULL;
|
|
// ReadFile guarantees that if the return value is true, the requested
|
|
// number of bytes were read before returning.
|
|
bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
|
|
if (!res) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
DWORD err = GetLastError();
|
|
tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
|
|
}
|
|
release_memory(base, bytes);
|
|
CloseHandle(hFile);
|
|
return NULL;
|
|
}
|
|
} else {
|
|
HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
|
|
NULL /*file_name*/);
|
|
if (hMap == NULL) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
DWORD err = GetLastError();
|
|
tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
|
|
}
|
|
CloseHandle(hFile);
|
|
return NULL;
|
|
}
|
|
|
|
DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
|
|
base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
|
|
(DWORD)bytes, addr);
|
|
if (base == NULL) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
DWORD err = GetLastError();
|
|
tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
|
|
}
|
|
CloseHandle(hMap);
|
|
CloseHandle(hFile);
|
|
return NULL;
|
|
}
|
|
|
|
if (CloseHandle(hMap) == 0) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
DWORD err = GetLastError();
|
|
tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
|
|
}
|
|
CloseHandle(hFile);
|
|
return base;
|
|
}
|
|
}
|
|
|
|
if (allow_exec) {
|
|
DWORD old_protect;
|
|
DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
|
|
bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
|
|
|
|
if (!res) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
DWORD err = GetLastError();
|
|
tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
|
|
}
|
|
// Don't consider this a hard error, on IA32 even if the
|
|
// VirtualProtect fails, we should still be able to execute
|
|
CloseHandle(hFile);
|
|
return base;
|
|
}
|
|
}
|
|
|
|
if (CloseHandle(hFile) == 0) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
DWORD err = GetLastError();
|
|
tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
|
|
}
|
|
return base;
|
|
}
|
|
|
|
return base;
|
|
}
|
|
|
|
|
|
// Remap a block of memory.
|
|
char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
|
|
char *addr, size_t bytes, bool read_only,
|
|
bool allow_exec) {
|
|
// This OS does not allow existing memory maps to be remapped so we
|
|
// have to unmap the memory before we remap it.
|
|
if (!os::unmap_memory(addr, bytes)) {
|
|
return NULL;
|
|
}
|
|
|
|
// There is a very small theoretical window between the unmap_memory()
|
|
// call above and the map_memory() call below where a thread in native
|
|
// code may be able to access an address that is no longer mapped.
|
|
|
|
return os::map_memory(fd, file_name, file_offset, addr, bytes,
|
|
read_only, allow_exec);
|
|
}
|
|
|
|
|
|
// Unmap a block of memory.
|
|
// Returns true=success, otherwise false.
|
|
|
|
bool os::pd_unmap_memory(char* addr, size_t bytes) {
|
|
BOOL result = UnmapViewOfFile(addr);
|
|
if (result == 0) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
DWORD err = GetLastError();
|
|
tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void os::pause() {
|
|
char filename[MAX_PATH];
|
|
if (PauseAtStartupFile && PauseAtStartupFile[0]) {
|
|
jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
|
|
} else {
|
|
jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
|
|
}
|
|
|
|
int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
|
|
if (fd != -1) {
|
|
struct stat buf;
|
|
::close(fd);
|
|
while (::stat(filename, &buf) == 0) {
|
|
Sleep(100);
|
|
}
|
|
} else {
|
|
jio_fprintf(stderr,
|
|
"Could not open pause file '%s', continuing immediately.\n", filename);
|
|
}
|
|
}
|
|
|
|
// An Event wraps a win32 "CreateEvent" kernel handle.
|
|
//
|
|
// We have a number of choices regarding "CreateEvent" win32 handle leakage:
|
|
//
|
|
// 1: When a thread dies return the Event to the EventFreeList, clear the ParkHandle
|
|
// field, and call CloseHandle() on the win32 event handle. Unpark() would
|
|
// need to be modified to tolerate finding a NULL (invalid) win32 event handle.
|
|
// In addition, an unpark() operation might fetch the handle field, but the
|
|
// event could recycle between the fetch and the SetEvent() operation.
|
|
// SetEvent() would either fail because the handle was invalid, or inadvertently work,
|
|
// as the win32 handle value had been recycled. In an ideal world calling SetEvent()
|
|
// on an stale but recycled handle would be harmless, but in practice this might
|
|
// confuse other non-Sun code, so it's not a viable approach.
|
|
//
|
|
// 2: Once a win32 event handle is associated with an Event, it remains associated
|
|
// with the Event. The event handle is never closed. This could be construed
|
|
// as handle leakage, but only up to the maximum # of threads that have been extant
|
|
// at any one time. This shouldn't be an issue, as windows platforms typically
|
|
// permit a process to have hundreds of thousands of open handles.
|
|
//
|
|
// 3: Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
|
|
// and release unused handles.
|
|
//
|
|
// 4: Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
|
|
// It's not clear, however, that we wouldn't be trading one type of leak for another.
|
|
//
|
|
// 5. Use an RCU-like mechanism (Read-Copy Update).
|
|
// Or perhaps something similar to Maged Michael's "Hazard pointers".
|
|
//
|
|
// We use (2).
|
|
//
|
|
// TODO-FIXME:
|
|
// 1. Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
|
|
// 2. Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
|
|
// to recover from (or at least detect) the dreaded Windows 841176 bug.
|
|
// 3. Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
|
|
// into a single win32 CreateEvent() handle.
|
|
//
|
|
// _Event transitions in park()
|
|
// -1 => -1 : illegal
|
|
// 1 => 0 : pass - return immediately
|
|
// 0 => -1 : block
|
|
//
|
|
// _Event serves as a restricted-range semaphore :
|
|
// -1 : thread is blocked
|
|
// 0 : neutral - thread is running or ready
|
|
// 1 : signaled - thread is running or ready
|
|
//
|
|
// Another possible encoding of _Event would be
|
|
// with explicit "PARKED" and "SIGNALED" bits.
|
|
|
|
int os::PlatformEvent::park (jlong Millis) {
|
|
guarantee (_ParkHandle != NULL , "Invariant") ;
|
|
guarantee (Millis > 0 , "Invariant") ;
|
|
int v ;
|
|
|
|
// CONSIDER: defer assigning a CreateEvent() handle to the Event until
|
|
// the initial park() operation.
|
|
|
|
for (;;) {
|
|
v = _Event ;
|
|
if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
|
|
}
|
|
guarantee ((v == 0) || (v == 1), "invariant") ;
|
|
if (v != 0) return OS_OK ;
|
|
|
|
// Do this the hard way by blocking ...
|
|
// TODO: consider a brief spin here, gated on the success of recent
|
|
// spin attempts by this thread.
|
|
//
|
|
// We decompose long timeouts into series of shorter timed waits.
|
|
// Evidently large timo values passed in WaitForSingleObject() are problematic on some
|
|
// versions of Windows. See EventWait() for details. This may be superstition. Or not.
|
|
// We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
|
|
// with os::javaTimeNanos(). Furthermore, we assume that spurious returns from
|
|
// ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
|
|
// to happen early in the wait interval. Specifically, after a spurious wakeup (rv ==
|
|
// WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
|
|
// for the already waited time. This policy does not admit any new outcomes.
|
|
// In the future, however, we might want to track the accumulated wait time and
|
|
// adjust Millis accordingly if we encounter a spurious wakeup.
|
|
|
|
const int MAXTIMEOUT = 0x10000000 ;
|
|
DWORD rv = WAIT_TIMEOUT ;
|
|
while (_Event < 0 && Millis > 0) {
|
|
DWORD prd = Millis ; // set prd = MAX (Millis, MAXTIMEOUT)
|
|
if (Millis > MAXTIMEOUT) {
|
|
prd = MAXTIMEOUT ;
|
|
}
|
|
rv = ::WaitForSingleObject (_ParkHandle, prd) ;
|
|
assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
|
|
if (rv == WAIT_TIMEOUT) {
|
|
Millis -= prd ;
|
|
}
|
|
}
|
|
v = _Event ;
|
|
_Event = 0 ;
|
|
// see comment at end of os::PlatformEvent::park() below:
|
|
OrderAccess::fence() ;
|
|
// If we encounter a nearly simultanous timeout expiry and unpark()
|
|
// we return OS_OK indicating we awoke via unpark().
|
|
// Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
|
|
return (v >= 0) ? OS_OK : OS_TIMEOUT ;
|
|
}
|
|
|
|
void os::PlatformEvent::park () {
|
|
guarantee (_ParkHandle != NULL, "Invariant") ;
|
|
// Invariant: Only the thread associated with the Event/PlatformEvent
|
|
// may call park().
|
|
int v ;
|
|
for (;;) {
|
|
v = _Event ;
|
|
if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
|
|
}
|
|
guarantee ((v == 0) || (v == 1), "invariant") ;
|
|
if (v != 0) return ;
|
|
|
|
// Do this the hard way by blocking ...
|
|
// TODO: consider a brief spin here, gated on the success of recent
|
|
// spin attempts by this thread.
|
|
while (_Event < 0) {
|
|
DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
|
|
assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
|
|
}
|
|
|
|
// Usually we'll find _Event == 0 at this point, but as
|
|
// an optional optimization we clear it, just in case can
|
|
// multiple unpark() operations drove _Event up to 1.
|
|
_Event = 0 ;
|
|
OrderAccess::fence() ;
|
|
guarantee (_Event >= 0, "invariant") ;
|
|
}
|
|
|
|
void os::PlatformEvent::unpark() {
|
|
guarantee (_ParkHandle != NULL, "Invariant") ;
|
|
|
|
// Transitions for _Event:
|
|
// 0 :=> 1
|
|
// 1 :=> 1
|
|
// -1 :=> either 0 or 1; must signal target thread
|
|
// That is, we can safely transition _Event from -1 to either
|
|
// 0 or 1. Forcing 1 is slightly more efficient for back-to-back
|
|
// unpark() calls.
|
|
// See also: "Semaphores in Plan 9" by Mullender & Cox
|
|
//
|
|
// Note: Forcing a transition from "-1" to "1" on an unpark() means
|
|
// that it will take two back-to-back park() calls for the owning
|
|
// thread to block. This has the benefit of forcing a spurious return
|
|
// from the first park() call after an unpark() call which will help
|
|
// shake out uses of park() and unpark() without condition variables.
|
|
|
|
if (Atomic::xchg(1, &_Event) >= 0) return;
|
|
|
|
::SetEvent(_ParkHandle);
|
|
}
|
|
|
|
|
|
// JSR166
|
|
// -------------------------------------------------------
|
|
|
|
/*
|
|
* The Windows implementation of Park is very straightforward: Basic
|
|
* operations on Win32 Events turn out to have the right semantics to
|
|
* use them directly. We opportunistically resuse the event inherited
|
|
* from Monitor.
|
|
*/
|
|
|
|
|
|
void Parker::park(bool isAbsolute, jlong time) {
|
|
guarantee (_ParkEvent != NULL, "invariant") ;
|
|
// First, demultiplex/decode time arguments
|
|
if (time < 0) { // don't wait
|
|
return;
|
|
}
|
|
else if (time == 0 && !isAbsolute) {
|
|
time = INFINITE;
|
|
}
|
|
else if (isAbsolute) {
|
|
time -= os::javaTimeMillis(); // convert to relative time
|
|
if (time <= 0) // already elapsed
|
|
return;
|
|
}
|
|
else { // relative
|
|
time /= 1000000; // Must coarsen from nanos to millis
|
|
if (time == 0) // Wait for the minimal time unit if zero
|
|
time = 1;
|
|
}
|
|
|
|
JavaThread* thread = (JavaThread*)(Thread::current());
|
|
assert(thread->is_Java_thread(), "Must be JavaThread");
|
|
JavaThread *jt = (JavaThread *)thread;
|
|
|
|
// Don't wait if interrupted or already triggered
|
|
if (Thread::is_interrupted(thread, false) ||
|
|
WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
|
|
ResetEvent(_ParkEvent);
|
|
return;
|
|
}
|
|
else {
|
|
ThreadBlockInVM tbivm(jt);
|
|
OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
|
|
jt->set_suspend_equivalent();
|
|
|
|
WaitForSingleObject(_ParkEvent, time);
|
|
ResetEvent(_ParkEvent);
|
|
|
|
// If externally suspended while waiting, re-suspend
|
|
if (jt->handle_special_suspend_equivalent_condition()) {
|
|
jt->java_suspend_self();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Parker::unpark() {
|
|
guarantee (_ParkEvent != NULL, "invariant") ;
|
|
SetEvent(_ParkEvent);
|
|
}
|
|
|
|
// Run the specified command in a separate process. Return its exit value,
|
|
// or -1 on failure (e.g. can't create a new process).
|
|
int os::fork_and_exec(char* cmd) {
|
|
STARTUPINFO si;
|
|
PROCESS_INFORMATION pi;
|
|
|
|
memset(&si, 0, sizeof(si));
|
|
si.cb = sizeof(si);
|
|
memset(&pi, 0, sizeof(pi));
|
|
BOOL rslt = CreateProcess(NULL, // executable name - use command line
|
|
cmd, // command line
|
|
NULL, // process security attribute
|
|
NULL, // thread security attribute
|
|
TRUE, // inherits system handles
|
|
0, // no creation flags
|
|
NULL, // use parent's environment block
|
|
NULL, // use parent's starting directory
|
|
&si, // (in) startup information
|
|
&pi); // (out) process information
|
|
|
|
if (rslt) {
|
|
// Wait until child process exits.
|
|
WaitForSingleObject(pi.hProcess, INFINITE);
|
|
|
|
DWORD exit_code;
|
|
GetExitCodeProcess(pi.hProcess, &exit_code);
|
|
|
|
// Close process and thread handles.
|
|
CloseHandle(pi.hProcess);
|
|
CloseHandle(pi.hThread);
|
|
|
|
return (int)exit_code;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Non-product code
|
|
|
|
static int mallocDebugIntervalCounter = 0;
|
|
static int mallocDebugCounter = 0;
|
|
bool os::check_heap(bool force) {
|
|
if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
|
|
if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
|
|
// Note: HeapValidate executes two hardware breakpoints when it finds something
|
|
// wrong; at these points, eax contains the address of the offending block (I think).
|
|
// To get to the exlicit error message(s) below, just continue twice.
|
|
HANDLE heap = GetProcessHeap();
|
|
{ HeapLock(heap);
|
|
PROCESS_HEAP_ENTRY phe;
|
|
phe.lpData = NULL;
|
|
while (HeapWalk(heap, &phe) != 0) {
|
|
if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
|
|
!HeapValidate(heap, 0, phe.lpData)) {
|
|
tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
|
|
tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
|
|
fatal("corrupted C heap");
|
|
}
|
|
}
|
|
DWORD err = GetLastError();
|
|
if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
|
|
fatal(err_msg("heap walk aborted with error %d", err));
|
|
}
|
|
HeapUnlock(heap);
|
|
}
|
|
mallocDebugIntervalCounter = 0;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool os::find(address addr, outputStream* st) {
|
|
// Nothing yet
|
|
return false;
|
|
}
|
|
|
|
LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
|
|
DWORD exception_code = e->ExceptionRecord->ExceptionCode;
|
|
|
|
if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
|
|
JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
|
|
PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
|
|
address addr = (address) exceptionRecord->ExceptionInformation[1];
|
|
|
|
if (os::is_memory_serialize_page(thread, addr))
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
|
|
// We don't build a headless jre for Windows
|
|
bool os::is_headless_jre() { return false; }
|
|
|
|
static jint initSock() {
|
|
WSADATA wsadata;
|
|
|
|
if (!os::WinSock2Dll::WinSock2Available()) {
|
|
jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
|
|
::GetLastError());
|
|
return JNI_ERR;
|
|
}
|
|
|
|
if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
|
|
jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
|
|
::GetLastError());
|
|
return JNI_ERR;
|
|
}
|
|
return JNI_OK;
|
|
}
|
|
|
|
struct hostent* os::get_host_by_name(char* name) {
|
|
return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
|
|
}
|
|
|
|
int os::socket_close(int fd) {
|
|
return ::closesocket(fd);
|
|
}
|
|
|
|
int os::socket_available(int fd, jint *pbytes) {
|
|
int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
|
|
return (ret < 0) ? 0 : 1;
|
|
}
|
|
|
|
int os::socket(int domain, int type, int protocol) {
|
|
return ::socket(domain, type, protocol);
|
|
}
|
|
|
|
int os::listen(int fd, int count) {
|
|
return ::listen(fd, count);
|
|
}
|
|
|
|
int os::connect(int fd, struct sockaddr* him, socklen_t len) {
|
|
return ::connect(fd, him, len);
|
|
}
|
|
|
|
int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
|
|
return ::accept(fd, him, len);
|
|
}
|
|
|
|
int os::sendto(int fd, char* buf, size_t len, uint flags,
|
|
struct sockaddr* to, socklen_t tolen) {
|
|
|
|
return ::sendto(fd, buf, (int)len, flags, to, tolen);
|
|
}
|
|
|
|
int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
|
|
sockaddr* from, socklen_t* fromlen) {
|
|
|
|
return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
|
|
}
|
|
|
|
int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
|
|
return ::recv(fd, buf, (int)nBytes, flags);
|
|
}
|
|
|
|
int os::send(int fd, char* buf, size_t nBytes, uint flags) {
|
|
return ::send(fd, buf, (int)nBytes, flags);
|
|
}
|
|
|
|
int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
|
|
return ::send(fd, buf, (int)nBytes, flags);
|
|
}
|
|
|
|
int os::timeout(int fd, long timeout) {
|
|
fd_set tbl;
|
|
struct timeval t;
|
|
|
|
t.tv_sec = timeout / 1000;
|
|
t.tv_usec = (timeout % 1000) * 1000;
|
|
|
|
tbl.fd_count = 1;
|
|
tbl.fd_array[0] = fd;
|
|
|
|
return ::select(1, &tbl, 0, 0, &t);
|
|
}
|
|
|
|
int os::get_host_name(char* name, int namelen) {
|
|
return ::gethostname(name, namelen);
|
|
}
|
|
|
|
int os::socket_shutdown(int fd, int howto) {
|
|
return ::shutdown(fd, howto);
|
|
}
|
|
|
|
int os::bind(int fd, struct sockaddr* him, socklen_t len) {
|
|
return ::bind(fd, him, len);
|
|
}
|
|
|
|
int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
|
|
return ::getsockname(fd, him, len);
|
|
}
|
|
|
|
int os::get_sock_opt(int fd, int level, int optname,
|
|
char* optval, socklen_t* optlen) {
|
|
return ::getsockopt(fd, level, optname, optval, optlen);
|
|
}
|
|
|
|
int os::set_sock_opt(int fd, int level, int optname,
|
|
const char* optval, socklen_t optlen) {
|
|
return ::setsockopt(fd, level, optname, optval, optlen);
|
|
}
|
|
|
|
// WINDOWS CONTEXT Flags for THREAD_SAMPLING
|
|
#if defined(IA32)
|
|
# define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
|
|
#elif defined (AMD64)
|
|
# define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
|
|
#endif
|
|
|
|
// returns true if thread could be suspended,
|
|
// false otherwise
|
|
static bool do_suspend(HANDLE* h) {
|
|
if (h != NULL) {
|
|
if (SuspendThread(*h) != ~0) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// resume the thread
|
|
// calling resume on an active thread is a no-op
|
|
static void do_resume(HANDLE* h) {
|
|
if (h != NULL) {
|
|
ResumeThread(*h);
|
|
}
|
|
}
|
|
|
|
// retrieve a suspend/resume context capable handle
|
|
// from the tid. Caller validates handle return value.
|
|
void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
|
|
if (h != NULL) {
|
|
*h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Thread sampling implementation
|
|
//
|
|
void os::SuspendedThreadTask::internal_do_task() {
|
|
CONTEXT ctxt;
|
|
HANDLE h = NULL;
|
|
|
|
// get context capable handle for thread
|
|
get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
|
|
|
|
// sanity
|
|
if (h == NULL || h == INVALID_HANDLE_VALUE) {
|
|
return;
|
|
}
|
|
|
|
// suspend the thread
|
|
if (do_suspend(&h)) {
|
|
ctxt.ContextFlags = sampling_context_flags;
|
|
// get thread context
|
|
GetThreadContext(h, &ctxt);
|
|
SuspendedThreadTaskContext context(_thread, &ctxt);
|
|
// pass context to Thread Sampling impl
|
|
do_task(context);
|
|
// resume thread
|
|
do_resume(&h);
|
|
}
|
|
|
|
// close handle
|
|
CloseHandle(h);
|
|
}
|
|
|
|
|
|
// Kernel32 API
|
|
typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
|
|
typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
|
|
typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
|
|
typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
|
|
typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
|
|
|
|
GetLargePageMinimum_Fn os::Kernel32Dll::_GetLargePageMinimum = NULL;
|
|
VirtualAllocExNuma_Fn os::Kernel32Dll::_VirtualAllocExNuma = NULL;
|
|
GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
|
|
GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
|
|
RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
|
|
|
|
|
|
BOOL os::Kernel32Dll::initialized = FALSE;
|
|
SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
|
|
assert(initialized && _GetLargePageMinimum != NULL,
|
|
"GetLargePageMinimumAvailable() not yet called");
|
|
return _GetLargePageMinimum();
|
|
}
|
|
|
|
BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
|
|
if (!initialized) {
|
|
initialize();
|
|
}
|
|
return _GetLargePageMinimum != NULL;
|
|
}
|
|
|
|
BOOL os::Kernel32Dll::NumaCallsAvailable() {
|
|
if (!initialized) {
|
|
initialize();
|
|
}
|
|
return _VirtualAllocExNuma != NULL;
|
|
}
|
|
|
|
LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
|
|
assert(initialized && _VirtualAllocExNuma != NULL,
|
|
"NUMACallsAvailable() not yet called");
|
|
|
|
return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
|
|
}
|
|
|
|
BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
|
|
assert(initialized && _GetNumaHighestNodeNumber != NULL,
|
|
"NUMACallsAvailable() not yet called");
|
|
|
|
return _GetNumaHighestNodeNumber(ptr_highest_node_number);
|
|
}
|
|
|
|
BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
|
|
assert(initialized && _GetNumaNodeProcessorMask != NULL,
|
|
"NUMACallsAvailable() not yet called");
|
|
|
|
return _GetNumaNodeProcessorMask(node, proc_mask);
|
|
}
|
|
|
|
USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
|
|
ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
|
|
if (!initialized) {
|
|
initialize();
|
|
}
|
|
|
|
if (_RtlCaptureStackBackTrace != NULL) {
|
|
return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
|
|
BackTrace, BackTraceHash);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void os::Kernel32Dll::initializeCommon() {
|
|
if (!initialized) {
|
|
HMODULE handle = ::GetModuleHandle("Kernel32.dll");
|
|
assert(handle != NULL, "Just check");
|
|
_GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
|
|
_VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
|
|
_GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
|
|
_GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
|
|
_RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
|
|
initialized = TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#ifndef JDK6_OR_EARLIER
|
|
|
|
void os::Kernel32Dll::initialize() {
|
|
initializeCommon();
|
|
}
|
|
|
|
|
|
// Kernel32 API
|
|
inline BOOL os::Kernel32Dll::SwitchToThread() {
|
|
return ::SwitchToThread();
|
|
}
|
|
|
|
inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
|
|
return true;
|
|
}
|
|
|
|
// Help tools
|
|
inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
|
|
return true;
|
|
}
|
|
|
|
inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
|
|
return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
|
|
}
|
|
|
|
inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
|
|
return ::Module32First(hSnapshot, lpme);
|
|
}
|
|
|
|
inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
|
|
return ::Module32Next(hSnapshot, lpme);
|
|
}
|
|
|
|
|
|
inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
|
|
return true;
|
|
}
|
|
|
|
inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
|
|
::GetNativeSystemInfo(lpSystemInfo);
|
|
}
|
|
|
|
// PSAPI API
|
|
inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
|
|
return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
|
|
}
|
|
|
|
inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
|
|
return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
|
|
}
|
|
|
|
inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
|
|
return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
|
|
}
|
|
|
|
inline BOOL os::PSApiDll::PSApiAvailable() {
|
|
return true;
|
|
}
|
|
|
|
|
|
// WinSock2 API
|
|
inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
|
|
return ::WSAStartup(wVersionRequested, lpWSAData);
|
|
}
|
|
|
|
inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
|
|
return ::gethostbyname(name);
|
|
}
|
|
|
|
inline BOOL os::WinSock2Dll::WinSock2Available() {
|
|
return true;
|
|
}
|
|
|
|
// Advapi API
|
|
inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
|
|
BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
|
|
PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
|
|
return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
|
|
BufferLength, PreviousState, ReturnLength);
|
|
}
|
|
|
|
inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
|
|
PHANDLE TokenHandle) {
|
|
return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
|
|
}
|
|
|
|
inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
|
|
return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
|
|
}
|
|
|
|
inline BOOL os::Advapi32Dll::AdvapiAvailable() {
|
|
return true;
|
|
}
|
|
|
|
#else
|
|
// Kernel32 API
|
|
typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
|
|
typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
|
|
typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
|
|
typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
|
|
typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
|
|
|
|
SwitchToThread_Fn os::Kernel32Dll::_SwitchToThread = NULL;
|
|
CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
|
|
Module32First_Fn os::Kernel32Dll::_Module32First = NULL;
|
|
Module32Next_Fn os::Kernel32Dll::_Module32Next = NULL;
|
|
GetNativeSystemInfo_Fn os::Kernel32Dll::_GetNativeSystemInfo = NULL;
|
|
|
|
void os::Kernel32Dll::initialize() {
|
|
if (!initialized) {
|
|
HMODULE handle = ::GetModuleHandle("Kernel32.dll");
|
|
assert(handle != NULL, "Just check");
|
|
|
|
_SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
|
|
_CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
|
|
::GetProcAddress(handle, "CreateToolhelp32Snapshot");
|
|
_Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
|
|
_Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
|
|
_GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
|
|
initializeCommon(); // resolve the functions that always need resolving
|
|
|
|
initialized = TRUE;
|
|
}
|
|
}
|
|
|
|
BOOL os::Kernel32Dll::SwitchToThread() {
|
|
assert(initialized && _SwitchToThread != NULL,
|
|
"SwitchToThreadAvailable() not yet called");
|
|
return _SwitchToThread();
|
|
}
|
|
|
|
|
|
BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
|
|
if (!initialized) {
|
|
initialize();
|
|
}
|
|
return _SwitchToThread != NULL;
|
|
}
|
|
|
|
// Help tools
|
|
BOOL os::Kernel32Dll::HelpToolsAvailable() {
|
|
if (!initialized) {
|
|
initialize();
|
|
}
|
|
return _CreateToolhelp32Snapshot != NULL &&
|
|
_Module32First != NULL &&
|
|
_Module32Next != NULL;
|
|
}
|
|
|
|
HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
|
|
assert(initialized && _CreateToolhelp32Snapshot != NULL,
|
|
"HelpToolsAvailable() not yet called");
|
|
|
|
return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
|
|
}
|
|
|
|
BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
|
|
assert(initialized && _Module32First != NULL,
|
|
"HelpToolsAvailable() not yet called");
|
|
|
|
return _Module32First(hSnapshot, lpme);
|
|
}
|
|
|
|
inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
|
|
assert(initialized && _Module32Next != NULL,
|
|
"HelpToolsAvailable() not yet called");
|
|
|
|
return _Module32Next(hSnapshot, lpme);
|
|
}
|
|
|
|
|
|
BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
|
|
if (!initialized) {
|
|
initialize();
|
|
}
|
|
return _GetNativeSystemInfo != NULL;
|
|
}
|
|
|
|
void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
|
|
assert(initialized && _GetNativeSystemInfo != NULL,
|
|
"GetNativeSystemInfoAvailable() not yet called");
|
|
|
|
_GetNativeSystemInfo(lpSystemInfo);
|
|
}
|
|
|
|
// PSAPI API
|
|
|
|
|
|
typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
|
|
typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
|
|
typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
|
|
|
|
EnumProcessModules_Fn os::PSApiDll::_EnumProcessModules = NULL;
|
|
GetModuleFileNameEx_Fn os::PSApiDll::_GetModuleFileNameEx = NULL;
|
|
GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
|
|
BOOL os::PSApiDll::initialized = FALSE;
|
|
|
|
void os::PSApiDll::initialize() {
|
|
if (!initialized) {
|
|
HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
|
|
if (handle != NULL) {
|
|
_EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
|
|
"EnumProcessModules");
|
|
_GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
|
|
"GetModuleFileNameExA");
|
|
_GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
|
|
"GetModuleInformation");
|
|
}
|
|
initialized = TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
|
|
assert(initialized && _EnumProcessModules != NULL,
|
|
"PSApiAvailable() not yet called");
|
|
return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
|
|
}
|
|
|
|
DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
|
|
assert(initialized && _GetModuleFileNameEx != NULL,
|
|
"PSApiAvailable() not yet called");
|
|
return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
|
|
}
|
|
|
|
BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
|
|
assert(initialized && _GetModuleInformation != NULL,
|
|
"PSApiAvailable() not yet called");
|
|
return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
|
|
}
|
|
|
|
BOOL os::PSApiDll::PSApiAvailable() {
|
|
if (!initialized) {
|
|
initialize();
|
|
}
|
|
return _EnumProcessModules != NULL &&
|
|
_GetModuleFileNameEx != NULL &&
|
|
_GetModuleInformation != NULL;
|
|
}
|
|
|
|
|
|
// WinSock2 API
|
|
typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
|
|
typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
|
|
|
|
WSAStartup_Fn os::WinSock2Dll::_WSAStartup = NULL;
|
|
gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
|
|
BOOL os::WinSock2Dll::initialized = FALSE;
|
|
|
|
void os::WinSock2Dll::initialize() {
|
|
if (!initialized) {
|
|
HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
|
|
if (handle != NULL) {
|
|
_WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
|
|
_gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
|
|
}
|
|
initialized = TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
|
|
assert(initialized && _WSAStartup != NULL,
|
|
"WinSock2Available() not yet called");
|
|
return _WSAStartup(wVersionRequested, lpWSAData);
|
|
}
|
|
|
|
struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
|
|
assert(initialized && _gethostbyname != NULL,
|
|
"WinSock2Available() not yet called");
|
|
return _gethostbyname(name);
|
|
}
|
|
|
|
BOOL os::WinSock2Dll::WinSock2Available() {
|
|
if (!initialized) {
|
|
initialize();
|
|
}
|
|
return _WSAStartup != NULL &&
|
|
_gethostbyname != NULL;
|
|
}
|
|
|
|
typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
|
|
typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
|
|
typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
|
|
|
|
AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
|
|
OpenProcessToken_Fn os::Advapi32Dll::_OpenProcessToken = NULL;
|
|
LookupPrivilegeValue_Fn os::Advapi32Dll::_LookupPrivilegeValue = NULL;
|
|
BOOL os::Advapi32Dll::initialized = FALSE;
|
|
|
|
void os::Advapi32Dll::initialize() {
|
|
if (!initialized) {
|
|
HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
|
|
if (handle != NULL) {
|
|
_AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
|
|
"AdjustTokenPrivileges");
|
|
_OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
|
|
"OpenProcessToken");
|
|
_LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
|
|
"LookupPrivilegeValueA");
|
|
}
|
|
initialized = TRUE;
|
|
}
|
|
}
|
|
|
|
BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
|
|
BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
|
|
PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
|
|
assert(initialized && _AdjustTokenPrivileges != NULL,
|
|
"AdvapiAvailable() not yet called");
|
|
return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
|
|
BufferLength, PreviousState, ReturnLength);
|
|
}
|
|
|
|
BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
|
|
PHANDLE TokenHandle) {
|
|
assert(initialized && _OpenProcessToken != NULL,
|
|
"AdvapiAvailable() not yet called");
|
|
return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
|
|
}
|
|
|
|
BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
|
|
assert(initialized && _LookupPrivilegeValue != NULL,
|
|
"AdvapiAvailable() not yet called");
|
|
return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
|
|
}
|
|
|
|
BOOL os::Advapi32Dll::AdvapiAvailable() {
|
|
if (!initialized) {
|
|
initialize();
|
|
}
|
|
return _AdjustTokenPrivileges != NULL &&
|
|
_OpenProcessToken != NULL &&
|
|
_LookupPrivilegeValue != NULL;
|
|
}
|
|
|
|
#endif
|