mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-20 19:14:38 +02:00

7007446: G1: expand the heap with a single step, not one region at a time Changed G1CollectedHeap::expand() to expand the committed space by calling VirtualSpace::expand_by() once rather than for every region in the expansion amount. This allows the success or failure of the expansion to be determined before creating any heap regions. Introduced a develop flag G1ExitOnExpansionFailure (false by default) that, when true, will exit the VM if the expansion of the committed space fails. Finally G1CollectedHeap::expand() returns a status back to it's caller so that the caller knows whether to attempt the allocation. Reviewed-by: brutisso, tonyp
3018 lines
109 KiB
C++
3018 lines
109 KiB
C++
/*
|
|
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc_implementation/g1/concurrentG1Refine.hpp"
|
|
#include "gc_implementation/g1/concurrentMark.hpp"
|
|
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
|
|
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
|
|
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
|
|
#include "gc_implementation/g1/heapRegionRemSet.hpp"
|
|
#include "gc_implementation/shared/gcPolicyCounters.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "utilities/debug.hpp"
|
|
|
|
#define PREDICTIONS_VERBOSE 0
|
|
|
|
// <NEW PREDICTION>
|
|
|
|
// Different defaults for different number of GC threads
|
|
// They were chosen by running GCOld and SPECjbb on debris with different
|
|
// numbers of GC threads and choosing them based on the results
|
|
|
|
// all the same
|
|
static double rs_length_diff_defaults[] = {
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
|
};
|
|
|
|
static double cost_per_card_ms_defaults[] = {
|
|
0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
|
|
};
|
|
|
|
// all the same
|
|
static double fully_young_cards_per_entry_ratio_defaults[] = {
|
|
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
|
|
};
|
|
|
|
static double cost_per_entry_ms_defaults[] = {
|
|
0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
|
|
};
|
|
|
|
static double cost_per_byte_ms_defaults[] = {
|
|
0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
|
|
};
|
|
|
|
// these should be pretty consistent
|
|
static double constant_other_time_ms_defaults[] = {
|
|
5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
|
|
};
|
|
|
|
|
|
static double young_other_cost_per_region_ms_defaults[] = {
|
|
0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
|
|
};
|
|
|
|
static double non_young_other_cost_per_region_ms_defaults[] = {
|
|
1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
|
|
};
|
|
|
|
// </NEW PREDICTION>
|
|
|
|
G1CollectorPolicy::G1CollectorPolicy() :
|
|
_parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
|
|
? ParallelGCThreads : 1),
|
|
|
|
|
|
_n_pauses(0),
|
|
_recent_CH_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
|
|
_recent_G1_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
|
|
_recent_evac_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
|
|
_recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
|
|
_recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
|
|
_recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
|
|
_all_pause_times_ms(new NumberSeq()),
|
|
_stop_world_start(0.0),
|
|
_all_stop_world_times_ms(new NumberSeq()),
|
|
_all_yield_times_ms(new NumberSeq()),
|
|
|
|
_all_mod_union_times_ms(new NumberSeq()),
|
|
|
|
_summary(new Summary()),
|
|
|
|
#ifndef PRODUCT
|
|
_cur_clear_ct_time_ms(0.0),
|
|
_min_clear_cc_time_ms(-1.0),
|
|
_max_clear_cc_time_ms(-1.0),
|
|
_cur_clear_cc_time_ms(0.0),
|
|
_cum_clear_cc_time_ms(0.0),
|
|
_num_cc_clears(0L),
|
|
#endif
|
|
|
|
_region_num_young(0),
|
|
_region_num_tenured(0),
|
|
_prev_region_num_young(0),
|
|
_prev_region_num_tenured(0),
|
|
|
|
_aux_num(10),
|
|
_all_aux_times_ms(new NumberSeq[_aux_num]),
|
|
_cur_aux_start_times_ms(new double[_aux_num]),
|
|
_cur_aux_times_ms(new double[_aux_num]),
|
|
_cur_aux_times_set(new bool[_aux_num]),
|
|
|
|
_concurrent_mark_init_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
|
|
_concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
|
|
_concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
|
|
|
|
// <NEW PREDICTION>
|
|
|
|
_alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
_prev_collection_pause_end_ms(0.0),
|
|
_pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
_rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
_cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
_fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
_partially_young_cards_per_entry_ratio_seq(
|
|
new TruncatedSeq(TruncatedSeqLength)),
|
|
_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
_partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
_cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
_cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
_constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
_young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
_non_young_other_cost_per_region_ms_seq(
|
|
new TruncatedSeq(TruncatedSeqLength)),
|
|
|
|
_pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
_scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
_rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
|
|
_pause_time_target_ms((double) MaxGCPauseMillis),
|
|
|
|
// </NEW PREDICTION>
|
|
|
|
_in_young_gc_mode(false),
|
|
_full_young_gcs(true),
|
|
_full_young_pause_num(0),
|
|
_partial_young_pause_num(0),
|
|
|
|
_during_marking(false),
|
|
_in_marking_window(false),
|
|
_in_marking_window_im(false),
|
|
|
|
_known_garbage_ratio(0.0),
|
|
_known_garbage_bytes(0),
|
|
|
|
_young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
|
|
|
|
_recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),
|
|
|
|
_recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
|
|
_recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),
|
|
|
|
_recent_avg_pause_time_ratio(0.0),
|
|
_num_markings(0),
|
|
_n_marks(0),
|
|
_n_pauses_at_mark_end(0),
|
|
|
|
_all_full_gc_times_ms(new NumberSeq()),
|
|
|
|
// G1PausesBtwnConcMark defaults to -1
|
|
// so the hack is to do the cast QQQ FIXME
|
|
_pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
|
|
_n_marks_since_last_pause(0),
|
|
_initiate_conc_mark_if_possible(false),
|
|
_during_initial_mark_pause(false),
|
|
_should_revert_to_full_young_gcs(false),
|
|
_last_full_young_gc(false),
|
|
|
|
_prev_collection_pause_used_at_end_bytes(0),
|
|
|
|
_collection_set(NULL),
|
|
_collection_set_size(0),
|
|
_collection_set_bytes_used_before(0),
|
|
|
|
// Incremental CSet attributes
|
|
_inc_cset_build_state(Inactive),
|
|
_inc_cset_head(NULL),
|
|
_inc_cset_tail(NULL),
|
|
_inc_cset_size(0),
|
|
_inc_cset_young_index(0),
|
|
_inc_cset_bytes_used_before(0),
|
|
_inc_cset_max_finger(NULL),
|
|
_inc_cset_recorded_young_bytes(0),
|
|
_inc_cset_recorded_rs_lengths(0),
|
|
_inc_cset_predicted_elapsed_time_ms(0.0),
|
|
_inc_cset_predicted_bytes_to_copy(0),
|
|
|
|
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
|
|
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
|
|
#endif // _MSC_VER
|
|
|
|
_short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
|
|
G1YoungSurvRateNumRegionsSummary)),
|
|
_survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
|
|
G1YoungSurvRateNumRegionsSummary)),
|
|
// add here any more surv rate groups
|
|
_recorded_survivor_regions(0),
|
|
_recorded_survivor_head(NULL),
|
|
_recorded_survivor_tail(NULL),
|
|
_survivors_age_table(true),
|
|
|
|
_gc_overhead_perc(0.0)
|
|
|
|
{
|
|
// Set up the region size and associated fields. Given that the
|
|
// policy is created before the heap, we have to set this up here,
|
|
// so it's done as soon as possible.
|
|
HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
|
|
HeapRegionRemSet::setup_remset_size();
|
|
|
|
// Verify PLAB sizes
|
|
const uint region_size = HeapRegion::GrainWords;
|
|
if (YoungPLABSize > region_size || OldPLABSize > region_size) {
|
|
char buffer[128];
|
|
jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most %u",
|
|
OldPLABSize > region_size ? "Old" : "Young", region_size);
|
|
vm_exit_during_initialization(buffer);
|
|
}
|
|
|
|
_recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
|
|
_prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
|
|
|
|
_par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
|
|
_par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
|
|
_par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
|
|
|
|
_par_last_update_rs_times_ms = new double[_parallel_gc_threads];
|
|
_par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
|
|
|
|
_par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
|
|
|
|
_par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
|
|
|
|
_par_last_termination_times_ms = new double[_parallel_gc_threads];
|
|
_par_last_termination_attempts = new double[_parallel_gc_threads];
|
|
_par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
|
|
|
|
// start conservatively
|
|
_expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
|
|
|
|
// <NEW PREDICTION>
|
|
|
|
int index;
|
|
if (ParallelGCThreads == 0)
|
|
index = 0;
|
|
else if (ParallelGCThreads > 8)
|
|
index = 7;
|
|
else
|
|
index = ParallelGCThreads - 1;
|
|
|
|
_pending_card_diff_seq->add(0.0);
|
|
_rs_length_diff_seq->add(rs_length_diff_defaults[index]);
|
|
_cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
|
|
_fully_young_cards_per_entry_ratio_seq->add(
|
|
fully_young_cards_per_entry_ratio_defaults[index]);
|
|
_cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
|
|
_cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
|
|
_constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
|
|
_young_other_cost_per_region_ms_seq->add(
|
|
young_other_cost_per_region_ms_defaults[index]);
|
|
_non_young_other_cost_per_region_ms_seq->add(
|
|
non_young_other_cost_per_region_ms_defaults[index]);
|
|
|
|
// </NEW PREDICTION>
|
|
|
|
// Below, we might need to calculate the pause time target based on
|
|
// the pause interval. When we do so we are going to give G1 maximum
|
|
// flexibility and allow it to do pauses when it needs to. So, we'll
|
|
// arrange that the pause interval to be pause time target + 1 to
|
|
// ensure that a) the pause time target is maximized with respect to
|
|
// the pause interval and b) we maintain the invariant that pause
|
|
// time target < pause interval. If the user does not want this
|
|
// maximum flexibility, they will have to set the pause interval
|
|
// explicitly.
|
|
|
|
// First make sure that, if either parameter is set, its value is
|
|
// reasonable.
|
|
if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
|
|
if (MaxGCPauseMillis < 1) {
|
|
vm_exit_during_initialization("MaxGCPauseMillis should be "
|
|
"greater than 0");
|
|
}
|
|
}
|
|
if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
|
|
if (GCPauseIntervalMillis < 1) {
|
|
vm_exit_during_initialization("GCPauseIntervalMillis should be "
|
|
"greater than 0");
|
|
}
|
|
}
|
|
|
|
// Then, if the pause time target parameter was not set, set it to
|
|
// the default value.
|
|
if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
|
|
if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
|
|
// The default pause time target in G1 is 200ms
|
|
FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
|
|
} else {
|
|
// We do not allow the pause interval to be set without the
|
|
// pause time target
|
|
vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
|
|
"without setting MaxGCPauseMillis");
|
|
}
|
|
}
|
|
|
|
// Then, if the interval parameter was not set, set it according to
|
|
// the pause time target (this will also deal with the case when the
|
|
// pause time target is the default value).
|
|
if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
|
|
FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
|
|
}
|
|
|
|
// Finally, make sure that the two parameters are consistent.
|
|
if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
|
|
char buffer[256];
|
|
jio_snprintf(buffer, 256,
|
|
"MaxGCPauseMillis (%u) should be less than "
|
|
"GCPauseIntervalMillis (%u)",
|
|
MaxGCPauseMillis, GCPauseIntervalMillis);
|
|
vm_exit_during_initialization(buffer);
|
|
}
|
|
|
|
double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
|
|
double time_slice = (double) GCPauseIntervalMillis / 1000.0;
|
|
_mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
|
|
_sigma = (double) G1ConfidencePercent / 100.0;
|
|
|
|
// start conservatively (around 50ms is about right)
|
|
_concurrent_mark_init_times_ms->add(0.05);
|
|
_concurrent_mark_remark_times_ms->add(0.05);
|
|
_concurrent_mark_cleanup_times_ms->add(0.20);
|
|
_tenuring_threshold = MaxTenuringThreshold;
|
|
|
|
// if G1FixedSurvivorSpaceSize is 0 which means the size is not
|
|
// fixed, then _max_survivor_regions will be calculated at
|
|
// calculate_young_list_target_length during initialization
|
|
_max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
|
|
|
|
assert(GCTimeRatio > 0,
|
|
"we should have set it to a default value set_g1_gc_flags() "
|
|
"if a user set it to 0");
|
|
_gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
|
|
|
|
initialize_all();
|
|
}
|
|
|
|
// Increment "i", mod "len"
|
|
static void inc_mod(int& i, int len) {
|
|
i++; if (i == len) i = 0;
|
|
}
|
|
|
|
void G1CollectorPolicy::initialize_flags() {
|
|
set_min_alignment(HeapRegion::GrainBytes);
|
|
set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
|
|
if (SurvivorRatio < 1) {
|
|
vm_exit_during_initialization("Invalid survivor ratio specified");
|
|
}
|
|
CollectorPolicy::initialize_flags();
|
|
}
|
|
|
|
// The easiest way to deal with the parsing of the NewSize /
|
|
// MaxNewSize / etc. parameteres is to re-use the code in the
|
|
// TwoGenerationCollectorPolicy class. This is similar to what
|
|
// ParallelScavenge does with its GenerationSizer class (see
|
|
// ParallelScavengeHeap::initialize()). We might change this in the
|
|
// future, but it's a good start.
|
|
class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
|
|
size_t size_to_region_num(size_t byte_size) {
|
|
return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
|
|
}
|
|
|
|
public:
|
|
G1YoungGenSizer() {
|
|
initialize_flags();
|
|
initialize_size_info();
|
|
}
|
|
|
|
size_t min_young_region_num() {
|
|
return size_to_region_num(_min_gen0_size);
|
|
}
|
|
size_t initial_young_region_num() {
|
|
return size_to_region_num(_initial_gen0_size);
|
|
}
|
|
size_t max_young_region_num() {
|
|
return size_to_region_num(_max_gen0_size);
|
|
}
|
|
};
|
|
|
|
void G1CollectorPolicy::init() {
|
|
// Set aside an initial future to_space.
|
|
_g1 = G1CollectedHeap::heap();
|
|
|
|
assert(Heap_lock->owned_by_self(), "Locking discipline.");
|
|
|
|
initialize_gc_policy_counters();
|
|
|
|
if (G1Gen) {
|
|
_in_young_gc_mode = true;
|
|
|
|
G1YoungGenSizer sizer;
|
|
size_t initial_region_num = sizer.initial_young_region_num();
|
|
|
|
if (UseAdaptiveSizePolicy) {
|
|
set_adaptive_young_list_length(true);
|
|
_young_list_fixed_length = 0;
|
|
} else {
|
|
set_adaptive_young_list_length(false);
|
|
_young_list_fixed_length = initial_region_num;
|
|
}
|
|
_free_regions_at_end_of_collection = _g1->free_regions();
|
|
calculate_young_list_min_length();
|
|
guarantee( _young_list_min_length == 0, "invariant, not enough info" );
|
|
calculate_young_list_target_length();
|
|
} else {
|
|
_young_list_fixed_length = 0;
|
|
_in_young_gc_mode = false;
|
|
}
|
|
|
|
// We may immediately start allocating regions and placing them on the
|
|
// collection set list. Initialize the per-collection set info
|
|
start_incremental_cset_building();
|
|
}
|
|
|
|
// Create the jstat counters for the policy.
|
|
void G1CollectorPolicy::initialize_gc_policy_counters()
|
|
{
|
|
_gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 2 + G1Gen);
|
|
}
|
|
|
|
void G1CollectorPolicy::calculate_young_list_min_length() {
|
|
_young_list_min_length = 0;
|
|
|
|
if (!adaptive_young_list_length())
|
|
return;
|
|
|
|
if (_alloc_rate_ms_seq->num() > 3) {
|
|
double now_sec = os::elapsedTime();
|
|
double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
|
|
double alloc_rate_ms = predict_alloc_rate_ms();
|
|
size_t min_regions = (size_t) ceil(alloc_rate_ms * when_ms);
|
|
size_t current_region_num = _g1->young_list()->length();
|
|
_young_list_min_length = min_regions + current_region_num;
|
|
}
|
|
}
|
|
|
|
void G1CollectorPolicy::calculate_young_list_target_length() {
|
|
if (adaptive_young_list_length()) {
|
|
size_t rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
|
|
calculate_young_list_target_length(rs_lengths);
|
|
} else {
|
|
if (full_young_gcs())
|
|
_young_list_target_length = _young_list_fixed_length;
|
|
else
|
|
_young_list_target_length = _young_list_fixed_length / 2;
|
|
}
|
|
|
|
// Make sure we allow the application to allocate at least one
|
|
// region before we need to do a collection again.
|
|
size_t min_length = _g1->young_list()->length() + 1;
|
|
_young_list_target_length = MAX2(_young_list_target_length, min_length);
|
|
calculate_max_gc_locker_expansion();
|
|
calculate_survivors_policy();
|
|
}
|
|
|
|
void G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths) {
|
|
guarantee( adaptive_young_list_length(), "pre-condition" );
|
|
guarantee( !_in_marking_window || !_last_full_young_gc, "invariant" );
|
|
|
|
double start_time_sec = os::elapsedTime();
|
|
size_t min_reserve_perc = MAX2((size_t)2, (size_t)G1ReservePercent);
|
|
min_reserve_perc = MIN2((size_t) 50, min_reserve_perc);
|
|
size_t reserve_regions =
|
|
(size_t) ((double) min_reserve_perc * (double) _g1->n_regions() / 100.0);
|
|
|
|
if (full_young_gcs() && _free_regions_at_end_of_collection > 0) {
|
|
// we are in fully-young mode and there are free regions in the heap
|
|
|
|
double survivor_regions_evac_time =
|
|
predict_survivor_regions_evac_time();
|
|
|
|
double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
|
|
size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
|
|
size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
|
|
size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
|
|
double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards)
|
|
+ survivor_regions_evac_time;
|
|
|
|
// the result
|
|
size_t final_young_length = 0;
|
|
|
|
size_t init_free_regions =
|
|
MAX2((size_t)0, _free_regions_at_end_of_collection - reserve_regions);
|
|
|
|
// if we're still under the pause target...
|
|
if (base_time_ms <= target_pause_time_ms) {
|
|
// We make sure that the shortest young length that makes sense
|
|
// fits within the target pause time.
|
|
size_t min_young_length = 1;
|
|
|
|
if (predict_will_fit(min_young_length, base_time_ms,
|
|
init_free_regions, target_pause_time_ms)) {
|
|
// The shortest young length will fit within the target pause time;
|
|
// we'll now check whether the absolute maximum number of young
|
|
// regions will fit in the target pause time. If not, we'll do
|
|
// a binary search between min_young_length and max_young_length
|
|
size_t abs_max_young_length = _free_regions_at_end_of_collection - 1;
|
|
size_t max_young_length = abs_max_young_length;
|
|
|
|
if (max_young_length > min_young_length) {
|
|
// Let's check if the initial max young length will fit within the
|
|
// target pause. If so then there is no need to search for a maximal
|
|
// young length - we'll return the initial maximum
|
|
|
|
if (predict_will_fit(max_young_length, base_time_ms,
|
|
init_free_regions, target_pause_time_ms)) {
|
|
// The maximum young length will satisfy the target pause time.
|
|
// We are done so set min young length to this maximum length.
|
|
// The code after the loop will then set final_young_length using
|
|
// the value cached in the minimum length.
|
|
min_young_length = max_young_length;
|
|
} else {
|
|
// The maximum possible number of young regions will not fit within
|
|
// the target pause time so let's search....
|
|
|
|
size_t diff = (max_young_length - min_young_length) / 2;
|
|
max_young_length = min_young_length + diff;
|
|
|
|
while (max_young_length > min_young_length) {
|
|
if (predict_will_fit(max_young_length, base_time_ms,
|
|
init_free_regions, target_pause_time_ms)) {
|
|
|
|
// The current max young length will fit within the target
|
|
// pause time. Note we do not exit the loop here. By setting
|
|
// min = max, and then increasing the max below means that
|
|
// we will continue searching for an upper bound in the
|
|
// range [max..max+diff]
|
|
min_young_length = max_young_length;
|
|
}
|
|
diff = (max_young_length - min_young_length) / 2;
|
|
max_young_length = min_young_length + diff;
|
|
}
|
|
// the above loop found a maximal young length that will fit
|
|
// within the target pause time.
|
|
}
|
|
assert(min_young_length <= abs_max_young_length, "just checking");
|
|
}
|
|
final_young_length = min_young_length;
|
|
}
|
|
}
|
|
// and we're done!
|
|
|
|
// we should have at least one region in the target young length
|
|
_young_list_target_length =
|
|
final_young_length + _recorded_survivor_regions;
|
|
|
|
// let's keep an eye of how long we spend on this calculation
|
|
// right now, I assume that we'll print it when we need it; we
|
|
// should really adde it to the breakdown of a pause
|
|
double end_time_sec = os::elapsedTime();
|
|
double elapsed_time_ms = (end_time_sec - start_time_sec) * 1000.0;
|
|
|
|
#ifdef TRACE_CALC_YOUNG_LENGTH
|
|
// leave this in for debugging, just in case
|
|
gclog_or_tty->print_cr("target = %1.1lf ms, young = " SIZE_FORMAT ", "
|
|
"elapsed %1.2lf ms, (%s%s) " SIZE_FORMAT SIZE_FORMAT,
|
|
target_pause_time_ms,
|
|
_young_list_target_length
|
|
elapsed_time_ms,
|
|
full_young_gcs() ? "full" : "partial",
|
|
during_initial_mark_pause() ? " i-m" : "",
|
|
_in_marking_window,
|
|
_in_marking_window_im);
|
|
#endif // TRACE_CALC_YOUNG_LENGTH
|
|
|
|
if (_young_list_target_length < _young_list_min_length) {
|
|
// bummer; this means that, if we do a pause when the maximal
|
|
// length dictates, we'll violate the pause spacing target (the
|
|
// min length was calculate based on the application's current
|
|
// alloc rate);
|
|
|
|
// so, we have to bite the bullet, and allocate the minimum
|
|
// number. We'll violate our target, but we just can't meet it.
|
|
|
|
#ifdef TRACE_CALC_YOUNG_LENGTH
|
|
// leave this in for debugging, just in case
|
|
gclog_or_tty->print_cr("adjusted target length from "
|
|
SIZE_FORMAT " to " SIZE_FORMAT,
|
|
_young_list_target_length, _young_list_min_length);
|
|
#endif // TRACE_CALC_YOUNG_LENGTH
|
|
|
|
_young_list_target_length = _young_list_min_length;
|
|
}
|
|
} else {
|
|
// we are in a partially-young mode or we've run out of regions (due
|
|
// to evacuation failure)
|
|
|
|
#ifdef TRACE_CALC_YOUNG_LENGTH
|
|
// leave this in for debugging, just in case
|
|
gclog_or_tty->print_cr("(partial) setting target to " SIZE_FORMAT
|
|
_young_list_min_length);
|
|
#endif // TRACE_CALC_YOUNG_LENGTH
|
|
// we'll do the pause as soon as possible by choosing the minimum
|
|
_young_list_target_length = _young_list_min_length;
|
|
}
|
|
|
|
_rs_lengths_prediction = rs_lengths;
|
|
}
|
|
|
|
// This is used by: calculate_young_list_target_length(rs_length). It
|
|
// returns true iff:
|
|
// the predicted pause time for the given young list will not overflow
|
|
// the target pause time
|
|
// and:
|
|
// the predicted amount of surviving data will not overflow the
|
|
// the amount of free space available for survivor regions.
|
|
//
|
|
bool
|
|
G1CollectorPolicy::predict_will_fit(size_t young_length,
|
|
double base_time_ms,
|
|
size_t init_free_regions,
|
|
double target_pause_time_ms) {
|
|
|
|
if (young_length >= init_free_regions)
|
|
// end condition 1: not enough space for the young regions
|
|
return false;
|
|
|
|
double accum_surv_rate_adj = 0.0;
|
|
double accum_surv_rate =
|
|
accum_yg_surv_rate_pred((int)(young_length - 1)) - accum_surv_rate_adj;
|
|
|
|
size_t bytes_to_copy =
|
|
(size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
|
|
|
|
double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
|
|
|
|
double young_other_time_ms =
|
|
predict_young_other_time_ms(young_length);
|
|
|
|
double pause_time_ms =
|
|
base_time_ms + copy_time_ms + young_other_time_ms;
|
|
|
|
if (pause_time_ms > target_pause_time_ms)
|
|
// end condition 2: over the target pause time
|
|
return false;
|
|
|
|
size_t free_bytes =
|
|
(init_free_regions - young_length) * HeapRegion::GrainBytes;
|
|
|
|
if ((2.0 + sigma()) * (double) bytes_to_copy > (double) free_bytes)
|
|
// end condition 3: out of to-space (conservatively)
|
|
return false;
|
|
|
|
// success!
|
|
return true;
|
|
}
|
|
|
|
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
|
|
double survivor_regions_evac_time = 0.0;
|
|
for (HeapRegion * r = _recorded_survivor_head;
|
|
r != NULL && r != _recorded_survivor_tail->get_next_young_region();
|
|
r = r->get_next_young_region()) {
|
|
survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
|
|
}
|
|
return survivor_regions_evac_time;
|
|
}
|
|
|
|
void G1CollectorPolicy::check_prediction_validity() {
|
|
guarantee( adaptive_young_list_length(), "should not call this otherwise" );
|
|
|
|
size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
|
|
if (rs_lengths > _rs_lengths_prediction) {
|
|
// add 10% to avoid having to recalculate often
|
|
size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
|
|
calculate_young_list_target_length(rs_lengths_prediction);
|
|
}
|
|
}
|
|
|
|
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
|
|
bool is_tlab,
|
|
bool* gc_overhead_limit_was_exceeded) {
|
|
guarantee(false, "Not using this policy feature yet.");
|
|
return NULL;
|
|
}
|
|
|
|
// This method controls how a collector handles one or more
|
|
// of its generations being fully allocated.
|
|
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
|
|
bool is_tlab) {
|
|
guarantee(false, "Not using this policy feature yet.");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
#ifndef PRODUCT
|
|
bool G1CollectorPolicy::verify_young_ages() {
|
|
HeapRegion* head = _g1->young_list()->first_region();
|
|
return
|
|
verify_young_ages(head, _short_lived_surv_rate_group);
|
|
// also call verify_young_ages on any additional surv rate groups
|
|
}
|
|
|
|
bool
|
|
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
|
|
SurvRateGroup *surv_rate_group) {
|
|
guarantee( surv_rate_group != NULL, "pre-condition" );
|
|
|
|
const char* name = surv_rate_group->name();
|
|
bool ret = true;
|
|
int prev_age = -1;
|
|
|
|
for (HeapRegion* curr = head;
|
|
curr != NULL;
|
|
curr = curr->get_next_young_region()) {
|
|
SurvRateGroup* group = curr->surv_rate_group();
|
|
if (group == NULL && !curr->is_survivor()) {
|
|
gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
|
|
ret = false;
|
|
}
|
|
|
|
if (surv_rate_group == group) {
|
|
int age = curr->age_in_surv_rate_group();
|
|
|
|
if (age < 0) {
|
|
gclog_or_tty->print_cr("## %s: encountered negative age", name);
|
|
ret = false;
|
|
}
|
|
|
|
if (age <= prev_age) {
|
|
gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
|
|
"(%d, %d)", name, age, prev_age);
|
|
ret = false;
|
|
}
|
|
prev_age = age;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
void G1CollectorPolicy::record_full_collection_start() {
|
|
_cur_collection_start_sec = os::elapsedTime();
|
|
// Release the future to-space so that it is available for compaction into.
|
|
_g1->set_full_collection();
|
|
}
|
|
|
|
void G1CollectorPolicy::record_full_collection_end() {
|
|
// Consider this like a collection pause for the purposes of allocation
|
|
// since last pause.
|
|
double end_sec = os::elapsedTime();
|
|
double full_gc_time_sec = end_sec - _cur_collection_start_sec;
|
|
double full_gc_time_ms = full_gc_time_sec * 1000.0;
|
|
|
|
_all_full_gc_times_ms->add(full_gc_time_ms);
|
|
|
|
update_recent_gc_times(end_sec, full_gc_time_ms);
|
|
|
|
_g1->clear_full_collection();
|
|
|
|
// "Nuke" the heuristics that control the fully/partially young GC
|
|
// transitions and make sure we start with fully young GCs after the
|
|
// Full GC.
|
|
set_full_young_gcs(true);
|
|
_last_full_young_gc = false;
|
|
_should_revert_to_full_young_gcs = false;
|
|
clear_initiate_conc_mark_if_possible();
|
|
clear_during_initial_mark_pause();
|
|
_known_garbage_bytes = 0;
|
|
_known_garbage_ratio = 0.0;
|
|
_in_marking_window = false;
|
|
_in_marking_window_im = false;
|
|
|
|
_short_lived_surv_rate_group->start_adding_regions();
|
|
// also call this on any additional surv rate groups
|
|
|
|
record_survivor_regions(0, NULL, NULL);
|
|
|
|
_prev_region_num_young = _region_num_young;
|
|
_prev_region_num_tenured = _region_num_tenured;
|
|
|
|
_free_regions_at_end_of_collection = _g1->free_regions();
|
|
// Reset survivors SurvRateGroup.
|
|
_survivor_surv_rate_group->reset();
|
|
calculate_young_list_min_length();
|
|
calculate_young_list_target_length();
|
|
}
|
|
|
|
void G1CollectorPolicy::record_before_bytes(size_t bytes) {
|
|
_bytes_in_to_space_before_gc += bytes;
|
|
}
|
|
|
|
void G1CollectorPolicy::record_after_bytes(size_t bytes) {
|
|
_bytes_in_to_space_after_gc += bytes;
|
|
}
|
|
|
|
void G1CollectorPolicy::record_stop_world_start() {
|
|
_stop_world_start = os::elapsedTime();
|
|
}
|
|
|
|
void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
|
|
size_t start_used) {
|
|
if (PrintGCDetails) {
|
|
gclog_or_tty->stamp(PrintGCTimeStamps);
|
|
gclog_or_tty->print("[GC pause");
|
|
if (in_young_gc_mode())
|
|
gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
|
|
}
|
|
|
|
assert(_g1->used() == _g1->recalculate_used(),
|
|
err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
|
|
_g1->used(), _g1->recalculate_used()));
|
|
|
|
double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
|
|
_all_stop_world_times_ms->add(s_w_t_ms);
|
|
_stop_world_start = 0.0;
|
|
|
|
_cur_collection_start_sec = start_time_sec;
|
|
_cur_collection_pause_used_at_start_bytes = start_used;
|
|
_cur_collection_pause_used_regions_at_start = _g1->used_regions();
|
|
_pending_cards = _g1->pending_card_num();
|
|
_max_pending_cards = _g1->max_pending_card_num();
|
|
|
|
_bytes_in_to_space_before_gc = 0;
|
|
_bytes_in_to_space_after_gc = 0;
|
|
_bytes_in_collection_set_before_gc = 0;
|
|
|
|
#ifdef DEBUG
|
|
// initialise these to something well known so that we can spot
|
|
// if they are not set properly
|
|
|
|
for (int i = 0; i < _parallel_gc_threads; ++i) {
|
|
_par_last_gc_worker_start_times_ms[i] = -1234.0;
|
|
_par_last_ext_root_scan_times_ms[i] = -1234.0;
|
|
_par_last_mark_stack_scan_times_ms[i] = -1234.0;
|
|
_par_last_update_rs_times_ms[i] = -1234.0;
|
|
_par_last_update_rs_processed_buffers[i] = -1234.0;
|
|
_par_last_scan_rs_times_ms[i] = -1234.0;
|
|
_par_last_obj_copy_times_ms[i] = -1234.0;
|
|
_par_last_termination_times_ms[i] = -1234.0;
|
|
_par_last_termination_attempts[i] = -1234.0;
|
|
_par_last_gc_worker_end_times_ms[i] = -1234.0;
|
|
}
|
|
#endif
|
|
|
|
for (int i = 0; i < _aux_num; ++i) {
|
|
_cur_aux_times_ms[i] = 0.0;
|
|
_cur_aux_times_set[i] = false;
|
|
}
|
|
|
|
_satb_drain_time_set = false;
|
|
_last_satb_drain_processed_buffers = -1;
|
|
|
|
if (in_young_gc_mode())
|
|
_last_young_gc_full = false;
|
|
|
|
// do that for any other surv rate groups
|
|
_short_lived_surv_rate_group->stop_adding_regions();
|
|
_survivors_age_table.clear();
|
|
|
|
assert( verify_young_ages(), "region age verification" );
|
|
}
|
|
|
|
void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
|
|
_mark_closure_time_ms = mark_closure_time_ms;
|
|
}
|
|
|
|
void G1CollectorPolicy::record_concurrent_mark_init_start() {
|
|
_mark_init_start_sec = os::elapsedTime();
|
|
guarantee(!in_young_gc_mode(), "should not do be here in young GC mode");
|
|
}
|
|
|
|
void G1CollectorPolicy::record_concurrent_mark_init_end_pre(double
|
|
mark_init_elapsed_time_ms) {
|
|
_during_marking = true;
|
|
assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
|
|
clear_during_initial_mark_pause();
|
|
_cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
|
|
}
|
|
|
|
void G1CollectorPolicy::record_concurrent_mark_init_end() {
|
|
double end_time_sec = os::elapsedTime();
|
|
double elapsed_time_ms = (end_time_sec - _mark_init_start_sec) * 1000.0;
|
|
_concurrent_mark_init_times_ms->add(elapsed_time_ms);
|
|
record_concurrent_mark_init_end_pre(elapsed_time_ms);
|
|
|
|
_mmu_tracker->add_pause(_mark_init_start_sec, end_time_sec, true);
|
|
}
|
|
|
|
void G1CollectorPolicy::record_concurrent_mark_remark_start() {
|
|
_mark_remark_start_sec = os::elapsedTime();
|
|
_during_marking = false;
|
|
}
|
|
|
|
void G1CollectorPolicy::record_concurrent_mark_remark_end() {
|
|
double end_time_sec = os::elapsedTime();
|
|
double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
|
|
_concurrent_mark_remark_times_ms->add(elapsed_time_ms);
|
|
_cur_mark_stop_world_time_ms += elapsed_time_ms;
|
|
_prev_collection_pause_end_ms += elapsed_time_ms;
|
|
|
|
_mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
|
|
}
|
|
|
|
void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
|
|
_mark_cleanup_start_sec = os::elapsedTime();
|
|
}
|
|
|
|
void
|
|
G1CollectorPolicy::record_concurrent_mark_cleanup_end(size_t freed_bytes,
|
|
size_t max_live_bytes) {
|
|
record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
|
|
record_concurrent_mark_cleanup_end_work2();
|
|
}
|
|
|
|
void
|
|
G1CollectorPolicy::
|
|
record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
|
|
size_t max_live_bytes) {
|
|
if (_n_marks < 2) _n_marks++;
|
|
if (G1PolicyVerbose > 0)
|
|
gclog_or_tty->print_cr("At end of marking, max_live is " SIZE_FORMAT " MB "
|
|
" (of " SIZE_FORMAT " MB heap).",
|
|
max_live_bytes/M, _g1->capacity()/M);
|
|
}
|
|
|
|
// The important thing about this is that it includes "os::elapsedTime".
|
|
void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
|
|
double end_time_sec = os::elapsedTime();
|
|
double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
|
|
_concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
|
|
_cur_mark_stop_world_time_ms += elapsed_time_ms;
|
|
_prev_collection_pause_end_ms += elapsed_time_ms;
|
|
|
|
_mmu_tracker->add_pause(_mark_cleanup_start_sec, end_time_sec, true);
|
|
|
|
_num_markings++;
|
|
|
|
// We did a marking, so reset the "since_last_mark" variables.
|
|
double considerConcMarkCost = 1.0;
|
|
// If there are available processors, concurrent activity is free...
|
|
if (Threads::number_of_non_daemon_threads() * 2 <
|
|
os::active_processor_count()) {
|
|
considerConcMarkCost = 0.0;
|
|
}
|
|
_n_pauses_at_mark_end = _n_pauses;
|
|
_n_marks_since_last_pause++;
|
|
}
|
|
|
|
void
|
|
G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
|
|
if (in_young_gc_mode()) {
|
|
_should_revert_to_full_young_gcs = false;
|
|
_last_full_young_gc = true;
|
|
_in_marking_window = false;
|
|
if (adaptive_young_list_length())
|
|
calculate_young_list_target_length();
|
|
}
|
|
}
|
|
|
|
void G1CollectorPolicy::record_concurrent_pause() {
|
|
if (_stop_world_start > 0.0) {
|
|
double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
|
|
_all_yield_times_ms->add(yield_ms);
|
|
}
|
|
}
|
|
|
|
void G1CollectorPolicy::record_concurrent_pause_end() {
|
|
}
|
|
|
|
void G1CollectorPolicy::record_collection_pause_end_CH_strong_roots() {
|
|
_cur_CH_strong_roots_end_sec = os::elapsedTime();
|
|
_cur_CH_strong_roots_dur_ms =
|
|
(_cur_CH_strong_roots_end_sec - _cur_collection_start_sec) * 1000.0;
|
|
}
|
|
|
|
void G1CollectorPolicy::record_collection_pause_end_G1_strong_roots() {
|
|
_cur_G1_strong_roots_end_sec = os::elapsedTime();
|
|
_cur_G1_strong_roots_dur_ms =
|
|
(_cur_G1_strong_roots_end_sec - _cur_CH_strong_roots_end_sec) * 1000.0;
|
|
}
|
|
|
|
template<class T>
|
|
T sum_of(T* sum_arr, int start, int n, int N) {
|
|
T sum = (T)0;
|
|
for (int i = 0; i < n; i++) {
|
|
int j = (start + i) % N;
|
|
sum += sum_arr[j];
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
void G1CollectorPolicy::print_par_stats(int level,
|
|
const char* str,
|
|
double* data,
|
|
bool summary) {
|
|
double min = data[0], max = data[0];
|
|
double total = 0.0;
|
|
int j;
|
|
for (j = 0; j < level; ++j)
|
|
gclog_or_tty->print(" ");
|
|
gclog_or_tty->print("[%s (ms):", str);
|
|
for (uint i = 0; i < ParallelGCThreads; ++i) {
|
|
double val = data[i];
|
|
if (val < min)
|
|
min = val;
|
|
if (val > max)
|
|
max = val;
|
|
total += val;
|
|
gclog_or_tty->print(" %3.1lf", val);
|
|
}
|
|
if (summary) {
|
|
gclog_or_tty->print_cr("");
|
|
double avg = total / (double) ParallelGCThreads;
|
|
gclog_or_tty->print(" ");
|
|
for (j = 0; j < level; ++j)
|
|
gclog_or_tty->print(" ");
|
|
gclog_or_tty->print("Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf",
|
|
avg, min, max);
|
|
}
|
|
gclog_or_tty->print_cr("]");
|
|
}
|
|
|
|
void G1CollectorPolicy::print_par_sizes(int level,
|
|
const char* str,
|
|
double* data,
|
|
bool summary) {
|
|
double min = data[0], max = data[0];
|
|
double total = 0.0;
|
|
int j;
|
|
for (j = 0; j < level; ++j)
|
|
gclog_or_tty->print(" ");
|
|
gclog_or_tty->print("[%s :", str);
|
|
for (uint i = 0; i < ParallelGCThreads; ++i) {
|
|
double val = data[i];
|
|
if (val < min)
|
|
min = val;
|
|
if (val > max)
|
|
max = val;
|
|
total += val;
|
|
gclog_or_tty->print(" %d", (int) val);
|
|
}
|
|
if (summary) {
|
|
gclog_or_tty->print_cr("");
|
|
double avg = total / (double) ParallelGCThreads;
|
|
gclog_or_tty->print(" ");
|
|
for (j = 0; j < level; ++j)
|
|
gclog_or_tty->print(" ");
|
|
gclog_or_tty->print("Sum: %d, Avg: %d, Min: %d, Max: %d",
|
|
(int)total, (int)avg, (int)min, (int)max);
|
|
}
|
|
gclog_or_tty->print_cr("]");
|
|
}
|
|
|
|
void G1CollectorPolicy::print_stats (int level,
|
|
const char* str,
|
|
double value) {
|
|
for (int j = 0; j < level; ++j)
|
|
gclog_or_tty->print(" ");
|
|
gclog_or_tty->print_cr("[%s: %5.1lf ms]", str, value);
|
|
}
|
|
|
|
void G1CollectorPolicy::print_stats (int level,
|
|
const char* str,
|
|
int value) {
|
|
for (int j = 0; j < level; ++j)
|
|
gclog_or_tty->print(" ");
|
|
gclog_or_tty->print_cr("[%s: %d]", str, value);
|
|
}
|
|
|
|
double G1CollectorPolicy::avg_value (double* data) {
|
|
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
|
double ret = 0.0;
|
|
for (uint i = 0; i < ParallelGCThreads; ++i)
|
|
ret += data[i];
|
|
return ret / (double) ParallelGCThreads;
|
|
} else {
|
|
return data[0];
|
|
}
|
|
}
|
|
|
|
double G1CollectorPolicy::max_value (double* data) {
|
|
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
|
double ret = data[0];
|
|
for (uint i = 1; i < ParallelGCThreads; ++i)
|
|
if (data[i] > ret)
|
|
ret = data[i];
|
|
return ret;
|
|
} else {
|
|
return data[0];
|
|
}
|
|
}
|
|
|
|
double G1CollectorPolicy::sum_of_values (double* data) {
|
|
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
|
double sum = 0.0;
|
|
for (uint i = 0; i < ParallelGCThreads; i++)
|
|
sum += data[i];
|
|
return sum;
|
|
} else {
|
|
return data[0];
|
|
}
|
|
}
|
|
|
|
double G1CollectorPolicy::max_sum (double* data1,
|
|
double* data2) {
|
|
double ret = data1[0] + data2[0];
|
|
|
|
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
|
for (uint i = 1; i < ParallelGCThreads; ++i) {
|
|
double data = data1[i] + data2[i];
|
|
if (data > ret)
|
|
ret = data;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Anything below that is considered to be zero
|
|
#define MIN_TIMER_GRANULARITY 0.0000001
|
|
|
|
void G1CollectorPolicy::record_collection_pause_end() {
|
|
double end_time_sec = os::elapsedTime();
|
|
double elapsed_ms = _last_pause_time_ms;
|
|
bool parallel = G1CollectedHeap::use_parallel_gc_threads();
|
|
double evac_ms = (end_time_sec - _cur_G1_strong_roots_end_sec) * 1000.0;
|
|
size_t rs_size =
|
|
_cur_collection_pause_used_regions_at_start - collection_set_size();
|
|
size_t cur_used_bytes = _g1->used();
|
|
assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
|
|
bool last_pause_included_initial_mark = false;
|
|
bool update_stats = !_g1->evacuation_failed();
|
|
|
|
#ifndef PRODUCT
|
|
if (G1YoungSurvRateVerbose) {
|
|
gclog_or_tty->print_cr("");
|
|
_short_lived_surv_rate_group->print();
|
|
// do that for any other surv rate groups too
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
if (in_young_gc_mode()) {
|
|
last_pause_included_initial_mark = during_initial_mark_pause();
|
|
if (last_pause_included_initial_mark)
|
|
record_concurrent_mark_init_end_pre(0.0);
|
|
|
|
size_t min_used_targ =
|
|
(_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
|
|
|
|
|
|
if (!_g1->mark_in_progress() && !_last_full_young_gc) {
|
|
assert(!last_pause_included_initial_mark, "invariant");
|
|
if (cur_used_bytes > min_used_targ &&
|
|
cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
|
|
assert(!during_initial_mark_pause(), "we should not see this here");
|
|
|
|
// Note: this might have already been set, if during the last
|
|
// pause we decided to start a cycle but at the beginning of
|
|
// this pause we decided to postpone it. That's OK.
|
|
set_initiate_conc_mark_if_possible();
|
|
}
|
|
}
|
|
|
|
_prev_collection_pause_used_at_end_bytes = cur_used_bytes;
|
|
}
|
|
|
|
_mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
|
|
end_time_sec, false);
|
|
|
|
guarantee(_cur_collection_pause_used_regions_at_start >=
|
|
collection_set_size(),
|
|
"Negative RS size?");
|
|
|
|
// This assert is exempted when we're doing parallel collection pauses,
|
|
// because the fragmentation caused by the parallel GC allocation buffers
|
|
// can lead to more memory being used during collection than was used
|
|
// before. Best leave this out until the fragmentation problem is fixed.
|
|
// Pauses in which evacuation failed can also lead to negative
|
|
// collections, since no space is reclaimed from a region containing an
|
|
// object whose evacuation failed.
|
|
// Further, we're now always doing parallel collection. But I'm still
|
|
// leaving this here as a placeholder for a more precise assertion later.
|
|
// (DLD, 10/05.)
|
|
assert((true || parallel) // Always using GC LABs now.
|
|
|| _g1->evacuation_failed()
|
|
|| _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
|
|
"Negative collection");
|
|
|
|
size_t freed_bytes =
|
|
_cur_collection_pause_used_at_start_bytes - cur_used_bytes;
|
|
size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
|
|
|
|
double survival_fraction =
|
|
(double)surviving_bytes/
|
|
(double)_collection_set_bytes_used_before;
|
|
|
|
_n_pauses++;
|
|
|
|
if (update_stats) {
|
|
_recent_CH_strong_roots_times_ms->add(_cur_CH_strong_roots_dur_ms);
|
|
_recent_G1_strong_roots_times_ms->add(_cur_G1_strong_roots_dur_ms);
|
|
_recent_evac_times_ms->add(evac_ms);
|
|
_recent_pause_times_ms->add(elapsed_ms);
|
|
|
|
_recent_rs_sizes->add(rs_size);
|
|
|
|
// We exempt parallel collection from this check because Alloc Buffer
|
|
// fragmentation can produce negative collections. Same with evac
|
|
// failure.
|
|
// Further, we're now always doing parallel collection. But I'm still
|
|
// leaving this here as a placeholder for a more precise assertion later.
|
|
// (DLD, 10/05.
|
|
assert((true || parallel)
|
|
|| _g1->evacuation_failed()
|
|
|| surviving_bytes <= _collection_set_bytes_used_before,
|
|
"Or else negative collection!");
|
|
_recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
|
|
_recent_CS_bytes_surviving->add(surviving_bytes);
|
|
|
|
// this is where we update the allocation rate of the application
|
|
double app_time_ms =
|
|
(_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
|
|
if (app_time_ms < MIN_TIMER_GRANULARITY) {
|
|
// This usually happens due to the timer not having the required
|
|
// granularity. Some Linuxes are the usual culprits.
|
|
// We'll just set it to something (arbitrarily) small.
|
|
app_time_ms = 1.0;
|
|
}
|
|
size_t regions_allocated =
|
|
(_region_num_young - _prev_region_num_young) +
|
|
(_region_num_tenured - _prev_region_num_tenured);
|
|
double alloc_rate_ms = (double) regions_allocated / app_time_ms;
|
|
_alloc_rate_ms_seq->add(alloc_rate_ms);
|
|
_prev_region_num_young = _region_num_young;
|
|
_prev_region_num_tenured = _region_num_tenured;
|
|
|
|
double interval_ms =
|
|
(end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
|
|
update_recent_gc_times(end_time_sec, elapsed_ms);
|
|
_recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
|
|
if (recent_avg_pause_time_ratio() < 0.0 ||
|
|
(recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
|
|
#ifndef PRODUCT
|
|
// Dump info to allow post-facto debugging
|
|
gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
|
|
gclog_or_tty->print_cr("-------------------------------------------");
|
|
gclog_or_tty->print_cr("Recent GC Times (ms):");
|
|
_recent_gc_times_ms->dump();
|
|
gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
|
|
_recent_prev_end_times_for_all_gcs_sec->dump();
|
|
gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
|
|
_recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
|
|
// In debug mode, terminate the JVM if the user wants to debug at this point.
|
|
assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
|
|
#endif // !PRODUCT
|
|
// Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
|
|
// CR 6902692 by redoing the manner in which the ratio is incrementally computed.
|
|
if (_recent_avg_pause_time_ratio < 0.0) {
|
|
_recent_avg_pause_time_ratio = 0.0;
|
|
} else {
|
|
assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
|
|
_recent_avg_pause_time_ratio = 1.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (G1PolicyVerbose > 1) {
|
|
gclog_or_tty->print_cr(" Recording collection pause(%d)", _n_pauses);
|
|
}
|
|
|
|
PauseSummary* summary = _summary;
|
|
|
|
double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
|
|
double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
|
|
double update_rs_time = avg_value(_par_last_update_rs_times_ms);
|
|
double update_rs_processed_buffers =
|
|
sum_of_values(_par_last_update_rs_processed_buffers);
|
|
double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
|
|
double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
|
|
double termination_time = avg_value(_par_last_termination_times_ms);
|
|
|
|
double parallel_other_time = _cur_collection_par_time_ms -
|
|
(update_rs_time + ext_root_scan_time + mark_stack_scan_time +
|
|
scan_rs_time + obj_copy_time + termination_time);
|
|
if (update_stats) {
|
|
MainBodySummary* body_summary = summary->main_body_summary();
|
|
guarantee(body_summary != NULL, "should not be null!");
|
|
|
|
if (_satb_drain_time_set)
|
|
body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
|
|
else
|
|
body_summary->record_satb_drain_time_ms(0.0);
|
|
body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
|
|
body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
|
|
body_summary->record_update_rs_time_ms(update_rs_time);
|
|
body_summary->record_scan_rs_time_ms(scan_rs_time);
|
|
body_summary->record_obj_copy_time_ms(obj_copy_time);
|
|
if (parallel) {
|
|
body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
|
|
body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
|
|
body_summary->record_termination_time_ms(termination_time);
|
|
body_summary->record_parallel_other_time_ms(parallel_other_time);
|
|
}
|
|
body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
|
|
}
|
|
|
|
if (G1PolicyVerbose > 1) {
|
|
gclog_or_tty->print_cr(" ET: %10.6f ms (avg: %10.6f ms)\n"
|
|
" CH Strong: %10.6f ms (avg: %10.6f ms)\n"
|
|
" G1 Strong: %10.6f ms (avg: %10.6f ms)\n"
|
|
" Evac: %10.6f ms (avg: %10.6f ms)\n"
|
|
" ET-RS: %10.6f ms (avg: %10.6f ms)\n"
|
|
" |RS|: " SIZE_FORMAT,
|
|
elapsed_ms, recent_avg_time_for_pauses_ms(),
|
|
_cur_CH_strong_roots_dur_ms, recent_avg_time_for_CH_strong_ms(),
|
|
_cur_G1_strong_roots_dur_ms, recent_avg_time_for_G1_strong_ms(),
|
|
evac_ms, recent_avg_time_for_evac_ms(),
|
|
scan_rs_time,
|
|
recent_avg_time_for_pauses_ms() -
|
|
recent_avg_time_for_G1_strong_ms(),
|
|
rs_size);
|
|
|
|
gclog_or_tty->print_cr(" Used at start: " SIZE_FORMAT"K"
|
|
" At end " SIZE_FORMAT "K\n"
|
|
" garbage : " SIZE_FORMAT "K"
|
|
" of " SIZE_FORMAT "K\n"
|
|
" survival : %6.2f%% (%6.2f%% avg)",
|
|
_cur_collection_pause_used_at_start_bytes/K,
|
|
_g1->used()/K, freed_bytes/K,
|
|
_collection_set_bytes_used_before/K,
|
|
survival_fraction*100.0,
|
|
recent_avg_survival_fraction()*100.0);
|
|
gclog_or_tty->print_cr(" Recent %% gc pause time: %6.2f",
|
|
recent_avg_pause_time_ratio() * 100.0);
|
|
}
|
|
|
|
double other_time_ms = elapsed_ms;
|
|
|
|
if (_satb_drain_time_set) {
|
|
other_time_ms -= _cur_satb_drain_time_ms;
|
|
}
|
|
|
|
if (parallel) {
|
|
other_time_ms -= _cur_collection_par_time_ms + _cur_clear_ct_time_ms;
|
|
} else {
|
|
other_time_ms -=
|
|
update_rs_time +
|
|
ext_root_scan_time + mark_stack_scan_time +
|
|
scan_rs_time + obj_copy_time;
|
|
}
|
|
|
|
if (PrintGCDetails) {
|
|
gclog_or_tty->print_cr("%s, %1.8lf secs]",
|
|
(last_pause_included_initial_mark) ? " (initial-mark)" : "",
|
|
elapsed_ms / 1000.0);
|
|
|
|
if (_satb_drain_time_set) {
|
|
print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
|
|
}
|
|
if (_last_satb_drain_processed_buffers >= 0) {
|
|
print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
|
|
}
|
|
if (parallel) {
|
|
print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
|
|
print_par_stats(2, "GC Worker Start Time",
|
|
_par_last_gc_worker_start_times_ms, false);
|
|
print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
|
|
print_par_sizes(3, "Processed Buffers",
|
|
_par_last_update_rs_processed_buffers, true);
|
|
print_par_stats(2, "Ext Root Scanning",
|
|
_par_last_ext_root_scan_times_ms);
|
|
print_par_stats(2, "Mark Stack Scanning",
|
|
_par_last_mark_stack_scan_times_ms);
|
|
print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
|
|
print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
|
|
print_par_stats(2, "Termination", _par_last_termination_times_ms);
|
|
print_par_sizes(3, "Termination Attempts",
|
|
_par_last_termination_attempts, true);
|
|
print_par_stats(2, "GC Worker End Time",
|
|
_par_last_gc_worker_end_times_ms, false);
|
|
print_stats(2, "Other", parallel_other_time);
|
|
print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
|
|
} else {
|
|
print_stats(1, "Update RS", update_rs_time);
|
|
print_stats(2, "Processed Buffers",
|
|
(int)update_rs_processed_buffers);
|
|
print_stats(1, "Ext Root Scanning", ext_root_scan_time);
|
|
print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
|
|
print_stats(1, "Scan RS", scan_rs_time);
|
|
print_stats(1, "Object Copying", obj_copy_time);
|
|
}
|
|
#ifndef PRODUCT
|
|
print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
|
|
print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
|
|
print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
|
|
print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
|
|
if (_num_cc_clears > 0) {
|
|
print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
|
|
}
|
|
#endif
|
|
print_stats(1, "Other", other_time_ms);
|
|
print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);
|
|
|
|
for (int i = 0; i < _aux_num; ++i) {
|
|
if (_cur_aux_times_set[i]) {
|
|
char buffer[96];
|
|
sprintf(buffer, "Aux%d", i);
|
|
print_stats(1, buffer, _cur_aux_times_ms[i]);
|
|
}
|
|
}
|
|
}
|
|
if (PrintGCDetails)
|
|
gclog_or_tty->print(" [");
|
|
if (PrintGC || PrintGCDetails)
|
|
_g1->print_size_transition(gclog_or_tty,
|
|
_cur_collection_pause_used_at_start_bytes,
|
|
_g1->used(), _g1->capacity());
|
|
if (PrintGCDetails)
|
|
gclog_or_tty->print_cr("]");
|
|
|
|
_all_pause_times_ms->add(elapsed_ms);
|
|
if (update_stats) {
|
|
summary->record_total_time_ms(elapsed_ms);
|
|
summary->record_other_time_ms(other_time_ms);
|
|
}
|
|
for (int i = 0; i < _aux_num; ++i)
|
|
if (_cur_aux_times_set[i])
|
|
_all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
|
|
|
|
// Reset marks-between-pauses counter.
|
|
_n_marks_since_last_pause = 0;
|
|
|
|
// Update the efficiency-since-mark vars.
|
|
double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
|
|
if (elapsed_ms < MIN_TIMER_GRANULARITY) {
|
|
// This usually happens due to the timer not having the required
|
|
// granularity. Some Linuxes are the usual culprits.
|
|
// We'll just set it to something (arbitrarily) small.
|
|
proc_ms = 1.0;
|
|
}
|
|
double cur_efficiency = (double) freed_bytes / proc_ms;
|
|
|
|
bool new_in_marking_window = _in_marking_window;
|
|
bool new_in_marking_window_im = false;
|
|
if (during_initial_mark_pause()) {
|
|
new_in_marking_window = true;
|
|
new_in_marking_window_im = true;
|
|
}
|
|
|
|
if (in_young_gc_mode()) {
|
|
if (_last_full_young_gc) {
|
|
set_full_young_gcs(false);
|
|
_last_full_young_gc = false;
|
|
}
|
|
|
|
if ( !_last_young_gc_full ) {
|
|
if ( _should_revert_to_full_young_gcs ||
|
|
_known_garbage_ratio < 0.05 ||
|
|
(adaptive_young_list_length() &&
|
|
(get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) ) {
|
|
set_full_young_gcs(true);
|
|
}
|
|
}
|
|
_should_revert_to_full_young_gcs = false;
|
|
|
|
if (_last_young_gc_full && !_during_marking)
|
|
_young_gc_eff_seq->add(cur_efficiency);
|
|
}
|
|
|
|
_short_lived_surv_rate_group->start_adding_regions();
|
|
// do that for any other surv rate groupsx
|
|
|
|
// <NEW PREDICTION>
|
|
|
|
if (update_stats) {
|
|
double pause_time_ms = elapsed_ms;
|
|
|
|
size_t diff = 0;
|
|
if (_max_pending_cards >= _pending_cards)
|
|
diff = _max_pending_cards - _pending_cards;
|
|
_pending_card_diff_seq->add((double) diff);
|
|
|
|
double cost_per_card_ms = 0.0;
|
|
if (_pending_cards > 0) {
|
|
cost_per_card_ms = update_rs_time / (double) _pending_cards;
|
|
_cost_per_card_ms_seq->add(cost_per_card_ms);
|
|
}
|
|
|
|
size_t cards_scanned = _g1->cards_scanned();
|
|
|
|
double cost_per_entry_ms = 0.0;
|
|
if (cards_scanned > 10) {
|
|
cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
|
|
if (_last_young_gc_full)
|
|
_cost_per_entry_ms_seq->add(cost_per_entry_ms);
|
|
else
|
|
_partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
|
|
}
|
|
|
|
if (_max_rs_lengths > 0) {
|
|
double cards_per_entry_ratio =
|
|
(double) cards_scanned / (double) _max_rs_lengths;
|
|
if (_last_young_gc_full)
|
|
_fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
|
|
else
|
|
_partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
|
|
}
|
|
|
|
size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
|
|
if (rs_length_diff >= 0)
|
|
_rs_length_diff_seq->add((double) rs_length_diff);
|
|
|
|
size_t copied_bytes = surviving_bytes;
|
|
double cost_per_byte_ms = 0.0;
|
|
if (copied_bytes > 0) {
|
|
cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
|
|
if (_in_marking_window)
|
|
_cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
|
|
else
|
|
_cost_per_byte_ms_seq->add(cost_per_byte_ms);
|
|
}
|
|
|
|
double all_other_time_ms = pause_time_ms -
|
|
(update_rs_time + scan_rs_time + obj_copy_time +
|
|
_mark_closure_time_ms + termination_time);
|
|
|
|
double young_other_time_ms = 0.0;
|
|
if (_recorded_young_regions > 0) {
|
|
young_other_time_ms =
|
|
_recorded_young_cset_choice_time_ms +
|
|
_recorded_young_free_cset_time_ms;
|
|
_young_other_cost_per_region_ms_seq->add(young_other_time_ms /
|
|
(double) _recorded_young_regions);
|
|
}
|
|
double non_young_other_time_ms = 0.0;
|
|
if (_recorded_non_young_regions > 0) {
|
|
non_young_other_time_ms =
|
|
_recorded_non_young_cset_choice_time_ms +
|
|
_recorded_non_young_free_cset_time_ms;
|
|
|
|
_non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
|
|
(double) _recorded_non_young_regions);
|
|
}
|
|
|
|
double constant_other_time_ms = all_other_time_ms -
|
|
(young_other_time_ms + non_young_other_time_ms);
|
|
_constant_other_time_ms_seq->add(constant_other_time_ms);
|
|
|
|
double survival_ratio = 0.0;
|
|
if (_bytes_in_collection_set_before_gc > 0) {
|
|
survival_ratio = (double) bytes_in_to_space_during_gc() /
|
|
(double) _bytes_in_collection_set_before_gc;
|
|
}
|
|
|
|
_pending_cards_seq->add((double) _pending_cards);
|
|
_scanned_cards_seq->add((double) cards_scanned);
|
|
_rs_lengths_seq->add((double) _max_rs_lengths);
|
|
|
|
double expensive_region_limit_ms =
|
|
(double) MaxGCPauseMillis - predict_constant_other_time_ms();
|
|
if (expensive_region_limit_ms < 0.0) {
|
|
// this means that the other time was predicted to be longer than
|
|
// than the max pause time
|
|
expensive_region_limit_ms = (double) MaxGCPauseMillis;
|
|
}
|
|
_expensive_region_limit_ms = expensive_region_limit_ms;
|
|
|
|
if (PREDICTIONS_VERBOSE) {
|
|
gclog_or_tty->print_cr("");
|
|
gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
|
|
"REGIONS %d %d %d "
|
|
"PENDING_CARDS %d %d "
|
|
"CARDS_SCANNED %d %d "
|
|
"RS_LENGTHS %d %d "
|
|
"RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
|
|
"SURVIVAL_RATIO %1.6lf %1.6lf "
|
|
"OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
|
|
"OTHER_YOUNG %1.6lf %1.6lf "
|
|
"OTHER_NON_YOUNG %1.6lf %1.6lf "
|
|
"VTIME_DIFF %1.6lf TERMINATION %1.6lf "
|
|
"ELAPSED %1.6lf %1.6lf ",
|
|
_cur_collection_start_sec,
|
|
(!_last_young_gc_full) ? 2 :
|
|
(last_pause_included_initial_mark) ? 1 : 0,
|
|
_recorded_region_num,
|
|
_recorded_young_regions,
|
|
_recorded_non_young_regions,
|
|
_predicted_pending_cards, _pending_cards,
|
|
_predicted_cards_scanned, cards_scanned,
|
|
_predicted_rs_lengths, _max_rs_lengths,
|
|
_predicted_rs_update_time_ms, update_rs_time,
|
|
_predicted_rs_scan_time_ms, scan_rs_time,
|
|
_predicted_survival_ratio, survival_ratio,
|
|
_predicted_object_copy_time_ms, obj_copy_time,
|
|
_predicted_constant_other_time_ms, constant_other_time_ms,
|
|
_predicted_young_other_time_ms, young_other_time_ms,
|
|
_predicted_non_young_other_time_ms,
|
|
non_young_other_time_ms,
|
|
_vtime_diff_ms, termination_time,
|
|
_predicted_pause_time_ms, elapsed_ms);
|
|
}
|
|
|
|
if (G1PolicyVerbose > 0) {
|
|
gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
|
|
_predicted_pause_time_ms,
|
|
(_within_target) ? "within" : "outside",
|
|
elapsed_ms);
|
|
}
|
|
|
|
}
|
|
|
|
_in_marking_window = new_in_marking_window;
|
|
_in_marking_window_im = new_in_marking_window_im;
|
|
_free_regions_at_end_of_collection = _g1->free_regions();
|
|
calculate_young_list_min_length();
|
|
calculate_young_list_target_length();
|
|
|
|
// Note that _mmu_tracker->max_gc_time() returns the time in seconds.
|
|
double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
|
|
adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
|
|
// </NEW PREDICTION>
|
|
}
|
|
|
|
// <NEW PREDICTION>
|
|
|
|
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
|
|
double update_rs_processed_buffers,
|
|
double goal_ms) {
|
|
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
|
|
ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
|
|
|
|
if (G1UseAdaptiveConcRefinement) {
|
|
const int k_gy = 3, k_gr = 6;
|
|
const double inc_k = 1.1, dec_k = 0.9;
|
|
|
|
int g = cg1r->green_zone();
|
|
if (update_rs_time > goal_ms) {
|
|
g = (int)(g * dec_k); // Can become 0, that's OK. That would mean a mutator-only processing.
|
|
} else {
|
|
if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
|
|
g = (int)MAX2(g * inc_k, g + 1.0);
|
|
}
|
|
}
|
|
// Change the refinement threads params
|
|
cg1r->set_green_zone(g);
|
|
cg1r->set_yellow_zone(g * k_gy);
|
|
cg1r->set_red_zone(g * k_gr);
|
|
cg1r->reinitialize_threads();
|
|
|
|
int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
|
|
int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
|
|
cg1r->yellow_zone());
|
|
// Change the barrier params
|
|
dcqs.set_process_completed_threshold(processing_threshold);
|
|
dcqs.set_max_completed_queue(cg1r->red_zone());
|
|
}
|
|
|
|
int curr_queue_size = dcqs.completed_buffers_num();
|
|
if (curr_queue_size >= cg1r->yellow_zone()) {
|
|
dcqs.set_completed_queue_padding(curr_queue_size);
|
|
} else {
|
|
dcqs.set_completed_queue_padding(0);
|
|
}
|
|
dcqs.notify_if_necessary();
|
|
}
|
|
|
|
double
|
|
G1CollectorPolicy::
|
|
predict_young_collection_elapsed_time_ms(size_t adjustment) {
|
|
guarantee( adjustment == 0 || adjustment == 1, "invariant" );
|
|
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
size_t young_num = g1h->young_list()->length();
|
|
if (young_num == 0)
|
|
return 0.0;
|
|
|
|
young_num += adjustment;
|
|
size_t pending_cards = predict_pending_cards();
|
|
size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
|
|
predict_rs_length_diff();
|
|
size_t card_num;
|
|
if (full_young_gcs())
|
|
card_num = predict_young_card_num(rs_lengths);
|
|
else
|
|
card_num = predict_non_young_card_num(rs_lengths);
|
|
size_t young_byte_size = young_num * HeapRegion::GrainBytes;
|
|
double accum_yg_surv_rate =
|
|
_short_lived_surv_rate_group->accum_surv_rate(adjustment);
|
|
|
|
size_t bytes_to_copy =
|
|
(size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
|
|
|
|
return
|
|
predict_rs_update_time_ms(pending_cards) +
|
|
predict_rs_scan_time_ms(card_num) +
|
|
predict_object_copy_time_ms(bytes_to_copy) +
|
|
predict_young_other_time_ms(young_num) +
|
|
predict_constant_other_time_ms();
|
|
}
|
|
|
|
double
|
|
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
|
|
size_t rs_length = predict_rs_length_diff();
|
|
size_t card_num;
|
|
if (full_young_gcs())
|
|
card_num = predict_young_card_num(rs_length);
|
|
else
|
|
card_num = predict_non_young_card_num(rs_length);
|
|
return predict_base_elapsed_time_ms(pending_cards, card_num);
|
|
}
|
|
|
|
double
|
|
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
|
|
size_t scanned_cards) {
|
|
return
|
|
predict_rs_update_time_ms(pending_cards) +
|
|
predict_rs_scan_time_ms(scanned_cards) +
|
|
predict_constant_other_time_ms();
|
|
}
|
|
|
|
double
|
|
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
|
|
bool young) {
|
|
size_t rs_length = hr->rem_set()->occupied();
|
|
size_t card_num;
|
|
if (full_young_gcs())
|
|
card_num = predict_young_card_num(rs_length);
|
|
else
|
|
card_num = predict_non_young_card_num(rs_length);
|
|
size_t bytes_to_copy = predict_bytes_to_copy(hr);
|
|
|
|
double region_elapsed_time_ms =
|
|
predict_rs_scan_time_ms(card_num) +
|
|
predict_object_copy_time_ms(bytes_to_copy);
|
|
|
|
if (young)
|
|
region_elapsed_time_ms += predict_young_other_time_ms(1);
|
|
else
|
|
region_elapsed_time_ms += predict_non_young_other_time_ms(1);
|
|
|
|
return region_elapsed_time_ms;
|
|
}
|
|
|
|
size_t
|
|
G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
|
|
size_t bytes_to_copy;
|
|
if (hr->is_marked())
|
|
bytes_to_copy = hr->max_live_bytes();
|
|
else {
|
|
guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
|
|
"invariant" );
|
|
int age = hr->age_in_surv_rate_group();
|
|
double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
|
|
bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
|
|
}
|
|
|
|
return bytes_to_copy;
|
|
}
|
|
|
|
void
|
|
G1CollectorPolicy::start_recording_regions() {
|
|
_recorded_rs_lengths = 0;
|
|
_recorded_young_regions = 0;
|
|
_recorded_non_young_regions = 0;
|
|
|
|
#if PREDICTIONS_VERBOSE
|
|
_recorded_marked_bytes = 0;
|
|
_recorded_young_bytes = 0;
|
|
_predicted_bytes_to_copy = 0;
|
|
_predicted_rs_lengths = 0;
|
|
_predicted_cards_scanned = 0;
|
|
#endif // PREDICTIONS_VERBOSE
|
|
}
|
|
|
|
void
|
|
G1CollectorPolicy::record_cset_region_info(HeapRegion* hr, bool young) {
|
|
#if PREDICTIONS_VERBOSE
|
|
if (!young) {
|
|
_recorded_marked_bytes += hr->max_live_bytes();
|
|
}
|
|
_predicted_bytes_to_copy += predict_bytes_to_copy(hr);
|
|
#endif // PREDICTIONS_VERBOSE
|
|
|
|
size_t rs_length = hr->rem_set()->occupied();
|
|
_recorded_rs_lengths += rs_length;
|
|
}
|
|
|
|
void
|
|
G1CollectorPolicy::record_non_young_cset_region(HeapRegion* hr) {
|
|
assert(!hr->is_young(), "should not call this");
|
|
++_recorded_non_young_regions;
|
|
record_cset_region_info(hr, false);
|
|
}
|
|
|
|
void
|
|
G1CollectorPolicy::set_recorded_young_regions(size_t n_regions) {
|
|
_recorded_young_regions = n_regions;
|
|
}
|
|
|
|
void G1CollectorPolicy::set_recorded_young_bytes(size_t bytes) {
|
|
#if PREDICTIONS_VERBOSE
|
|
_recorded_young_bytes = bytes;
|
|
#endif // PREDICTIONS_VERBOSE
|
|
}
|
|
|
|
void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
|
|
_recorded_rs_lengths = rs_lengths;
|
|
}
|
|
|
|
void G1CollectorPolicy::set_predicted_bytes_to_copy(size_t bytes) {
|
|
_predicted_bytes_to_copy = bytes;
|
|
}
|
|
|
|
void
|
|
G1CollectorPolicy::end_recording_regions() {
|
|
// The _predicted_pause_time_ms field is referenced in code
|
|
// not under PREDICTIONS_VERBOSE. Let's initialize it.
|
|
_predicted_pause_time_ms = -1.0;
|
|
|
|
#if PREDICTIONS_VERBOSE
|
|
_predicted_pending_cards = predict_pending_cards();
|
|
_predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
|
|
if (full_young_gcs())
|
|
_predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
|
|
else
|
|
_predicted_cards_scanned +=
|
|
predict_non_young_card_num(_predicted_rs_lengths);
|
|
_recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;
|
|
|
|
_predicted_rs_update_time_ms =
|
|
predict_rs_update_time_ms(_g1->pending_card_num());
|
|
_predicted_rs_scan_time_ms =
|
|
predict_rs_scan_time_ms(_predicted_cards_scanned);
|
|
_predicted_object_copy_time_ms =
|
|
predict_object_copy_time_ms(_predicted_bytes_to_copy);
|
|
_predicted_constant_other_time_ms =
|
|
predict_constant_other_time_ms();
|
|
_predicted_young_other_time_ms =
|
|
predict_young_other_time_ms(_recorded_young_regions);
|
|
_predicted_non_young_other_time_ms =
|
|
predict_non_young_other_time_ms(_recorded_non_young_regions);
|
|
|
|
_predicted_pause_time_ms =
|
|
_predicted_rs_update_time_ms +
|
|
_predicted_rs_scan_time_ms +
|
|
_predicted_object_copy_time_ms +
|
|
_predicted_constant_other_time_ms +
|
|
_predicted_young_other_time_ms +
|
|
_predicted_non_young_other_time_ms;
|
|
#endif // PREDICTIONS_VERBOSE
|
|
}
|
|
|
|
void G1CollectorPolicy::check_if_region_is_too_expensive(double
|
|
predicted_time_ms) {
|
|
// I don't think we need to do this when in young GC mode since
|
|
// marking will be initiated next time we hit the soft limit anyway...
|
|
if (predicted_time_ms > _expensive_region_limit_ms) {
|
|
if (!in_young_gc_mode()) {
|
|
set_full_young_gcs(true);
|
|
// We might want to do something different here. However,
|
|
// right now we don't support the non-generational G1 mode
|
|
// (and in fact we are planning to remove the associated code,
|
|
// see CR 6814390). So, let's leave it as is and this will be
|
|
// removed some time in the future
|
|
ShouldNotReachHere();
|
|
set_during_initial_mark_pause();
|
|
} else
|
|
// no point in doing another partial one
|
|
_should_revert_to_full_young_gcs = true;
|
|
}
|
|
}
|
|
|
|
// </NEW PREDICTION>
|
|
|
|
|
|
void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
|
|
double elapsed_ms) {
|
|
_recent_gc_times_ms->add(elapsed_ms);
|
|
_recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
|
|
_prev_collection_pause_end_ms = end_time_sec * 1000.0;
|
|
}
|
|
|
|
double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
|
|
if (_recent_pause_times_ms->num() == 0) return (double) MaxGCPauseMillis;
|
|
else return _recent_pause_times_ms->avg();
|
|
}
|
|
|
|
double G1CollectorPolicy::recent_avg_time_for_CH_strong_ms() {
|
|
if (_recent_CH_strong_roots_times_ms->num() == 0)
|
|
return (double)MaxGCPauseMillis/3.0;
|
|
else return _recent_CH_strong_roots_times_ms->avg();
|
|
}
|
|
|
|
double G1CollectorPolicy::recent_avg_time_for_G1_strong_ms() {
|
|
if (_recent_G1_strong_roots_times_ms->num() == 0)
|
|
return (double)MaxGCPauseMillis/3.0;
|
|
else return _recent_G1_strong_roots_times_ms->avg();
|
|
}
|
|
|
|
double G1CollectorPolicy::recent_avg_time_for_evac_ms() {
|
|
if (_recent_evac_times_ms->num() == 0) return (double)MaxGCPauseMillis/3.0;
|
|
else return _recent_evac_times_ms->avg();
|
|
}
|
|
|
|
int G1CollectorPolicy::number_of_recent_gcs() {
|
|
assert(_recent_CH_strong_roots_times_ms->num() ==
|
|
_recent_G1_strong_roots_times_ms->num(), "Sequence out of sync");
|
|
assert(_recent_G1_strong_roots_times_ms->num() ==
|
|
_recent_evac_times_ms->num(), "Sequence out of sync");
|
|
assert(_recent_evac_times_ms->num() ==
|
|
_recent_pause_times_ms->num(), "Sequence out of sync");
|
|
assert(_recent_pause_times_ms->num() ==
|
|
_recent_CS_bytes_used_before->num(), "Sequence out of sync");
|
|
assert(_recent_CS_bytes_used_before->num() ==
|
|
_recent_CS_bytes_surviving->num(), "Sequence out of sync");
|
|
return _recent_pause_times_ms->num();
|
|
}
|
|
|
|
double G1CollectorPolicy::recent_avg_survival_fraction() {
|
|
return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
|
|
_recent_CS_bytes_used_before);
|
|
}
|
|
|
|
double G1CollectorPolicy::last_survival_fraction() {
|
|
return last_survival_fraction_work(_recent_CS_bytes_surviving,
|
|
_recent_CS_bytes_used_before);
|
|
}
|
|
|
|
double
|
|
G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
|
|
TruncatedSeq* before) {
|
|
assert(surviving->num() == before->num(), "Sequence out of sync");
|
|
if (before->sum() > 0.0) {
|
|
double recent_survival_rate = surviving->sum() / before->sum();
|
|
// We exempt parallel collection from this check because Alloc Buffer
|
|
// fragmentation can produce negative collections.
|
|
// Further, we're now always doing parallel collection. But I'm still
|
|
// leaving this here as a placeholder for a more precise assertion later.
|
|
// (DLD, 10/05.)
|
|
assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
|
|
_g1->evacuation_failed() ||
|
|
recent_survival_rate <= 1.0, "Or bad frac");
|
|
return recent_survival_rate;
|
|
} else {
|
|
return 1.0; // Be conservative.
|
|
}
|
|
}
|
|
|
|
double
|
|
G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
|
|
TruncatedSeq* before) {
|
|
assert(surviving->num() == before->num(), "Sequence out of sync");
|
|
if (surviving->num() > 0 && before->last() > 0.0) {
|
|
double last_survival_rate = surviving->last() / before->last();
|
|
// We exempt parallel collection from this check because Alloc Buffer
|
|
// fragmentation can produce negative collections.
|
|
// Further, we're now always doing parallel collection. But I'm still
|
|
// leaving this here as a placeholder for a more precise assertion later.
|
|
// (DLD, 10/05.)
|
|
assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
|
|
last_survival_rate <= 1.0, "Or bad frac");
|
|
return last_survival_rate;
|
|
} else {
|
|
return 1.0;
|
|
}
|
|
}
|
|
|
|
static const int survival_min_obs = 5;
|
|
static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
|
|
static const double min_survival_rate = 0.1;
|
|
|
|
double
|
|
G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
|
|
double latest) {
|
|
double res = avg;
|
|
if (number_of_recent_gcs() < survival_min_obs) {
|
|
res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
|
|
}
|
|
res = MAX2(res, latest);
|
|
res = MAX2(res, min_survival_rate);
|
|
// In the parallel case, LAB fragmentation can produce "negative
|
|
// collections"; so can evac failure. Cap at 1.0
|
|
res = MIN2(res, 1.0);
|
|
return res;
|
|
}
|
|
|
|
size_t G1CollectorPolicy::expansion_amount() {
|
|
if ((recent_avg_pause_time_ratio() * 100.0) > _gc_overhead_perc) {
|
|
// We will double the existing space, or take
|
|
// G1ExpandByPercentOfAvailable % of the available expansion
|
|
// space, whichever is smaller, bounded below by a minimum
|
|
// expansion (unless that's all that's left.)
|
|
const size_t min_expand_bytes = 1*M;
|
|
size_t reserved_bytes = _g1->max_capacity();
|
|
size_t committed_bytes = _g1->capacity();
|
|
size_t uncommitted_bytes = reserved_bytes - committed_bytes;
|
|
size_t expand_bytes;
|
|
size_t expand_bytes_via_pct =
|
|
uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
|
|
expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
|
|
expand_bytes = MAX2(expand_bytes, min_expand_bytes);
|
|
expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
|
|
if (G1PolicyVerbose > 1) {
|
|
gclog_or_tty->print("Decided to expand: ratio = %5.2f, "
|
|
"committed = %d%s, uncommited = %d%s, via pct = %d%s.\n"
|
|
" Answer = %d.\n",
|
|
recent_avg_pause_time_ratio(),
|
|
byte_size_in_proper_unit(committed_bytes),
|
|
proper_unit_for_byte_size(committed_bytes),
|
|
byte_size_in_proper_unit(uncommitted_bytes),
|
|
proper_unit_for_byte_size(uncommitted_bytes),
|
|
byte_size_in_proper_unit(expand_bytes_via_pct),
|
|
proper_unit_for_byte_size(expand_bytes_via_pct),
|
|
byte_size_in_proper_unit(expand_bytes),
|
|
proper_unit_for_byte_size(expand_bytes));
|
|
}
|
|
return expand_bytes;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void G1CollectorPolicy::note_start_of_mark_thread() {
|
|
_mark_thread_startup_sec = os::elapsedTime();
|
|
}
|
|
|
|
class CountCSClosure: public HeapRegionClosure {
|
|
G1CollectorPolicy* _g1_policy;
|
|
public:
|
|
CountCSClosure(G1CollectorPolicy* g1_policy) :
|
|
_g1_policy(g1_policy) {}
|
|
bool doHeapRegion(HeapRegion* r) {
|
|
_g1_policy->_bytes_in_collection_set_before_gc += r->used();
|
|
return false;
|
|
}
|
|
};
|
|
|
|
void G1CollectorPolicy::count_CS_bytes_used() {
|
|
CountCSClosure cs_closure(this);
|
|
_g1->collection_set_iterate(&cs_closure);
|
|
}
|
|
|
|
static void print_indent(int level) {
|
|
for (int j = 0; j < level+1; ++j)
|
|
gclog_or_tty->print(" ");
|
|
}
|
|
|
|
void G1CollectorPolicy::print_summary (int level,
|
|
const char* str,
|
|
NumberSeq* seq) const {
|
|
double sum = seq->sum();
|
|
print_indent(level);
|
|
gclog_or_tty->print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
|
|
str, sum / 1000.0, seq->avg());
|
|
}
|
|
|
|
void G1CollectorPolicy::print_summary_sd (int level,
|
|
const char* str,
|
|
NumberSeq* seq) const {
|
|
print_summary(level, str, seq);
|
|
print_indent(level + 5);
|
|
gclog_or_tty->print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
|
|
seq->num(), seq->sd(), seq->maximum());
|
|
}
|
|
|
|
void G1CollectorPolicy::check_other_times(int level,
|
|
NumberSeq* other_times_ms,
|
|
NumberSeq* calc_other_times_ms) const {
|
|
bool should_print = false;
|
|
|
|
double max_sum = MAX2(fabs(other_times_ms->sum()),
|
|
fabs(calc_other_times_ms->sum()));
|
|
double min_sum = MIN2(fabs(other_times_ms->sum()),
|
|
fabs(calc_other_times_ms->sum()));
|
|
double sum_ratio = max_sum / min_sum;
|
|
if (sum_ratio > 1.1) {
|
|
should_print = true;
|
|
print_indent(level + 1);
|
|
gclog_or_tty->print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
|
|
}
|
|
|
|
double max_avg = MAX2(fabs(other_times_ms->avg()),
|
|
fabs(calc_other_times_ms->avg()));
|
|
double min_avg = MIN2(fabs(other_times_ms->avg()),
|
|
fabs(calc_other_times_ms->avg()));
|
|
double avg_ratio = max_avg / min_avg;
|
|
if (avg_ratio > 1.1) {
|
|
should_print = true;
|
|
print_indent(level + 1);
|
|
gclog_or_tty->print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
|
|
}
|
|
|
|
if (other_times_ms->sum() < -0.01) {
|
|
print_indent(level + 1);
|
|
gclog_or_tty->print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
|
|
}
|
|
|
|
if (other_times_ms->avg() < -0.01) {
|
|
print_indent(level + 1);
|
|
gclog_or_tty->print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
|
|
}
|
|
|
|
if (calc_other_times_ms->sum() < -0.01) {
|
|
should_print = true;
|
|
print_indent(level + 1);
|
|
gclog_or_tty->print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
|
|
}
|
|
|
|
if (calc_other_times_ms->avg() < -0.01) {
|
|
should_print = true;
|
|
print_indent(level + 1);
|
|
gclog_or_tty->print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
|
|
}
|
|
|
|
if (should_print)
|
|
print_summary(level, "Other(Calc)", calc_other_times_ms);
|
|
}
|
|
|
|
void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
|
|
bool parallel = G1CollectedHeap::use_parallel_gc_threads();
|
|
MainBodySummary* body_summary = summary->main_body_summary();
|
|
if (summary->get_total_seq()->num() > 0) {
|
|
print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
|
|
if (body_summary != NULL) {
|
|
print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
|
|
if (parallel) {
|
|
print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
|
|
print_summary(2, "Update RS", body_summary->get_update_rs_seq());
|
|
print_summary(2, "Ext Root Scanning",
|
|
body_summary->get_ext_root_scan_seq());
|
|
print_summary(2, "Mark Stack Scanning",
|
|
body_summary->get_mark_stack_scan_seq());
|
|
print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
|
|
print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
|
|
print_summary(2, "Termination", body_summary->get_termination_seq());
|
|
print_summary(2, "Other", body_summary->get_parallel_other_seq());
|
|
{
|
|
NumberSeq* other_parts[] = {
|
|
body_summary->get_update_rs_seq(),
|
|
body_summary->get_ext_root_scan_seq(),
|
|
body_summary->get_mark_stack_scan_seq(),
|
|
body_summary->get_scan_rs_seq(),
|
|
body_summary->get_obj_copy_seq(),
|
|
body_summary->get_termination_seq()
|
|
};
|
|
NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
|
|
6, other_parts);
|
|
check_other_times(2, body_summary->get_parallel_other_seq(),
|
|
&calc_other_times_ms);
|
|
}
|
|
print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
|
|
print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
|
|
} else {
|
|
print_summary(1, "Update RS", body_summary->get_update_rs_seq());
|
|
print_summary(1, "Ext Root Scanning",
|
|
body_summary->get_ext_root_scan_seq());
|
|
print_summary(1, "Mark Stack Scanning",
|
|
body_summary->get_mark_stack_scan_seq());
|
|
print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
|
|
print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
|
|
}
|
|
}
|
|
print_summary(1, "Other", summary->get_other_seq());
|
|
{
|
|
if (body_summary != NULL) {
|
|
NumberSeq calc_other_times_ms;
|
|
if (parallel) {
|
|
// parallel
|
|
NumberSeq* other_parts[] = {
|
|
body_summary->get_satb_drain_seq(),
|
|
body_summary->get_parallel_seq(),
|
|
body_summary->get_clear_ct_seq()
|
|
};
|
|
calc_other_times_ms = NumberSeq(summary->get_total_seq(),
|
|
3, other_parts);
|
|
} else {
|
|
// serial
|
|
NumberSeq* other_parts[] = {
|
|
body_summary->get_satb_drain_seq(),
|
|
body_summary->get_update_rs_seq(),
|
|
body_summary->get_ext_root_scan_seq(),
|
|
body_summary->get_mark_stack_scan_seq(),
|
|
body_summary->get_scan_rs_seq(),
|
|
body_summary->get_obj_copy_seq()
|
|
};
|
|
calc_other_times_ms = NumberSeq(summary->get_total_seq(),
|
|
6, other_parts);
|
|
}
|
|
check_other_times(1, summary->get_other_seq(), &calc_other_times_ms);
|
|
}
|
|
}
|
|
} else {
|
|
print_indent(0);
|
|
gclog_or_tty->print_cr("none");
|
|
}
|
|
gclog_or_tty->print_cr("");
|
|
}
|
|
|
|
void G1CollectorPolicy::print_tracing_info() const {
|
|
if (TraceGen0Time) {
|
|
gclog_or_tty->print_cr("ALL PAUSES");
|
|
print_summary_sd(0, "Total", _all_pause_times_ms);
|
|
gclog_or_tty->print_cr("");
|
|
gclog_or_tty->print_cr("");
|
|
gclog_or_tty->print_cr(" Full Young GC Pauses: %8d", _full_young_pause_num);
|
|
gclog_or_tty->print_cr(" Partial Young GC Pauses: %8d", _partial_young_pause_num);
|
|
gclog_or_tty->print_cr("");
|
|
|
|
gclog_or_tty->print_cr("EVACUATION PAUSES");
|
|
print_summary(_summary);
|
|
|
|
gclog_or_tty->print_cr("MISC");
|
|
print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
|
|
print_summary_sd(0, "Yields", _all_yield_times_ms);
|
|
for (int i = 0; i < _aux_num; ++i) {
|
|
if (_all_aux_times_ms[i].num() > 0) {
|
|
char buffer[96];
|
|
sprintf(buffer, "Aux%d", i);
|
|
print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
|
|
}
|
|
}
|
|
|
|
size_t all_region_num = _region_num_young + _region_num_tenured;
|
|
gclog_or_tty->print_cr(" New Regions %8d, Young %8d (%6.2lf%%), "
|
|
"Tenured %8d (%6.2lf%%)",
|
|
all_region_num,
|
|
_region_num_young,
|
|
(double) _region_num_young / (double) all_region_num * 100.0,
|
|
_region_num_tenured,
|
|
(double) _region_num_tenured / (double) all_region_num * 100.0);
|
|
}
|
|
if (TraceGen1Time) {
|
|
if (_all_full_gc_times_ms->num() > 0) {
|
|
gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
|
|
_all_full_gc_times_ms->num(),
|
|
_all_full_gc_times_ms->sum() / 1000.0);
|
|
gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
|
|
gclog_or_tty->print_cr(" [std. dev = %8.2f ms, max = %8.2f ms]",
|
|
_all_full_gc_times_ms->sd(),
|
|
_all_full_gc_times_ms->maximum());
|
|
}
|
|
}
|
|
}
|
|
|
|
void G1CollectorPolicy::print_yg_surv_rate_info() const {
|
|
#ifndef PRODUCT
|
|
_short_lived_surv_rate_group->print_surv_rate_summary();
|
|
// add this call for any other surv rate groups
|
|
#endif // PRODUCT
|
|
}
|
|
|
|
void
|
|
G1CollectorPolicy::update_region_num(bool young) {
|
|
if (young) {
|
|
++_region_num_young;
|
|
} else {
|
|
++_region_num_tenured;
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// for debugging, bit of a hack...
|
|
static char*
|
|
region_num_to_mbs(int length) {
|
|
static char buffer[64];
|
|
double bytes = (double) (length * HeapRegion::GrainBytes);
|
|
double mbs = bytes / (double) (1024 * 1024);
|
|
sprintf(buffer, "%7.2lfMB", mbs);
|
|
return buffer;
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
size_t G1CollectorPolicy::max_regions(int purpose) {
|
|
switch (purpose) {
|
|
case GCAllocForSurvived:
|
|
return _max_survivor_regions;
|
|
case GCAllocForTenured:
|
|
return REGIONS_UNLIMITED;
|
|
default:
|
|
ShouldNotReachHere();
|
|
return REGIONS_UNLIMITED;
|
|
};
|
|
}
|
|
|
|
void G1CollectorPolicy::calculate_max_gc_locker_expansion() {
|
|
size_t expansion_region_num = 0;
|
|
if (GCLockerEdenExpansionPercent > 0) {
|
|
double perc = (double) GCLockerEdenExpansionPercent / 100.0;
|
|
double expansion_region_num_d = perc * (double) _young_list_target_length;
|
|
// We use ceiling so that if expansion_region_num_d is > 0.0 (but
|
|
// less than 1.0) we'll get 1.
|
|
expansion_region_num = (size_t) ceil(expansion_region_num_d);
|
|
} else {
|
|
assert(expansion_region_num == 0, "sanity");
|
|
}
|
|
_young_list_max_length = _young_list_target_length + expansion_region_num;
|
|
assert(_young_list_target_length <= _young_list_max_length, "post-condition");
|
|
}
|
|
|
|
// Calculates survivor space parameters.
|
|
void G1CollectorPolicy::calculate_survivors_policy()
|
|
{
|
|
if (G1FixedSurvivorSpaceSize == 0) {
|
|
_max_survivor_regions = _young_list_target_length / SurvivorRatio;
|
|
} else {
|
|
_max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
|
|
}
|
|
|
|
if (G1FixedTenuringThreshold) {
|
|
_tenuring_threshold = MaxTenuringThreshold;
|
|
} else {
|
|
_tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
|
|
HeapRegion::GrainWords * _max_survivor_regions);
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
class HRSortIndexIsOKClosure: public HeapRegionClosure {
|
|
CollectionSetChooser* _chooser;
|
|
public:
|
|
HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
|
|
_chooser(chooser) {}
|
|
|
|
bool doHeapRegion(HeapRegion* r) {
|
|
if (!r->continuesHumongous()) {
|
|
assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
bool G1CollectorPolicy_BestRegionsFirst::assertMarkedBytesDataOK() {
|
|
HRSortIndexIsOKClosure cl(_collectionSetChooser);
|
|
_g1->heap_region_iterate(&cl);
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
bool
|
|
G1CollectorPolicy::force_initial_mark_if_outside_cycle() {
|
|
bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
|
|
if (!during_cycle) {
|
|
set_initiate_conc_mark_if_possible();
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void
|
|
G1CollectorPolicy::decide_on_conc_mark_initiation() {
|
|
// We are about to decide on whether this pause will be an
|
|
// initial-mark pause.
|
|
|
|
// First, during_initial_mark_pause() should not be already set. We
|
|
// will set it here if we have to. However, it should be cleared by
|
|
// the end of the pause (it's only set for the duration of an
|
|
// initial-mark pause).
|
|
assert(!during_initial_mark_pause(), "pre-condition");
|
|
|
|
if (initiate_conc_mark_if_possible()) {
|
|
// We had noticed on a previous pause that the heap occupancy has
|
|
// gone over the initiating threshold and we should start a
|
|
// concurrent marking cycle. So we might initiate one.
|
|
|
|
bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
|
|
if (!during_cycle) {
|
|
// The concurrent marking thread is not "during a cycle", i.e.,
|
|
// it has completed the last one. So we can go ahead and
|
|
// initiate a new cycle.
|
|
|
|
set_during_initial_mark_pause();
|
|
|
|
// And we can now clear initiate_conc_mark_if_possible() as
|
|
// we've already acted on it.
|
|
clear_initiate_conc_mark_if_possible();
|
|
} else {
|
|
// The concurrent marking thread is still finishing up the
|
|
// previous cycle. If we start one right now the two cycles
|
|
// overlap. In particular, the concurrent marking thread might
|
|
// be in the process of clearing the next marking bitmap (which
|
|
// we will use for the next cycle if we start one). Starting a
|
|
// cycle now will be bad given that parts of the marking
|
|
// information might get cleared by the marking thread. And we
|
|
// cannot wait for the marking thread to finish the cycle as it
|
|
// periodically yields while clearing the next marking bitmap
|
|
// and, if it's in a yield point, it's waiting for us to
|
|
// finish. So, at this point we will not start a cycle and we'll
|
|
// let the concurrent marking thread complete the last one.
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
G1CollectorPolicy_BestRegionsFirst::
|
|
record_collection_pause_start(double start_time_sec, size_t start_used) {
|
|
G1CollectorPolicy::record_collection_pause_start(start_time_sec, start_used);
|
|
}
|
|
|
|
class NextNonCSElemFinder: public HeapRegionClosure {
|
|
HeapRegion* _res;
|
|
public:
|
|
NextNonCSElemFinder(): _res(NULL) {}
|
|
bool doHeapRegion(HeapRegion* r) {
|
|
if (!r->in_collection_set()) {
|
|
_res = r;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
HeapRegion* res() { return _res; }
|
|
};
|
|
|
|
class KnownGarbageClosure: public HeapRegionClosure {
|
|
CollectionSetChooser* _hrSorted;
|
|
|
|
public:
|
|
KnownGarbageClosure(CollectionSetChooser* hrSorted) :
|
|
_hrSorted(hrSorted)
|
|
{}
|
|
|
|
bool doHeapRegion(HeapRegion* r) {
|
|
// We only include humongous regions in collection
|
|
// sets when concurrent mark shows that their contained object is
|
|
// unreachable.
|
|
|
|
// Do we have any marking information for this region?
|
|
if (r->is_marked()) {
|
|
// We don't include humongous regions in collection
|
|
// sets because we collect them immediately at the end of a marking
|
|
// cycle. We also don't include young regions because we *must*
|
|
// include them in the next collection pause.
|
|
if (!r->isHumongous() && !r->is_young()) {
|
|
_hrSorted->addMarkedHeapRegion(r);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class ParKnownGarbageHRClosure: public HeapRegionClosure {
|
|
CollectionSetChooser* _hrSorted;
|
|
jint _marked_regions_added;
|
|
jint _chunk_size;
|
|
jint _cur_chunk_idx;
|
|
jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
|
|
int _worker;
|
|
int _invokes;
|
|
|
|
void get_new_chunk() {
|
|
_cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
|
|
_cur_chunk_end = _cur_chunk_idx + _chunk_size;
|
|
}
|
|
void add_region(HeapRegion* r) {
|
|
if (_cur_chunk_idx == _cur_chunk_end) {
|
|
get_new_chunk();
|
|
}
|
|
assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
|
|
_hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
|
|
_marked_regions_added++;
|
|
_cur_chunk_idx++;
|
|
}
|
|
|
|
public:
|
|
ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
|
|
jint chunk_size,
|
|
int worker) :
|
|
_hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
|
|
_marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
|
|
_invokes(0)
|
|
{}
|
|
|
|
bool doHeapRegion(HeapRegion* r) {
|
|
// We only include humongous regions in collection
|
|
// sets when concurrent mark shows that their contained object is
|
|
// unreachable.
|
|
_invokes++;
|
|
|
|
// Do we have any marking information for this region?
|
|
if (r->is_marked()) {
|
|
// We don't include humongous regions in collection
|
|
// sets because we collect them immediately at the end of a marking
|
|
// cycle.
|
|
// We also do not include young regions in collection sets
|
|
if (!r->isHumongous() && !r->is_young()) {
|
|
add_region(r);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
jint marked_regions_added() { return _marked_regions_added; }
|
|
int invokes() { return _invokes; }
|
|
};
|
|
|
|
class ParKnownGarbageTask: public AbstractGangTask {
|
|
CollectionSetChooser* _hrSorted;
|
|
jint _chunk_size;
|
|
G1CollectedHeap* _g1;
|
|
public:
|
|
ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
|
|
AbstractGangTask("ParKnownGarbageTask"),
|
|
_hrSorted(hrSorted), _chunk_size(chunk_size),
|
|
_g1(G1CollectedHeap::heap())
|
|
{}
|
|
|
|
void work(int i) {
|
|
ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
|
|
// Back to zero for the claim value.
|
|
_g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
|
|
HeapRegion::InitialClaimValue);
|
|
jint regions_added = parKnownGarbageCl.marked_regions_added();
|
|
_hrSorted->incNumMarkedHeapRegions(regions_added);
|
|
if (G1PrintParCleanupStats) {
|
|
gclog_or_tty->print(" Thread %d called %d times, added %d regions to list.\n",
|
|
i, parKnownGarbageCl.invokes(), regions_added);
|
|
}
|
|
}
|
|
};
|
|
|
|
void
|
|
G1CollectorPolicy_BestRegionsFirst::
|
|
record_concurrent_mark_cleanup_end(size_t freed_bytes,
|
|
size_t max_live_bytes) {
|
|
double start;
|
|
if (G1PrintParCleanupStats) start = os::elapsedTime();
|
|
record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
|
|
|
|
_collectionSetChooser->clearMarkedHeapRegions();
|
|
double clear_marked_end;
|
|
if (G1PrintParCleanupStats) {
|
|
clear_marked_end = os::elapsedTime();
|
|
gclog_or_tty->print_cr(" clear marked regions + work1: %8.3f ms.",
|
|
(clear_marked_end - start)*1000.0);
|
|
}
|
|
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
|
const size_t OverpartitionFactor = 4;
|
|
const size_t MinWorkUnit = 8;
|
|
const size_t WorkUnit =
|
|
MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
|
|
MinWorkUnit);
|
|
_collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
|
|
WorkUnit);
|
|
ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
|
|
(int) WorkUnit);
|
|
_g1->workers()->run_task(&parKnownGarbageTask);
|
|
|
|
assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
|
|
"sanity check");
|
|
} else {
|
|
KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
|
|
_g1->heap_region_iterate(&knownGarbagecl);
|
|
}
|
|
double known_garbage_end;
|
|
if (G1PrintParCleanupStats) {
|
|
known_garbage_end = os::elapsedTime();
|
|
gclog_or_tty->print_cr(" compute known garbage: %8.3f ms.",
|
|
(known_garbage_end - clear_marked_end)*1000.0);
|
|
}
|
|
_collectionSetChooser->sortMarkedHeapRegions();
|
|
double sort_end;
|
|
if (G1PrintParCleanupStats) {
|
|
sort_end = os::elapsedTime();
|
|
gclog_or_tty->print_cr(" sorting: %8.3f ms.",
|
|
(sort_end - known_garbage_end)*1000.0);
|
|
}
|
|
|
|
record_concurrent_mark_cleanup_end_work2();
|
|
double work2_end;
|
|
if (G1PrintParCleanupStats) {
|
|
work2_end = os::elapsedTime();
|
|
gclog_or_tty->print_cr(" work2: %8.3f ms.",
|
|
(work2_end - sort_end)*1000.0);
|
|
}
|
|
}
|
|
|
|
// Add the heap region at the head of the non-incremental collection set
|
|
void G1CollectorPolicy::
|
|
add_to_collection_set(HeapRegion* hr) {
|
|
assert(_inc_cset_build_state == Active, "Precondition");
|
|
assert(!hr->is_young(), "non-incremental add of young region");
|
|
|
|
if (G1PrintHeapRegions) {
|
|
gclog_or_tty->print_cr("added region to cset "
|
|
"%d:["PTR_FORMAT", "PTR_FORMAT"], "
|
|
"top "PTR_FORMAT", %s",
|
|
hr->hrs_index(), hr->bottom(), hr->end(),
|
|
hr->top(), hr->is_young() ? "YOUNG" : "NOT_YOUNG");
|
|
}
|
|
|
|
if (_g1->mark_in_progress())
|
|
_g1->concurrent_mark()->registerCSetRegion(hr);
|
|
|
|
assert(!hr->in_collection_set(), "should not already be in the CSet");
|
|
hr->set_in_collection_set(true);
|
|
hr->set_next_in_collection_set(_collection_set);
|
|
_collection_set = hr;
|
|
_collection_set_size++;
|
|
_collection_set_bytes_used_before += hr->used();
|
|
_g1->register_region_with_in_cset_fast_test(hr);
|
|
}
|
|
|
|
// Initialize the per-collection-set information
|
|
void G1CollectorPolicy::start_incremental_cset_building() {
|
|
assert(_inc_cset_build_state == Inactive, "Precondition");
|
|
|
|
_inc_cset_head = NULL;
|
|
_inc_cset_tail = NULL;
|
|
_inc_cset_size = 0;
|
|
_inc_cset_bytes_used_before = 0;
|
|
|
|
if (in_young_gc_mode()) {
|
|
_inc_cset_young_index = 0;
|
|
}
|
|
|
|
_inc_cset_max_finger = 0;
|
|
_inc_cset_recorded_young_bytes = 0;
|
|
_inc_cset_recorded_rs_lengths = 0;
|
|
_inc_cset_predicted_elapsed_time_ms = 0;
|
|
_inc_cset_predicted_bytes_to_copy = 0;
|
|
_inc_cset_build_state = Active;
|
|
}
|
|
|
|
void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
|
|
// This routine is used when:
|
|
// * adding survivor regions to the incremental cset at the end of an
|
|
// evacuation pause,
|
|
// * adding the current allocation region to the incremental cset
|
|
// when it is retired, and
|
|
// * updating existing policy information for a region in the
|
|
// incremental cset via young list RSet sampling.
|
|
// Therefore this routine may be called at a safepoint by the
|
|
// VM thread, or in-between safepoints by mutator threads (when
|
|
// retiring the current allocation region) or a concurrent
|
|
// refine thread (RSet sampling).
|
|
|
|
double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
|
|
size_t used_bytes = hr->used();
|
|
|
|
_inc_cset_recorded_rs_lengths += rs_length;
|
|
_inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
|
|
|
|
_inc_cset_bytes_used_before += used_bytes;
|
|
|
|
// Cache the values we have added to the aggregated informtion
|
|
// in the heap region in case we have to remove this region from
|
|
// the incremental collection set, or it is updated by the
|
|
// rset sampling code
|
|
hr->set_recorded_rs_length(rs_length);
|
|
hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
|
|
|
|
#if PREDICTIONS_VERBOSE
|
|
size_t bytes_to_copy = predict_bytes_to_copy(hr);
|
|
_inc_cset_predicted_bytes_to_copy += bytes_to_copy;
|
|
|
|
// Record the number of bytes used in this region
|
|
_inc_cset_recorded_young_bytes += used_bytes;
|
|
|
|
// Cache the values we have added to the aggregated informtion
|
|
// in the heap region in case we have to remove this region from
|
|
// the incremental collection set, or it is updated by the
|
|
// rset sampling code
|
|
hr->set_predicted_bytes_to_copy(bytes_to_copy);
|
|
#endif // PREDICTIONS_VERBOSE
|
|
}
|
|
|
|
void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
|
|
// This routine is currently only called as part of the updating of
|
|
// existing policy information for regions in the incremental cset that
|
|
// is performed by the concurrent refine thread(s) as part of young list
|
|
// RSet sampling. Therefore we should not be at a safepoint.
|
|
|
|
assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
|
|
assert(hr->is_young(), "it should be");
|
|
|
|
size_t used_bytes = hr->used();
|
|
size_t old_rs_length = hr->recorded_rs_length();
|
|
double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
|
|
|
|
// Subtract the old recorded/predicted policy information for
|
|
// the given heap region from the collection set info.
|
|
_inc_cset_recorded_rs_lengths -= old_rs_length;
|
|
_inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;
|
|
|
|
_inc_cset_bytes_used_before -= used_bytes;
|
|
|
|
// Clear the values cached in the heap region
|
|
hr->set_recorded_rs_length(0);
|
|
hr->set_predicted_elapsed_time_ms(0);
|
|
|
|
#if PREDICTIONS_VERBOSE
|
|
size_t old_predicted_bytes_to_copy = hr->predicted_bytes_to_copy();
|
|
_inc_cset_predicted_bytes_to_copy -= old_predicted_bytes_to_copy;
|
|
|
|
// Subtract the number of bytes used in this region
|
|
_inc_cset_recorded_young_bytes -= used_bytes;
|
|
|
|
// Clear the values cached in the heap region
|
|
hr->set_predicted_bytes_to_copy(0);
|
|
#endif // PREDICTIONS_VERBOSE
|
|
}
|
|
|
|
void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
|
|
// Update the collection set information that is dependent on the new RS length
|
|
assert(hr->is_young(), "Precondition");
|
|
|
|
remove_from_incremental_cset_info(hr);
|
|
add_to_incremental_cset_info(hr, new_rs_length);
|
|
}
|
|
|
|
void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
|
|
assert( hr->is_young(), "invariant");
|
|
assert( hr->young_index_in_cset() == -1, "invariant" );
|
|
assert(_inc_cset_build_state == Active, "Precondition");
|
|
|
|
// We need to clear and set the cached recorded/cached collection set
|
|
// information in the heap region here (before the region gets added
|
|
// to the collection set). An individual heap region's cached values
|
|
// are calculated, aggregated with the policy collection set info,
|
|
// and cached in the heap region here (initially) and (subsequently)
|
|
// by the Young List sampling code.
|
|
|
|
size_t rs_length = hr->rem_set()->occupied();
|
|
add_to_incremental_cset_info(hr, rs_length);
|
|
|
|
HeapWord* hr_end = hr->end();
|
|
_inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
|
|
|
|
assert(!hr->in_collection_set(), "invariant");
|
|
hr->set_in_collection_set(true);
|
|
assert( hr->next_in_collection_set() == NULL, "invariant");
|
|
|
|
_inc_cset_size++;
|
|
_g1->register_region_with_in_cset_fast_test(hr);
|
|
|
|
hr->set_young_index_in_cset((int) _inc_cset_young_index);
|
|
++_inc_cset_young_index;
|
|
}
|
|
|
|
// Add the region at the RHS of the incremental cset
|
|
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
|
|
// We should only ever be appending survivors at the end of a pause
|
|
assert( hr->is_survivor(), "Logic");
|
|
|
|
// Do the 'common' stuff
|
|
add_region_to_incremental_cset_common(hr);
|
|
|
|
// Now add the region at the right hand side
|
|
if (_inc_cset_tail == NULL) {
|
|
assert(_inc_cset_head == NULL, "invariant");
|
|
_inc_cset_head = hr;
|
|
} else {
|
|
_inc_cset_tail->set_next_in_collection_set(hr);
|
|
}
|
|
_inc_cset_tail = hr;
|
|
|
|
if (G1PrintHeapRegions) {
|
|
gclog_or_tty->print_cr(" added region to incremental cset (RHS) "
|
|
"%d:["PTR_FORMAT", "PTR_FORMAT"], "
|
|
"top "PTR_FORMAT", young %s",
|
|
hr->hrs_index(), hr->bottom(), hr->end(),
|
|
hr->top(), (hr->is_young()) ? "YES" : "NO");
|
|
}
|
|
}
|
|
|
|
// Add the region to the LHS of the incremental cset
|
|
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
|
|
// Survivors should be added to the RHS at the end of a pause
|
|
assert(!hr->is_survivor(), "Logic");
|
|
|
|
// Do the 'common' stuff
|
|
add_region_to_incremental_cset_common(hr);
|
|
|
|
// Add the region at the left hand side
|
|
hr->set_next_in_collection_set(_inc_cset_head);
|
|
if (_inc_cset_head == NULL) {
|
|
assert(_inc_cset_tail == NULL, "Invariant");
|
|
_inc_cset_tail = hr;
|
|
}
|
|
_inc_cset_head = hr;
|
|
|
|
if (G1PrintHeapRegions) {
|
|
gclog_or_tty->print_cr(" added region to incremental cset (LHS) "
|
|
"%d:["PTR_FORMAT", "PTR_FORMAT"], "
|
|
"top "PTR_FORMAT", young %s",
|
|
hr->hrs_index(), hr->bottom(), hr->end(),
|
|
hr->top(), (hr->is_young()) ? "YES" : "NO");
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
|
|
assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
|
|
|
|
st->print_cr("\nCollection_set:");
|
|
HeapRegion* csr = list_head;
|
|
while (csr != NULL) {
|
|
HeapRegion* next = csr->next_in_collection_set();
|
|
assert(csr->in_collection_set(), "bad CS");
|
|
st->print_cr(" [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
|
|
"age: %4d, y: %d, surv: %d",
|
|
csr->bottom(), csr->end(),
|
|
csr->top(),
|
|
csr->prev_top_at_mark_start(),
|
|
csr->next_top_at_mark_start(),
|
|
csr->top_at_conc_mark_count(),
|
|
csr->age_in_surv_rate_group_cond(),
|
|
csr->is_young(),
|
|
csr->is_survivor());
|
|
csr = next;
|
|
}
|
|
}
|
|
#endif // !PRODUCT
|
|
|
|
void
|
|
G1CollectorPolicy_BestRegionsFirst::choose_collection_set(
|
|
double target_pause_time_ms) {
|
|
// Set this here - in case we're not doing young collections.
|
|
double non_young_start_time_sec = os::elapsedTime();
|
|
|
|
start_recording_regions();
|
|
|
|
guarantee(target_pause_time_ms > 0.0,
|
|
err_msg("target_pause_time_ms = %1.6lf should be positive",
|
|
target_pause_time_ms));
|
|
guarantee(_collection_set == NULL, "Precondition");
|
|
|
|
double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
|
|
double predicted_pause_time_ms = base_time_ms;
|
|
|
|
double time_remaining_ms = target_pause_time_ms - base_time_ms;
|
|
|
|
// the 10% and 50% values are arbitrary...
|
|
if (time_remaining_ms < 0.10 * target_pause_time_ms) {
|
|
time_remaining_ms = 0.50 * target_pause_time_ms;
|
|
_within_target = false;
|
|
} else {
|
|
_within_target = true;
|
|
}
|
|
|
|
// We figure out the number of bytes available for future to-space.
|
|
// For new regions without marking information, we must assume the
|
|
// worst-case of complete survival. If we have marking information for a
|
|
// region, we can bound the amount of live data. We can add a number of
|
|
// such regions, as long as the sum of the live data bounds does not
|
|
// exceed the available evacuation space.
|
|
size_t max_live_bytes = _g1->free_regions() * HeapRegion::GrainBytes;
|
|
|
|
size_t expansion_bytes =
|
|
_g1->expansion_regions() * HeapRegion::GrainBytes;
|
|
|
|
_collection_set_bytes_used_before = 0;
|
|
_collection_set_size = 0;
|
|
|
|
// Adjust for expansion and slop.
|
|
max_live_bytes = max_live_bytes + expansion_bytes;
|
|
|
|
HeapRegion* hr;
|
|
if (in_young_gc_mode()) {
|
|
double young_start_time_sec = os::elapsedTime();
|
|
|
|
if (G1PolicyVerbose > 0) {
|
|
gclog_or_tty->print_cr("Adding %d young regions to the CSet",
|
|
_g1->young_list()->length());
|
|
}
|
|
|
|
_young_cset_length = 0;
|
|
_last_young_gc_full = full_young_gcs() ? true : false;
|
|
|
|
if (_last_young_gc_full)
|
|
++_full_young_pause_num;
|
|
else
|
|
++_partial_young_pause_num;
|
|
|
|
// The young list is laid with the survivor regions from the previous
|
|
// pause are appended to the RHS of the young list, i.e.
|
|
// [Newly Young Regions ++ Survivors from last pause].
|
|
|
|
hr = _g1->young_list()->first_survivor_region();
|
|
while (hr != NULL) {
|
|
assert(hr->is_survivor(), "badly formed young list");
|
|
hr->set_young();
|
|
hr = hr->get_next_young_region();
|
|
}
|
|
|
|
// Clear the fields that point to the survivor list - they are
|
|
// all young now.
|
|
_g1->young_list()->clear_survivors();
|
|
|
|
if (_g1->mark_in_progress())
|
|
_g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
|
|
|
|
_young_cset_length = _inc_cset_young_index;
|
|
_collection_set = _inc_cset_head;
|
|
_collection_set_size = _inc_cset_size;
|
|
_collection_set_bytes_used_before = _inc_cset_bytes_used_before;
|
|
|
|
// For young regions in the collection set, we assume the worst
|
|
// case of complete survival
|
|
max_live_bytes -= _inc_cset_size * HeapRegion::GrainBytes;
|
|
|
|
time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
|
|
predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
|
|
|
|
// The number of recorded young regions is the incremental
|
|
// collection set's current size
|
|
set_recorded_young_regions(_inc_cset_size);
|
|
set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
|
|
set_recorded_young_bytes(_inc_cset_recorded_young_bytes);
|
|
#if PREDICTIONS_VERBOSE
|
|
set_predicted_bytes_to_copy(_inc_cset_predicted_bytes_to_copy);
|
|
#endif // PREDICTIONS_VERBOSE
|
|
|
|
if (G1PolicyVerbose > 0) {
|
|
gclog_or_tty->print_cr(" Added " PTR_FORMAT " Young Regions to CS.",
|
|
_inc_cset_size);
|
|
gclog_or_tty->print_cr(" (" SIZE_FORMAT " KB left in heap.)",
|
|
max_live_bytes/K);
|
|
}
|
|
|
|
assert(_inc_cset_size == _g1->young_list()->length(), "Invariant");
|
|
|
|
double young_end_time_sec = os::elapsedTime();
|
|
_recorded_young_cset_choice_time_ms =
|
|
(young_end_time_sec - young_start_time_sec) * 1000.0;
|
|
|
|
// We are doing young collections so reset this.
|
|
non_young_start_time_sec = young_end_time_sec;
|
|
|
|
// Note we can use either _collection_set_size or
|
|
// _young_cset_length here
|
|
if (_collection_set_size > 0 && _last_young_gc_full) {
|
|
// don't bother adding more regions...
|
|
goto choose_collection_set_end;
|
|
}
|
|
}
|
|
|
|
if (!in_young_gc_mode() || !full_young_gcs()) {
|
|
bool should_continue = true;
|
|
NumberSeq seq;
|
|
double avg_prediction = 100000000000000000.0; // something very large
|
|
|
|
do {
|
|
hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
|
|
avg_prediction);
|
|
if (hr != NULL) {
|
|
double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
|
|
time_remaining_ms -= predicted_time_ms;
|
|
predicted_pause_time_ms += predicted_time_ms;
|
|
add_to_collection_set(hr);
|
|
record_non_young_cset_region(hr);
|
|
max_live_bytes -= MIN2(hr->max_live_bytes(), max_live_bytes);
|
|
if (G1PolicyVerbose > 0) {
|
|
gclog_or_tty->print_cr(" (" SIZE_FORMAT " KB left in heap.)",
|
|
max_live_bytes/K);
|
|
}
|
|
seq.add(predicted_time_ms);
|
|
avg_prediction = seq.avg() + seq.sd();
|
|
}
|
|
should_continue =
|
|
( hr != NULL) &&
|
|
( (adaptive_young_list_length()) ? time_remaining_ms > 0.0
|
|
: _collection_set_size < _young_list_fixed_length );
|
|
} while (should_continue);
|
|
|
|
if (!adaptive_young_list_length() &&
|
|
_collection_set_size < _young_list_fixed_length)
|
|
_should_revert_to_full_young_gcs = true;
|
|
}
|
|
|
|
choose_collection_set_end:
|
|
stop_incremental_cset_building();
|
|
|
|
count_CS_bytes_used();
|
|
|
|
end_recording_regions();
|
|
|
|
double non_young_end_time_sec = os::elapsedTime();
|
|
_recorded_non_young_cset_choice_time_ms =
|
|
(non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
|
|
}
|
|
|
|
void G1CollectorPolicy_BestRegionsFirst::record_full_collection_end() {
|
|
G1CollectorPolicy::record_full_collection_end();
|
|
_collectionSetChooser->updateAfterFullCollection();
|
|
}
|
|
|
|
void G1CollectorPolicy_BestRegionsFirst::
|
|
expand_if_possible(size_t numRegions) {
|
|
size_t expansion_bytes = numRegions * HeapRegion::GrainBytes;
|
|
_g1->expand(expansion_bytes);
|
|
}
|
|
|
|
void G1CollectorPolicy_BestRegionsFirst::
|
|
record_collection_pause_end() {
|
|
G1CollectorPolicy::record_collection_pause_end();
|
|
assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
|
|
}
|