jdk/src/java.base/share/classes/sun/security/util/math/IntegerModuloP.java
Hai-May Chao f7a4be75fb 8288270: Tier1 build failures after JDK-8287178
Reviewed-by: weijun, jiefu
2022-06-10 23:58:15 +00:00

212 lines
7.2 KiB
Java

/*
* Copyright (c) 2018, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.util.math;
import java.math.BigInteger;
/**
* The base interface for integers modulo a prime value. Objects of this
* type may be either mutable or immutable, and subinterfaces can be used
* to specify that an object is mutable or immutable. This type should never
* be used to declare local/member variables, but it may be used for
* formal parameters of a method. None of the methods in this interface
* modify the value of arguments or this.
*
* The behavior of this interface depends on the particular implementation.
* For example, some implementations only support a limited number of add
* operations before each multiply operation. See the documentation of the
* implementation for details.
*
* @see ImmutableIntegerModuloP
* @see MutableIntegerModuloP
*/
public interface IntegerModuloP {
/**
* Get the field associated with this element.
*
* @return the field
*/
IntegerFieldModuloP getField();
/**
* Get the canonical value of this element as a BigInteger. This value
* will always be in the range [0, p), where p is the prime that defines
* the field. This method performs reduction and other computation to
* produce the result.
*
* @return the value as a BigInteger
*/
BigInteger asBigInteger();
/**
* Return this value as a fixed (immutable) element. This method will
* copy the underlying representation if the object is mutable.
*
* @return a fixed element with the same value
*/
ImmutableIntegerModuloP fixed();
/**
* Return this value as a mutable element. This method will always copy
* the underlying representation.
*
* @return a mutable element with the same value
*/
MutableIntegerModuloP mutable();
/**
* Add this field element with the supplied element and return the result.
*
* @param b the sumand
* @return this + b
*/
ImmutableIntegerModuloP add(IntegerModuloP b);
/**
* Compute the additive inverse of the field element
* @return the addditiveInverse (0 - this)
*/
ImmutableIntegerModuloP additiveInverse();
/**
* Multiply this field element with the supplied element and return the
* result.
*
* @param b the multiplicand
* @return this * b
*/
ImmutableIntegerModuloP multiply(IntegerModuloP b);
/**
* Perform an addition modulo a power of two and return the little-endian
* encoding of the result. The value is (this' + b') % 2^(8 * len),
* where this' and b' are the canonical integer values equivalent to
* this and b.
*
* @param b the sumand
* @param len the length of the desired array
* @return a byte array of length len containing the result
*/
default byte[] addModPowerTwo(IntegerModuloP b, int len) {
byte[] result = new byte[len];
addModPowerTwo(b, result);
return result;
}
/**
* Perform an addition modulo a power of two and store the little-endian
* encoding of the result in the supplied array. The value is
* (this' + b') % 2^(8 * result.length), where this' and b' are the
* canonical integer values equivalent to this and b.
*
* @param b the sumand
* @param result an array which stores the result upon return
*/
void addModPowerTwo(IntegerModuloP b, byte[] result);
/**
* Returns the little-endian encoding of this' % 2^(8 * len), where this'
* is the canonical integer value equivalent to this.
*
* @param len the length of the desired array
* @return a byte array of length len containing the result
*/
default byte[] asByteArray(int len) {
byte[] result = new byte[len];
asByteArray(result);
return result;
}
/**
* Places the little-endian encoding of this' % 2^(8 * result.length)
* into the supplied array, where this' is the canonical integer value
* equivalent to this.
*
* @param result an array which stores the result upon return
*/
void asByteArray(byte[] result);
/**
* Compute the multiplicative inverse of this field element.
*
* @return the multiplicative inverse (1 / this)
*/
default ImmutableIntegerModuloP multiplicativeInverse() {
// This method is used in 2 cases:
// 1. To calculate the inverse of a number in ECDSAOperations,
// this number must be non zero (modulo p).
// 2. To flatten a 3D point to a 2D AffinePoint. This number
// might be zero (infinity). However, since the infinity
// is represented as (0, 0) in 2D, it's OK returning 0 as
// the inverse of 0, i.e. (1, 1, 0) == (1/0, 1/0) == (0, 0).
return pow(getField().getSize().subtract(BigInteger.valueOf(2)));
}
/**
* Subtract the supplied element from this one and return the result.
* @param b the subtrahend
*
* @return the difference (this - b)
*/
default ImmutableIntegerModuloP subtract(IntegerModuloP b) {
return add(b.additiveInverse());
}
/**
* Calculate the square of this element and return the result. This method
* should be used instead of a.multiply(a) because implementations may
* include optimizations that only apply to squaring.
*
* @return the product (this * this)
*/
default ImmutableIntegerModuloP square() {
return multiply(this);
}
/**
* Calculate the power this^b and return the result.
*
* @param b the exponent
* @return the value of this^b
*/
default ImmutableIntegerModuloP pow(BigInteger b) {
//Default implementation is square and multiply
MutableIntegerModuloP y = getField().get1().mutable();
MutableIntegerModuloP x = mutable();
int bitLength = b.bitLength();
for (int bit = 0; bit < bitLength; bit++) {
if (b.testBit(bit)) {
// odd
y.setProduct(x);
}
x.setSquare();
}
return y.fixed();
}
}