jdk/src/java.base/share/classes/java/lang/StringTemplate.java
2023-10-11 16:17:01 +00:00

622 lines
28 KiB
Java

/*
* Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang;
import java.lang.invoke.MethodHandle;
import java.lang.invoke.MethodType;
import java.util.FormatProcessor;
import java.util.function.Function;
import java.util.List;
import java.util.Objects;
import jdk.internal.access.JavaTemplateAccess;
import jdk.internal.access.SharedSecrets;
import jdk.internal.javac.PreviewFeature;
/**
* {@link StringTemplate} is the run-time representation of a string template or
* text block template in a template expression.
* <p>
* In the source code of a Java program, a string template or text block template
* contains an interleaved succession of <em>fragment literals</em> and <em>embedded
* expressions</em>. The {@link StringTemplate#fragments()} method returns the
* fragment literals, and the {@link StringTemplate#values()} method returns the
* results of evaluating the embedded expressions. {@link StringTemplate} does not
* provide access to the source code of the embedded expressions themselves; it is
* not a compile-time representation of a string template or text block template.
* <p>
* {@link StringTemplate} is primarily used in conjunction with a template processor
* to produce a string or other meaningful value. Evaluation of a template expression
* first produces an instance of {@link StringTemplate}, representing the right hand side
* of the template expression, and then passes the instance to the template processor
* given by the template expression.
* <p>
* For example, the following code contains a template expression that uses the template
* processor {@code RAW}, which simply yields the {@link StringTemplate} passed to it:
* {@snippet :
* int x = 10;
* int y = 20;
* StringTemplate st = RAW."\{x} + \{y} = \{x + y}";
* List<String> fragments = st.fragments();
* List<Object> values = st.values();
* }
* {@code fragments} will be equivalent to {@code List.of("", " + ", " = ", "")},
* which includes the empty first and last fragments. {@code values} will be the
* equivalent of {@code List.of(10, 20, 30)}.
* <p>
* The following code contains a template expression with the same template but with a
* different template processor, {@code STR}:
* {@snippet :
* int x = 10;
* int y = 20;
* String s = STR."\{x} + \{y} = \{x + y}";
* }
* When the template expression is evaluated, an instance of {@link StringTemplate} is
* produced that returns the same lists from {@link StringTemplate#fragments()} and
* {@link StringTemplate#values()} as shown above. The {@link StringTemplate#STR} template
* processor uses these lists to yield an interpolated string. The value of {@code s} will
* be equivalent to {@code "10 + 20 = 30"}.
* <p>
* The {@code interpolate()} method provides a direct way to perform string interpolation
* of a {@link StringTemplate}. Template processors can use the following code pattern:
* {@snippet :
* List<String> fragments = st.fragments();
* List<Object> values = st.values();
* ... check or manipulate the fragments and/or values ...
* String result = StringTemplate.interpolate(fragments, values);
* }
* The {@link StringTemplate#process(Processor)} method, in conjunction with
* the {@link StringTemplate#RAW} processor, may be used to defer processing of a
* {@link StringTemplate}.
* {@snippet :
* StringTemplate st = RAW."\{x} + \{y} = \{x + y}";
* ...other steps...
* String result = st.process(STR);
* }
* The factory methods {@link StringTemplate#of(String)} and
* {@link StringTemplate#of(List, List)} can be used to construct a {@link StringTemplate}.
*
* @see Processor
* @see java.util.FormatProcessor
*
* @implNote Implementations of {@link StringTemplate} must minimally implement the
* methods {@link StringTemplate#fragments()} and {@link StringTemplate#values()}.
* Instances of {@link StringTemplate} are considered immutable. To preserve the
* semantics of string templates and text block templates, the list returned by
* {@link StringTemplate#fragments()} must be one element larger than the list returned
* by {@link StringTemplate#values()}.
*
* @since 21
*
* @jls 15.8.6 Process Template Expressions
*/
@PreviewFeature(feature=PreviewFeature.Feature.STRING_TEMPLATES)
public interface StringTemplate {
/**
* Returns a list of fragment literals for this {@link StringTemplate}.
* The fragment literals are the character sequences preceding each of the embedded
* expressions in source code, plus the character sequence following the last
* embedded expression. Such character sequences may be zero-length if an embedded
* expression appears at the beginning or end of a template, or if two embedded
* expressions are directly adjacent in a template.
* In the example: {@snippet :
* String student = "Mary";
* String teacher = "Johnson";
* StringTemplate st = RAW."The student \{student} is in \{teacher}'s classroom.";
* List<String> fragments = st.fragments(); // @highlight substring="fragments()"
* }
* {@code fragments} will be equivalent to
* {@code List.of("The student ", " is in ", "'s classroom.")}
*
* @return list of string fragments
*
* @implSpec the list returned is immutable
*/
List<String> fragments();
/**
* Returns a list of embedded expression results for this {@link StringTemplate}.
* In the example:
* {@snippet :
* String student = "Mary";
* String teacher = "Johnson";
* StringTemplate st = RAW."The student \{student} is in \{teacher}'s classroom.";
* List<Object> values = st.values(); // @highlight substring="values()"
* }
* {@code values} will be equivalent to {@code List.of(student, teacher)}
*
* @return list of expression values
*
* @implSpec the list returned is immutable
*/
List<Object> values();
/**
* Returns the string interpolation of the fragments and values for this
* {@link StringTemplate}.
* @apiNote For better visibility and when practical, it is recommended to use the
* {@link StringTemplate#STR} processor instead of invoking the
* {@link StringTemplate#interpolate()} method.
* {@snippet :
* String student = "Mary";
* String teacher = "Johnson";
* StringTemplate st = RAW."The student \{student} is in \{teacher}'s classroom.";
* String result = st.interpolate(); // @highlight substring="interpolate()"
* }
* In the above example, the value of {@code result} will be
* {@code "The student Mary is in Johnson's classroom."}. This is
* produced by the interleaving concatenation of fragments and values from the supplied
* {@link StringTemplate}. To accommodate concatenation, values are converted to strings
* as if invoking {@link String#valueOf(Object)}.
*
* @return interpolation of this {@link StringTemplate}
*
* @implSpec The default implementation returns the result of invoking
* {@code StringTemplate.interpolate(this.fragments(), this.values())}.
*/
default String interpolate() {
return StringTemplate.interpolate(fragments(), values());
}
/**
* Returns the result of applying the specified processor to this {@link StringTemplate}.
* This method can be used as an alternative to string template expressions. For example,
* {@snippet :
* String student = "Mary";
* String teacher = "Johnson";
* String result1 = STR."The student \{student} is in \{teacher}'s classroom.";
* String result2 = RAW."The student \{student} is in \{teacher}'s classroom.".process(STR); // @highlight substring="process"
* }
* Produces an equivalent result for both {@code result1} and {@code result2}.
*
* @param processor the {@link Processor} instance to process
*
* @param <R> Processor's process result type.
* @param <E> Exception thrown type.
*
* @return constructed object of type {@code R}
*
* @throws E exception thrown by the template processor when validation fails
* @throws NullPointerException if processor is null
*
* @implSpec The default implementation returns the result of invoking
* {@code processor.process(this)}. If the invocation throws an exception that
* exception is forwarded to the caller.
*/
default <R, E extends Throwable> R
process(Processor<? extends R, ? extends E> processor) throws E {
Objects.requireNonNull(processor, "processor should not be null");
return processor.process(this);
}
/**
* Produces a diagnostic string that describes the fragments and values of the supplied
* {@link StringTemplate}.
*
* @param stringTemplate the {@link StringTemplate} to represent
*
* @return diagnostic string representing the supplied string template
*
* @throws NullPointerException if stringTemplate is null
*/
static String toString(StringTemplate stringTemplate) {
Objects.requireNonNull(stringTemplate, "stringTemplate should not be null");
return "StringTemplate{ fragments = [ \"" +
String.join("\", \"", stringTemplate.fragments()) +
"\" ], values = " +
stringTemplate.values() +
" }";
}
/**
* Returns a {@link StringTemplate} as if constructed by invoking
* {@code StringTemplate.of(List.of(string), List.of())}. That is, a {@link StringTemplate}
* with one fragment and no values.
*
* @param string single string fragment
*
* @return StringTemplate composed from string
*
* @throws NullPointerException if string is null
*/
static StringTemplate of(String string) {
Objects.requireNonNull(string, "string must not be null");
JavaTemplateAccess JTA = SharedSecrets.getJavaTemplateAccess();
return JTA.of(List.of(string), List.of());
}
/**
* Returns a StringTemplate with the given fragments and values.
*
* @implSpec The {@code fragments} list size must be one more that the
* {@code values} list size.
*
* @param fragments list of string fragments
* @param values list of expression values
*
* @return StringTemplate composed from string
*
* @throws IllegalArgumentException if fragments list size is not one more
* than values list size
* @throws NullPointerException if fragments is null or values is null or if any fragment is null.
*
* @implNote Contents of both lists are copied to construct immutable lists.
*/
static StringTemplate of(List<String> fragments, List<?> values) {
Objects.requireNonNull(fragments, "fragments must not be null");
Objects.requireNonNull(values, "values must not be null");
if (values.size() + 1 != fragments.size()) {
throw new IllegalArgumentException(
"fragments list size is not one more than values list size");
}
JavaTemplateAccess JTA = SharedSecrets.getJavaTemplateAccess();
return JTA.of(fragments, values);
}
/**
* Creates a string that interleaves the elements of values between the
* elements of fragments. To accommodate interpolation, values are converted to strings
* as if invoking {@link String#valueOf(Object)}.
*
* @param fragments list of String fragments
* @param values list of expression values
*
* @return String interpolation of fragments and values
*
* @throws IllegalArgumentException if fragments list size is not one more
* than values list size
* @throws NullPointerException fragments or values is null or if any of the fragments is null
*/
static String interpolate(List<String> fragments, List<?> values) {
Objects.requireNonNull(fragments, "fragments must not be null");
Objects.requireNonNull(values, "values must not be null");
int fragmentsSize = fragments.size();
int valuesSize = values.size();
if (fragmentsSize != valuesSize + 1) {
throw new IllegalArgumentException("fragments must have one more element than values");
}
JavaTemplateAccess JTA = SharedSecrets.getJavaTemplateAccess();
return JTA.interpolate(fragments, values);
}
/**
* Combine zero or more {@link StringTemplate StringTemplates} into a single
* {@link StringTemplate}.
* {@snippet :
* StringTemplate st = StringTemplate.combine(RAW."\{a}", RAW."\{b}", RAW."\{c}");
* assert st.interpolate().equals(STR."\{a}\{b}\{c}");
* }
* Fragment lists from the {@link StringTemplate StringTemplates} are combined end to
* end with the last fragment from each {@link StringTemplate} concatenated with the
* first fragment of the next. To demonstrate, if we were to take two strings and we
* combined them as follows: {@snippet lang = "java":
* String s1 = "abc";
* String s2 = "xyz";
* String sc = s1 + s2;
* assert Objects.equals(sc, "abcxyz");
* }
* the last character {@code "c"} from the first string is juxtaposed with the first
* character {@code "x"} of the second string. The same would be true of combining
* {@link StringTemplate StringTemplates}.
* {@snippet lang ="java":
* StringTemplate st1 = RAW."a\{}b\{}c";
* StringTemplate st2 = RAW."x\{}y\{}z";
* StringTemplate st3 = RAW."a\{}b\{}cx\{}y\{}z";
* StringTemplate stc = StringTemplate.combine(st1, st2);
*
* assert Objects.equals(st1.fragments(), List.of("a", "b", "c"));
* assert Objects.equals(st2.fragments(), List.of("x", "y", "z"));
* assert Objects.equals(st3.fragments(), List.of("a", "b", "cx", "y", "z"));
* assert Objects.equals(stc.fragments(), List.of("a", "b", "cx", "y", "z"));
* }
* Values lists are simply concatenated to produce a single values list.
* The result is a well-formed {@link StringTemplate} with n+1 fragments and n values, where
* n is the total of number of values across all the supplied
* {@link StringTemplate StringTemplates}.
*
* @param stringTemplates zero or more {@link StringTemplate}
*
* @return combined {@link StringTemplate}
*
* @throws NullPointerException if stringTemplates is null or if any of the
* {@code stringTemplates} are null
*
* @implNote If zero {@link StringTemplate} arguments are provided then a
* {@link StringTemplate} with an empty fragment and no values is returned, as if invoking
* <code>StringTemplate.of("")</code> . If only one {@link StringTemplate} argument is provided
* then it is returned unchanged.
*/
static StringTemplate combine(StringTemplate... stringTemplates) {
JavaTemplateAccess JTA = SharedSecrets.getJavaTemplateAccess();
return JTA.combine(stringTemplates);
}
/**
* Combine a list of {@link StringTemplate StringTemplates} into a single
* {@link StringTemplate}.
* {@snippet :
* StringTemplate st = StringTemplate.combine(List.of(RAW."\{a}", RAW."\{b}", RAW."\{c}"));
* assert st.interpolate().equals(STR."\{a}\{b}\{c}");
* }
* Fragment lists from the {@link StringTemplate StringTemplates} are combined end to
* end with the last fragment from each {@link StringTemplate} concatenated with the
* first fragment of the next. To demonstrate, if we were to take two strings and we
* combined them as follows: {@snippet lang = "java":
* String s1 = "abc";
* String s2 = "xyz";
* String sc = s1 + s2;
* assert Objects.equals(sc, "abcxyz");
* }
* the last character {@code "c"} from the first string is juxtaposed with the first
* character {@code "x"} of the second string. The same would be true of combining
* {@link StringTemplate StringTemplates}.
* {@snippet lang ="java":
* StringTemplate st1 = RAW."a\{}b\{}c";
* StringTemplate st2 = RAW."x\{}y\{}z";
* StringTemplate st3 = RAW."a\{}b\{}cx\{}y\{}z";
* StringTemplate stc = StringTemplate.combine(List.of(st1, st2));
*
* assert Objects.equals(st1.fragments(), List.of("a", "b", "c"));
* assert Objects.equals(st2.fragments(), List.of("x", "y", "z"));
* assert Objects.equals(st3.fragments(), List.of("a", "b", "cx", "y", "z"));
* assert Objects.equals(stc.fragments(), List.of("a", "b", "cx", "y", "z"));
* }
* Values lists are simply concatenated to produce a single values list.
* The result is a well-formed {@link StringTemplate} with n+1 fragments and n values, where
* n is the total of number of values across all the supplied
* {@link StringTemplate StringTemplates}.
*
* @param stringTemplates list of {@link StringTemplate}
*
* @return combined {@link StringTemplate}
*
* @throws NullPointerException if stringTemplates is null or if any of the
* its elements are null
*
* @implNote If {@code stringTemplates.size() == 0} then a {@link StringTemplate} with
* an empty fragment and no values is returned, as if invoking
* <code>StringTemplate.of("")</code> . If {@code stringTemplates.size() == 1}
* then the first element of the list is returned unchanged.
*/
static StringTemplate combine(List<StringTemplate> stringTemplates) {
JavaTemplateAccess JTA = SharedSecrets.getJavaTemplateAccess();
return JTA.combine(stringTemplates.toArray(new StringTemplate[0]));
}
/**
* This {@link Processor} instance is conventionally used for the string interpolation
* of a supplied {@link StringTemplate}.
* <p>
* For better visibility and when practical, it is recommended that users use the
* {@link StringTemplate#STR} processor instead of invoking the
* {@link StringTemplate#interpolate()} method.
* Example: {@snippet :
* int x = 10;
* int y = 20;
* String result = STR."\{x} + \{y} = \{x + y}"; // @highlight substring="STR"
* }
* In the above example, the value of {@code result} will be {@code "10 + 20 = 30"}. This is
* produced by the interleaving concatenation of fragments and values from the supplied
* {@link StringTemplate}. To accommodate concatenation, values are converted to strings
* as if invoking {@link String#valueOf(Object)}.
* @apiNote {@link StringTemplate#STR} is statically imported implicitly into every
* Java compilation unit.
*/
Processor<String, RuntimeException> STR = StringTemplate::interpolate;
/**
* This {@link Processor} instance is conventionally used to indicate that the
* processing of the {@link StringTemplate} is to be deferred to a later time. Deferred
* processing can be resumed by invoking the
* {@link StringTemplate#process(Processor)} or
* {@link Processor#process(StringTemplate)} methods.
* {@snippet :
* import static java.lang.StringTemplate.RAW;
* ...
* StringTemplate st = RAW."\{x} + \{y} = \{x + y}";
* ...other steps...
* String result = STR.process(st);
* }
* @implNote Unlike {@link StringTemplate#STR}, {@link StringTemplate#RAW} must be
* statically imported explicitly.
*/
Processor<StringTemplate, RuntimeException> RAW = st -> st;
/**
* This interface describes the methods provided by a generalized string template processor. The
* primary method {@link Processor#process(StringTemplate)} is used to validate
* and compose a result using a {@link StringTemplate StringTemplate's} fragments and values lists.
* <p>
* For example:
* {@snippet :
* class MyProcessor implements Processor<String, IllegalArgumentException> {
* @Override
* public String process(StringTemplate st) throws IllegalArgumentException {
* StringBuilder sb = new StringBuilder();
* Iterator<String> fragmentsIter = st.fragments().iterator();
*
* for (Object value : st.values()) {
* sb.append(fragmentsIter.next());
*
* if (value instanceof Boolean) {
* throw new IllegalArgumentException("I don't like Booleans");
* }
*
* sb.append(value);
* }
*
* sb.append(fragmentsIter.next());
*
* return sb.toString();
* }
* }
*
* MyProcessor myProcessor = new MyProcessor();
* try {
* int x = 10;
* int y = 20;
* String result = myProcessor."\{x} + \{y} = \{x + y}";
* ...
* } catch (IllegalArgumentException ex) {
* ...
* }
* }
* Implementations of this interface may provide, but are not limited to, validating
* inputs, composing inputs into a result, and transforming an intermediate string
* result to a non-string value before delivering the final result.
* <p>
* The user has the option of validating inputs used in composition. For example an SQL
* processor could prevent injection vulnerabilities by sanitizing inputs or throwing an
* exception of type {@code E} if an SQL statement is a potential vulnerability.
* <p>
* Composing allows user control over how the result is assembled. Most often, a
* user will construct a new string from the string template, with placeholders
* replaced by string representations of value list elements. These string
* representations are created as if invoking {@link String#valueOf}.
* <p>
* Transforming allows the processor to return something other than a string. For
* instance, a JSON processor could return a JSON object, by parsing the string created
* by composition, instead of the composed string.
* <p>
* {@link Processor} is a {@link FunctionalInterface}. This permits
* declaration of a processor using lambda expressions;
* {@snippet :
* Processor<String, RuntimeException> processor = st -> {
* List<String> fragments = st.fragments();
* List<Object> values = st.values();
* // check or manipulate the fragments and/or values
* ...
* return StringTemplate.interpolate(fragments, values);
* };
* }
* The {@link StringTemplate#interpolate()} method is available for those processors
* that just need to work with the string interpolation;
* {@snippet :
* Processor<String, RuntimeException> processor = StringTemplate::interpolate;
* }
* or simply transform the string interpolation into something other than
* {@link String};
* {@snippet :
* Processor<JSONObject, RuntimeException> jsonProcessor = st -> new JSONObject(st.interpolate());
* }
* @implNote The Java compiler automatically imports {@link StringTemplate#STR}
*
* @param <R> Processor's process result type
* @param <E> Exception thrown type
*
* @see StringTemplate
* @see java.util.FormatProcessor
*
* @since 21
*
* @jls 15.8.6 Process Template Expressions
*/
@PreviewFeature(feature=PreviewFeature.Feature.STRING_TEMPLATES)
@FunctionalInterface
public interface Processor<R, E extends Throwable> {
/**
* Constructs a result based on the template fragments and values in the
* supplied {@link StringTemplate stringTemplate} object.
* @apiNote Processing of a {@link StringTemplate} may include validation according to the particular facts relating
* to each situation. The {@code E} type parameter indicates the type of checked exception that is thrown by
* {@link #process} if validation fails, ex. {@code java.sql.SQLException}. If no checked exception is expected
* then {@link RuntimeException} may be used. Note that unchecked exceptions, such as {@link RuntimeException},
* {@link NullPointerException} or {@link IllegalArgumentException} may be thrown as part of the normal
* method arguments processing. Details of which exceptions are thrown will be found in the documentation
* of the specific implementation.
*
* @param stringTemplate a {@link StringTemplate} instance
*
* @return constructed object of type R
*
* @throws E exception thrown by the template processor when validation fails
*/
R process(StringTemplate stringTemplate) throws E;
/**
* This factory method can be used to create a {@link Processor} containing a
* {@link Processor#process} method derived from a lambda expression. As an example;
* {@snippet :
* Processor<String, RuntimeException> mySTR = Processor.of(StringTemplate::interpolate);
* int x = 10;
* int y = 20;
* String str = mySTR."\{x} + \{y} = \{x + y}";
* }
* The result type of the constructed {@link Processor} may be derived from
* the lambda expression, thus this method may be used in a var
* statement. For example, {@code mySTR} from above can also be declared using;
* {@snippet :
* var mySTR = Processor.of(StringTemplate::interpolate);
* }
* {@link RuntimeException} is the assumed exception thrown type.
*
* @param process a function that takes a {@link StringTemplate} as an argument
* and returns the inferred result type
*
* @return a {@link Processor}
*
* @param <T> Processor's process result type
*/
static <T> Processor<T, RuntimeException> of(Function<? super StringTemplate, ? extends T> process) {
return process::apply;
}
/**
* Built-in policies using this additional interface have the flexibility to
* specialize the composition of the templated string by returning a customized
* {@link MethodHandle} from {@link Linkage#linkage linkage}.
* These specializations are typically implemented to improve performance;
* specializing value types or avoiding boxing and vararg arrays.
*
* @implNote This interface is sealed to only allow standard processors.
*
* @sealedGraph
* @since 21
*/
@PreviewFeature(feature=PreviewFeature.Feature.STRING_TEMPLATES)
public sealed interface Linkage permits FormatProcessor {
/**
* This method creates a {@link MethodHandle} that when invoked with arguments of
* those specified in {@code type} returns a result that equals that returned by
* the template processor's process method. The difference being that this method
* can preview the template's fragments and value types in advance of usage and
* thereby has the opportunity to produce a specialized implementation.
*
* @param fragments string template fragments
* @param type method type, includes the StringTemplate receiver as
* well as the value types
*
* @return {@link MethodHandle} for the processor applied to template
*
* @throws NullPointerException if any of the arguments are null
*/
MethodHandle linkage(List<String> fragments, MethodType type);
}
}
}