linux/fs/internal.h
Linus Torvalds 672dcda246 vfs-6.17-rc1.pidfs
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCaINCiQAKCRCRxhvAZXjc
 orltAQDq3y1anYETz5/FD6P2gXY1W5hXdSm3EHHeacQ1JjTXvgEA2g1lWO7J4anf
 oOVE8aSvMow/FOjivLZBYmI65pkYJAE=
 =oDKB
 -----END PGP SIGNATURE-----

Merge tag 'vfs-6.17-rc1.pidfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull pidfs updates from Christian Brauner:

 - persistent info

   Persist exit and coredump information independent of whether anyone
   currently holds a pidfd for the struct pid.

   The current scheme allocated pidfs dentries on-demand repeatedly.
   This scheme is reaching it's limits as it makes it impossible to pin
   information that needs to be available after the task has exited or
   coredumped and that should not be lost simply because the pidfd got
   closed temporarily. The next opener should still see the stashed
   information.

   This is also a prerequisite for supporting extended attributes on
   pidfds to allow attaching meta information to them.

   If someone opens a pidfd for a struct pid a pidfs dentry is allocated
   and stashed in pid->stashed. Once the last pidfd for the struct pid
   is closed the pidfs dentry is released and removed from pid->stashed.

   So if 10 callers create a pidfs dentry for the same struct pid
   sequentially, i.e., each closing the pidfd before the other creates a
   new one then a new pidfs dentry is allocated every time.

   Because multiple tasks acquiring and releasing a pidfd for the same
   struct pid can race with each another a task may still find a valid
   pidfs entry from the previous task in pid->stashed and reuse it. Or
   it might find a dead dentry in there and fail to reuse it and so
   stashes a new pidfs dentry. Multiple tasks may race to stash a new
   pidfs dentry but only one will succeed, the other ones will put their
   dentry.

   The current scheme aims to ensure that a pidfs dentry for a struct
   pid can only be created if the task is still alive or if a pidfs
   dentry already existed before the task was reaped and so exit
   information has been was stashed in the pidfs inode.

   That's great except that it's buggy. If a pidfs dentry is stashed in
   pid->stashed after pidfs_exit() but before __unhash_process() is
   called we will return a pidfd for a reaped task without exit
   information being available.

   The pidfds_pid_valid() check does not guard against this race as it
   doens't sync at all with pidfs_exit(). The pid_has_task() check might
   be successful simply because we're before __unhash_process() but
   after pidfs_exit().

   Introduce a new scheme where the lifetime of information associated
   with a pidfs entry (coredump and exit information) isn't bound to the
   lifetime of the pidfs inode but the struct pid itself.

   The first time a pidfs dentry is allocated for a struct pid a struct
   pidfs_attr will be allocated which will be used to store exit and
   coredump information.

   If all pidfs for the pidfs dentry are closed the dentry and inode can
   be cleaned up but the struct pidfs_attr will stick until the struct
   pid itself is freed. This will ensure minimal memory usage while
   persisting relevant information.

   The new scheme has various advantages. First, it allows to close the
   race where we end up handing out a pidfd for a reaped task for which
   no exit information is available. Second, it minimizes memory usage.
   Third, it allows to remove complex lifetime tracking via dentries
   when registering a struct pid with pidfs. There's no need to get or
   put a reference. Instead, the lifetime of exit and coredump
   information associated with a struct pid is bound to the lifetime of
   struct pid itself.

 - extended attributes

   Now that we have a way to persist information for pidfs dentries we
   can start supporting extended attributes on pidfds. This will allow
   userspace to attach meta information to tasks.

   One natural extension would be to introduce a custom pidfs.* extended
   attribute space and allow for the inheritance of extended attributes
   across fork() and exec().

   The first simple scheme will allow privileged userspace to set
   trusted extended attributes on pidfs inodes.

 - Allow autonomous pidfs file handles

   Various filesystems such as pidfs and drm support opening file
   handles without having to require a file descriptor to identify the
   filesystem. The filesystem are global single instances and can be
   trivially identified solely on the information encoded in the file
   handle.

   This makes it possible to not have to keep or acquire a sentinal file
   descriptor just to pass it to open_by_handle_at() to identify the
   filesystem. That's especially useful when such sentinel file
   descriptor cannot or should not be acquired.

   For pidfs this means a file handle can function as full replacement
   for storing a pid in a file. Instead a file handle can be stored and
   reopened purely based on the file handle.

   Such autonomous file handles can be opened with or without specifying
   a a file descriptor. If no proper file descriptor is used the
   FD_PIDFS_ROOT sentinel must be passed. This allows us to define
   further special negative fd sentinels in the future.

   Userspace can trivially test for support by trying to open the file
   handle with an invalid file descriptor.

 - Allow pidfds for reaped tasks with SCM_PIDFD messages

   This is a logical continuation of the earlier work to create pidfds
   for reaped tasks through the SO_PEERPIDFD socket option merged in
   923ea4d448 ("Merge patch series "net, pidfs: enable handing out
   pidfds for reaped sk->sk_peer_pid"").

 - Two minor fixes:

    * Fold fs_struct->{lock,seq} into a seqlock

    * Don't bother with path_{get,put}() in unix_open_file()

* tag 'vfs-6.17-rc1.pidfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (37 commits)
  don't bother with path_get()/path_put() in unix_open_file()
  fold fs_struct->{lock,seq} into a seqlock
  selftests: net: extend SCM_PIDFD test to cover stale pidfds
  af_unix: enable handing out pidfds for reaped tasks in SCM_PIDFD
  af_unix: stash pidfs dentry when needed
  af_unix/scm: fix whitespace errors
  af_unix: introduce and use scm_replace_pid() helper
  af_unix: introduce unix_skb_to_scm helper
  af_unix: rework unix_maybe_add_creds() to allow sleep
  selftests/pidfd: decode pidfd file handles withou having to specify an fd
  fhandle, pidfs: support open_by_handle_at() purely based on file handle
  uapi/fcntl: add FD_PIDFS_ROOT
  uapi/fcntl: add FD_INVALID
  fcntl/pidfd: redefine PIDFD_SELF_THREAD_GROUP
  uapi/fcntl: mark range as reserved
  fhandle: reflow get_path_anchor()
  pidfs: add pidfs_root_path() helper
  fhandle: rename to get_path_anchor()
  fhandle: hoist copy_from_user() above get_path_from_fd()
  fhandle: raise FILEID_IS_DIR in handle_type
  ...
2025-07-28 14:10:15 -07:00

357 lines
11 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/* fs/ internal definitions
*
* Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
struct super_block;
struct file_system_type;
struct iomap;
struct iomap_ops;
struct linux_binprm;
struct path;
struct mount;
struct shrink_control;
struct fs_context;
struct pipe_inode_info;
struct iov_iter;
struct mnt_idmap;
struct ns_common;
/*
* block/bdev.c
*/
#ifdef CONFIG_BLOCK
extern void __init bdev_cache_init(void);
#else
static inline void bdev_cache_init(void)
{
}
#endif /* CONFIG_BLOCK */
/*
* buffer.c
*/
int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
get_block_t *get_block, const struct iomap *iomap);
/*
* char_dev.c
*/
extern void __init chrdev_init(void);
/*
* fs_context.c
*/
extern const struct fs_context_operations legacy_fs_context_ops;
extern int parse_monolithic_mount_data(struct fs_context *, void *);
extern void vfs_clean_context(struct fs_context *fc);
extern int finish_clean_context(struct fs_context *fc);
/*
* namei.c
*/
extern int filename_lookup(int dfd, struct filename *name, unsigned flags,
struct path *path, struct path *root);
int do_rmdir(int dfd, struct filename *name);
int do_unlinkat(int dfd, struct filename *name);
int may_linkat(struct mnt_idmap *idmap, const struct path *link);
int do_renameat2(int olddfd, struct filename *oldname, int newdfd,
struct filename *newname, unsigned int flags);
int do_mkdirat(int dfd, struct filename *name, umode_t mode);
int do_symlinkat(struct filename *from, int newdfd, struct filename *to);
int do_linkat(int olddfd, struct filename *old, int newdfd,
struct filename *new, int flags);
int vfs_tmpfile(struct mnt_idmap *idmap,
const struct path *parentpath,
struct file *file, umode_t mode);
struct dentry *d_hash_and_lookup(struct dentry *, struct qstr *);
/*
* namespace.c
*/
extern struct vfsmount *lookup_mnt(const struct path *);
extern int finish_automount(struct vfsmount *, const struct path *);
extern int sb_prepare_remount_readonly(struct super_block *);
extern void __init mnt_init(void);
int mnt_get_write_access_file(struct file *file);
void mnt_put_write_access_file(struct file *file);
extern void dissolve_on_fput(struct vfsmount *);
extern bool may_mount(void);
int path_mount(const char *dev_name, struct path *path,
const char *type_page, unsigned long flags, void *data_page);
int path_umount(struct path *path, int flags);
int show_path(struct seq_file *m, struct dentry *root);
/*
* fs_struct.c
*/
extern void chroot_fs_refs(const struct path *, const struct path *);
/*
* file_table.c
*/
struct file *alloc_empty_file(int flags, const struct cred *cred);
struct file *alloc_empty_file_noaccount(int flags, const struct cred *cred);
struct file *alloc_empty_backing_file(int flags, const struct cred *cred);
void backing_file_set_user_path(struct file *f, const struct path *path);
static inline void file_put_write_access(struct file *file)
{
put_write_access(file->f_inode);
mnt_put_write_access(file->f_path.mnt);
if (unlikely(file->f_mode & FMODE_BACKING))
mnt_put_write_access(backing_file_user_path(file)->mnt);
}
static inline void put_file_access(struct file *file)
{
if ((file->f_mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) {
i_readcount_dec(file->f_inode);
} else if (file->f_mode & FMODE_WRITER) {
file_put_write_access(file);
}
}
void fput_close_sync(struct file *);
void fput_close(struct file *);
/*
* super.c
*/
extern int reconfigure_super(struct fs_context *);
extern bool super_trylock_shared(struct super_block *sb);
struct super_block *user_get_super(dev_t, bool excl);
void put_super(struct super_block *sb);
extern bool mount_capable(struct fs_context *);
int sb_init_dio_done_wq(struct super_block *sb);
/*
* Prepare superblock for changing its read-only state (i.e., either remount
* read-write superblock read-only or vice versa). After this function returns
* mnt_is_readonly() will return true for any mount of the superblock if its
* caller is able to observe any changes done by the remount. This holds until
* sb_end_ro_state_change() is called.
*/
static inline void sb_start_ro_state_change(struct super_block *sb)
{
WRITE_ONCE(sb->s_readonly_remount, 1);
/*
* For RO->RW transition, the barrier pairs with the barrier in
* mnt_is_readonly() making sure if mnt_is_readonly() sees SB_RDONLY
* cleared, it will see s_readonly_remount set.
* For RW->RO transition, the barrier pairs with the barrier in
* mnt_get_write_access() before the mnt_is_readonly() check.
* The barrier makes sure if mnt_get_write_access() sees MNT_WRITE_HOLD
* already cleared, it will see s_readonly_remount set.
*/
smp_wmb();
}
/*
* Ends section changing read-only state of the superblock. After this function
* returns if mnt_is_readonly() returns false, the caller will be able to
* observe all the changes remount did to the superblock.
*/
static inline void sb_end_ro_state_change(struct super_block *sb)
{
/*
* This barrier provides release semantics that pairs with
* the smp_rmb() acquire semantics in mnt_is_readonly().
* This barrier pair ensure that when mnt_is_readonly() sees
* 0 for sb->s_readonly_remount, it will also see all the
* preceding flag changes that were made during the RO state
* change.
*/
smp_wmb();
WRITE_ONCE(sb->s_readonly_remount, 0);
}
/*
* open.c
*/
struct open_flags {
int open_flag;
umode_t mode;
int acc_mode;
int intent;
int lookup_flags;
};
extern struct file *do_filp_open(int dfd, struct filename *pathname,
const struct open_flags *op);
extern struct file *do_file_open_root(const struct path *,
const char *, const struct open_flags *);
extern struct open_how build_open_how(int flags, umode_t mode);
extern int build_open_flags(const struct open_how *how, struct open_flags *op);
struct file *file_close_fd_locked(struct files_struct *files, unsigned fd);
int do_ftruncate(struct file *file, loff_t length, int small);
int do_sys_ftruncate(unsigned int fd, loff_t length, int small);
int chmod_common(const struct path *path, umode_t mode);
int do_fchownat(int dfd, const char __user *filename, uid_t user, gid_t group,
int flag);
int chown_common(const struct path *path, uid_t user, gid_t group);
extern int vfs_open(const struct path *, struct file *);
/*
* inode.c
*/
extern long prune_icache_sb(struct super_block *sb, struct shrink_control *sc);
int dentry_needs_remove_privs(struct mnt_idmap *, struct dentry *dentry);
bool in_group_or_capable(struct mnt_idmap *idmap,
const struct inode *inode, vfsgid_t vfsgid);
/*
* fs-writeback.c
*/
extern long get_nr_dirty_inodes(void);
/*
* dcache.c
*/
extern int d_set_mounted(struct dentry *dentry);
extern long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc);
extern struct dentry *d_alloc_cursor(struct dentry *);
extern struct dentry * d_alloc_pseudo(struct super_block *, const struct qstr *);
extern char *simple_dname(struct dentry *, char *, int);
extern void dput_to_list(struct dentry *, struct list_head *);
extern void shrink_dentry_list(struct list_head *);
extern void shrink_dcache_for_umount(struct super_block *);
extern struct dentry *__d_lookup(const struct dentry *, const struct qstr *);
extern struct dentry *__d_lookup_rcu(const struct dentry *parent,
const struct qstr *name, unsigned *seq);
extern void d_genocide(struct dentry *);
/*
* pipe.c
*/
extern const struct file_operations pipefifo_fops;
/*
* fs_pin.c
*/
extern void group_pin_kill(struct hlist_head *p);
extern void mnt_pin_kill(struct mount *m);
/*
* fs/nsfs.c
*/
extern const struct dentry_operations ns_dentry_operations;
int open_namespace(struct ns_common *ns);
/*
* fs/stat.c:
*/
int do_statx(int dfd, struct filename *filename, unsigned int flags,
unsigned int mask, struct statx __user *buffer);
int do_statx_fd(int fd, unsigned int flags, unsigned int mask,
struct statx __user *buffer);
/*
* fs/splice.c:
*/
ssize_t splice_file_to_pipe(struct file *in,
struct pipe_inode_info *opipe,
loff_t *offset,
size_t len, unsigned int flags);
/*
* fs/xattr.c:
*/
struct xattr_name {
char name[XATTR_NAME_MAX + 1];
};
struct kernel_xattr_ctx {
/* Value of attribute */
union {
const void __user *cvalue;
void __user *value;
};
void *kvalue;
size_t size;
/* Attribute name */
struct xattr_name *kname;
unsigned int flags;
};
ssize_t file_getxattr(struct file *file, struct kernel_xattr_ctx *ctx);
ssize_t filename_getxattr(int dfd, struct filename *filename,
unsigned int lookup_flags, struct kernel_xattr_ctx *ctx);
int file_setxattr(struct file *file, struct kernel_xattr_ctx *ctx);
int filename_setxattr(int dfd, struct filename *filename,
unsigned int lookup_flags, struct kernel_xattr_ctx *ctx);
int setxattr_copy(const char __user *name, struct kernel_xattr_ctx *ctx);
int import_xattr_name(struct xattr_name *kname, const char __user *name);
int may_write_xattr(struct mnt_idmap *idmap, struct inode *inode);
#ifdef CONFIG_FS_POSIX_ACL
int do_set_acl(struct mnt_idmap *idmap, struct dentry *dentry,
const char *acl_name, const void *kvalue, size_t size);
ssize_t do_get_acl(struct mnt_idmap *idmap, struct dentry *dentry,
const char *acl_name, void *kvalue, size_t size);
#else
static inline int do_set_acl(struct mnt_idmap *idmap,
struct dentry *dentry, const char *acl_name,
const void *kvalue, size_t size)
{
return -EOPNOTSUPP;
}
static inline ssize_t do_get_acl(struct mnt_idmap *idmap,
struct dentry *dentry, const char *acl_name,
void *kvalue, size_t size)
{
return -EOPNOTSUPP;
}
#endif
ssize_t __kernel_write_iter(struct file *file, struct iov_iter *from, loff_t *pos);
/*
* fs/attr.c
*/
struct mnt_idmap *alloc_mnt_idmap(struct user_namespace *mnt_userns);
struct mnt_idmap *mnt_idmap_get(struct mnt_idmap *idmap);
void mnt_idmap_put(struct mnt_idmap *idmap);
struct stashed_operations {
struct dentry *(*stash_dentry)(struct dentry **stashed,
struct dentry *dentry);
void (*put_data)(void *data);
int (*init_inode)(struct inode *inode, void *data);
};
int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
struct path *path);
void stashed_dentry_prune(struct dentry *dentry);
struct dentry *stash_dentry(struct dentry **stashed, struct dentry *dentry);
struct dentry *stashed_dentry_get(struct dentry **stashed);
/**
* path_mounted - check whether path is mounted
* @path: path to check
*
* Determine whether @path refers to the root of a mount.
*
* Return: true if @path is the root of a mount, false if not.
*/
static inline bool path_mounted(const struct path *path)
{
return path->mnt->mnt_root == path->dentry;
}
void file_f_owner_release(struct file *file);
bool file_seek_cur_needs_f_lock(struct file *file);
int statmount_mnt_idmap(struct mnt_idmap *idmap, struct seq_file *seq, bool uid_map);
struct dentry *find_next_child(struct dentry *parent, struct dentry *prev);
int anon_inode_getattr(struct mnt_idmap *idmap, const struct path *path,
struct kstat *stat, u32 request_mask,
unsigned int query_flags);
int anon_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *attr);
void pidfs_get_root(struct path *path);