linux/kernel/irq/chip.c
Linus Torvalds 0bd0a41a51 pci-v6.17-changes
-----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAmiL3OkUHGJoZWxnYWFz
 QGdvb2dsZS5jb20ACgkQWYigwDrT+vz9bhAAqiD9REYlNUgGX/bEBgCVPFdtjjTz
 FpSLzG23vWd2J0FEy04qtQWH9j71IXnM+yMybzsMe9SsPt2HhczzSCIMpPj0FZNN
 ccOf3gA/KqPux7FORrS3mpM8OO4ICt3XZhCji3nNg5iW5XlH+NrQKPVxRlvBB0rP
 +7RxSjDClUdZ97QSSmp1uZ7Qh1qyV0Ht0qjPMwecrnB2kApt4ZaMphAaKPEjX/4f
 RgZPFqbIpRWt9e87Z8ADr5c2jokZAzIV0zauQ2fhbjBkTcXIXL3yOzUbR+ngBWDD
 oq21rXJBUCQheA7J6j2SKabgF9AZaI5NI9ERld5vJ1inXSZCyuyKopN1AzuKZquG
 N+jyYJqZC99ePvMLbTWs/spU58J03A6TOwaJNE3ISRgbnxFkhvLl7h68XuTDonZm
 hYGloXXUj+i+rh7/eJIDDWa9MTpEvl2p1zc6EDIZ/umlnHwg9rGlGQVARMCs6Ist
 EiJQEtjMMlXiBJMkFhpxesOdyonGkxAL9WtT6MoEOFF7dqgsTqSKiDUPa+6MHV+I
 tsTB630J3ROsWGfQD1uJI2BrCm+op4j6faamH6UMqCrUU0TUZMHiRR3qVWbM6qgU
 /WL1gZ96uy5I7UoE0+gH+wMhMClO2BnsxffocToDE5wOYpGDd5BwPEoY8ej8U2lu
 CBMCkMor1jDtS8Y=
 =ipv3
 -----END PGP SIGNATURE-----

Merge tag 'pci-v6.17-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci

Pull PCI updates from Bjorn Helgaas:
 "Enumeration:

   - Allow built-in drivers, not just modular drivers, to use async
     initial probing (Lukas Wunner)

   - Support Immediate Readiness even on devices with no PM Capability
     (Sean Christopherson)

   - Consolidate definition of PCIE_RESET_CONFIG_WAIT_MS (100ms), the
     required delay between a reset and sending config requests to a
     device (Niklas Cassel)

   - Add pci_is_display() to check for "Display" base class and use it
     in ALSA hda, vfio, vga_switcheroo, vt-d (Mario Limonciello)

   - Allow 'isolated PCI functions' (multi-function devices without a
     function 0) for LoongArch, similar to s390 and jailhouse (Huacai
     Chen)

  Power control:

   - Add ability to enable optional slot clock for cases where the PCIe
     host controller and the slot are supplied by different clocks
     (Marek Vasut)

  PCIe native device hotplug:

   - Fix runtime PM ref imbalance on Hot-Plug Capable ports caused by
     misinterpreting a config read failure after a device has been
     removed (Lukas Wunner)

   - Avoid creating a useless PCIe port service device for pciehp if the
     slot is handled by the ACPI hotplug driver (Lukas Wunner)

   - Ignore ACPI hotplug slots when calculating depth of pciehp hotplug
     ports (Lukas Wunner)

  Virtualization:

   - Save VF resizable BAR state and restore it after reset (Michał
     Winiarski)

   - Allow IOV resources (VF BARs) to be resized (Michał Winiarski)

   - Add pci_iov_vf_bar_set_size() so drivers can control VF BAR size
     (Michał Winiarski)

  Endpoint framework:

   - Add RC-to-EP doorbell support using platform MSI controller,
     including a test case (Frank Li)

   - Allow BAR assignment via configfs so platforms have flexibility in
     determining BAR usage (Jerome Brunet)

  Native PCIe controller drivers:

   - Convert amazon,al-alpine-v[23]-pcie, apm,xgene-pcie,
     axis,artpec6-pcie, marvell,armada-3700-pcie, st,spear1340-pcie to
     DT schema format (Rob Herring)

   - Use dev_fwnode() instead of of_fwnode_handle() to remove OF
     dependency in altera (fixes an unused variable), designware-host,
     mediatek, mediatek-gen3, mobiveil, plda, xilinx, xilinx-dma,
     xilinx-nwl (Jiri Slaby, Arnd Bergmann)

   - Convert aardvark, altera, brcmstb, designware-host, iproc,
     mediatek, mediatek-gen3, mobiveil, plda, rcar-host, vmd, xilinx,
     xilinx-dma, xilinx-nwl from using pci_msi_create_irq_domain() to
     using msi_create_parent_irq_domain() instead; this makes the
     interrupt controller per-PCI device, allows dynamic allocation of
     vectors after initialization, and allows support of IMS (Nam Cao)

  APM X-Gene PCIe controller driver:

   - Rewrite MSI handling to MSI CPU affinity, drop useless CPU hotplug
     bits, use device-managed memory allocations, and clean things up
     (Marc Zyngier)

   - Probe xgene-msi as a standard platform driver rather than a
     subsys_initcall (Marc Zyngier)

  Broadcom STB PCIe controller driver:

   - Add optional DT 'num-lanes' property and if present, use it to
     override the Maximum Link Width advertised in Link Capabilities
     (Jim Quinlan)

  Cadence PCIe controller driver:

   - Use PCIe Message routing types from the PCI core rather than
     defining private ones (Hans Zhang)

  Freescale i.MX6 PCIe controller driver:

   - Add IMX8MQ_EP third 64-bit BAR in epc_features (Richard Zhu)

   - Add IMX8MM_EP and IMX8MP_EP fixed 256-byte BAR 4 in epc_features
     (Richard Zhu)

   - Configure LUT for MSI/IOMMU in Endpoint mode so Root Complex can
     trigger doorbel on Endpoint (Frank Li)

   - Remove apps_reset (LTSSM_EN) from
     imx_pcie_{assert,deassert}_core_reset(), which fixes a hotplug
     regression on i.MX8MM (Richard Zhu)

   - Delay Endpoint link start until configfs 'start' written (Richard
     Zhu)

  Intel VMD host bridge driver:

   - Add Intel Panther Lake (PTL)-H/P/U Vendor ID (George D Sworo)

  Qualcomm PCIe controller driver:

   - Add DT binding and driver support for SA8255p, which supports ECAM
     for Configuration Space access (Mayank Rana)

   - Update DT binding and driver to describe PHYs and per-Root Port
     resets in a Root Port stanza and deprecate describing them in the
     host bridge; this makes it possible to support multiple Root Ports
     in the future (Krishna Chaitanya Chundru)

   - Add Qualcomm QCS615 to SM8150 DT binding (Ziyue Zhang)

   - Add Qualcomm QCS8300 to SA8775p DT binding (Ziyue Zhang)

   - Drop TBU and ref clocks from Qualcomm SM8150 and SC8180x DT
     bindings (Konrad Dybcio)

   - Document 'link_down' reset in Qualcomm SA8775P DT binding (Ziyue
     Zhang)

   - Add required PCIE_RESET_CONFIG_WAIT_MS delay after Link up IRQ
     (Niklas Cassel)

  Rockchip PCIe controller driver:

   - Drop unused PCIe Message routing and code definitions (Hans Zhang)

   - Remove several unused header includes (Hans Zhang)

   - Use standard PCIe config register definitions instead of
     rockchip-specific redefinitions (Geraldo Nascimento)

   - Set Target Link Speed to 5.0 GT/s before retraining so we have a
     chance to train at a higher speed (Geraldo Nascimento)

  Rockchip DesignWare PCIe controller driver:

   - Prevent race between link training and register update via DBI by
     inhibiting link training after hot reset and link down (Wilfred
     Mallawa)

   - Add required PCIE_RESET_CONFIG_WAIT_MS delay after Link up IRQ
     (Niklas Cassel)

  Sophgo PCIe controller driver:

   - Add DT binding and driver for Sophgo SG2044 PCIe controller driver
     in Root Complex mode (Inochi Amaoto)

  Synopsys DesignWare PCIe controller driver:

   - Add required PCIE_RESET_CONFIG_WAIT_MS after waiting for Link up on
     Ports that support > 5.0 GT/s. Slower Ports still rely on the
     not-quite-correct PCIE_LINK_WAIT_SLEEP_MS 90ms default delay while
     waiting for the Link (Niklas Cassel)"

* tag 'pci-v6.17-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci: (116 commits)
  dt-bindings: PCI: qcom,pcie-sa8775p: Document 'link_down' reset
  dt-bindings: PCI: Remove 83xx-512x-pci.txt
  dt-bindings: PCI: Convert amazon,al-alpine-v[23]-pcie to DT schema
  dt-bindings: PCI: Convert marvell,armada-3700-pcie to DT schema
  dt-bindings: PCI: Convert apm,xgene-pcie to DT schema
  dt-bindings: PCI: Convert axis,artpec6-pcie to DT schema
  dt-bindings: PCI: Convert st,spear1340-pcie to DT schema
  PCI: Move is_pciehp check out of pciehp_is_native()
  PCI: pciehp: Use is_pciehp instead of is_hotplug_bridge
  PCI/portdrv: Use is_pciehp instead of is_hotplug_bridge
  PCI/ACPI: Fix runtime PM ref imbalance on Hot-Plug Capable ports
  selftests: pci_endpoint: Add doorbell test case
  misc: pci_endpoint_test: Add doorbell test case
  PCI: endpoint: pci-epf-test: Add doorbell test support
  PCI: endpoint: Add pci_epf_align_inbound_addr() helper for inbound address alignment
  PCI: endpoint: pci-ep-msi: Add checks for MSI parent and mutability
  PCI: endpoint: Add RC-to-EP doorbell support using platform MSI controller
  PCI: dwc: Add Sophgo SG2044 PCIe controller driver in Root Complex mode
  PCI: vmd: Switch to msi_create_parent_irq_domain()
  PCI: vmd: Convert to lock guards
  ...
2025-08-01 13:59:07 -07:00

1533 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
* Copyright (C) 2005-2006, Thomas Gleixner, Russell King
*
* This file contains the core interrupt handling code, for irq-chip based
* architectures. Detailed information is available in
* Documentation/core-api/genericirq.rst
*/
#include <linux/irq.h>
#include <linux/msi.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/irqdomain.h>
#include <trace/events/irq.h>
#include "internals.h"
static irqreturn_t bad_chained_irq(int irq, void *dev_id)
{
WARN_ONCE(1, "Chained irq %d should not call an action\n", irq);
return IRQ_NONE;
}
/*
* Chained handlers should never call action on their IRQ. This default
* action will emit warning if such thing happens.
*/
struct irqaction chained_action = {
.handler = bad_chained_irq,
};
/**
* irq_set_chip - set the irq chip for an irq
* @irq: irq number
* @chip: pointer to irq chip description structure
*/
int irq_set_chip(unsigned int irq, const struct irq_chip *chip)
{
int ret = -EINVAL;
scoped_irqdesc_get_and_lock(irq, 0) {
scoped_irqdesc->irq_data.chip = (struct irq_chip *)(chip ?: &no_irq_chip);
ret = 0;
}
/* For !CONFIG_SPARSE_IRQ make the irq show up in allocated_irqs. */
if (!ret)
irq_mark_irq(irq);
return ret;
}
EXPORT_SYMBOL(irq_set_chip);
/**
* irq_set_irq_type - set the irq trigger type for an irq
* @irq: irq number
* @type: IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h
*/
int irq_set_irq_type(unsigned int irq, unsigned int type)
{
scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL)
return __irq_set_trigger(scoped_irqdesc, type);
return -EINVAL;
}
EXPORT_SYMBOL(irq_set_irq_type);
/**
* irq_set_handler_data - set irq handler data for an irq
* @irq: Interrupt number
* @data: Pointer to interrupt specific data
*
* Set the hardware irq controller data for an irq
*/
int irq_set_handler_data(unsigned int irq, void *data)
{
scoped_irqdesc_get_and_lock(irq, 0) {
scoped_irqdesc->irq_common_data.handler_data = data;
return 0;
}
return -EINVAL;
}
EXPORT_SYMBOL(irq_set_handler_data);
/**
* irq_set_msi_desc_off - set MSI descriptor data for an irq at offset
* @irq_base: Interrupt number base
* @irq_offset: Interrupt number offset
* @entry: Pointer to MSI descriptor data
*
* Set the MSI descriptor entry for an irq at offset
*/
int irq_set_msi_desc_off(unsigned int irq_base, unsigned int irq_offset, struct msi_desc *entry)
{
scoped_irqdesc_get_and_lock(irq_base + irq_offset, IRQ_GET_DESC_CHECK_GLOBAL) {
scoped_irqdesc->irq_common_data.msi_desc = entry;
if (entry && !irq_offset)
entry->irq = irq_base;
return 0;
}
return -EINVAL;
}
/**
* irq_set_msi_desc - set MSI descriptor data for an irq
* @irq: Interrupt number
* @entry: Pointer to MSI descriptor data
*
* Set the MSI descriptor entry for an irq
*/
int irq_set_msi_desc(unsigned int irq, struct msi_desc *entry)
{
return irq_set_msi_desc_off(irq, 0, entry);
}
/**
* irq_set_chip_data - set irq chip data for an irq
* @irq: Interrupt number
* @data: Pointer to chip specific data
*
* Set the hardware irq chip data for an irq
*/
int irq_set_chip_data(unsigned int irq, void *data)
{
scoped_irqdesc_get_and_lock(irq, 0) {
scoped_irqdesc->irq_data.chip_data = data;
return 0;
}
return -EINVAL;
}
EXPORT_SYMBOL(irq_set_chip_data);
struct irq_data *irq_get_irq_data(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
return desc ? &desc->irq_data : NULL;
}
EXPORT_SYMBOL_GPL(irq_get_irq_data);
static void irq_state_clr_disabled(struct irq_desc *desc)
{
irqd_clear(&desc->irq_data, IRQD_IRQ_DISABLED);
}
static void irq_state_clr_masked(struct irq_desc *desc)
{
irqd_clear(&desc->irq_data, IRQD_IRQ_MASKED);
}
static void irq_state_clr_started(struct irq_desc *desc)
{
irqd_clear(&desc->irq_data, IRQD_IRQ_STARTED);
}
static void irq_state_set_started(struct irq_desc *desc)
{
irqd_set(&desc->irq_data, IRQD_IRQ_STARTED);
}
enum {
IRQ_STARTUP_NORMAL,
IRQ_STARTUP_MANAGED,
IRQ_STARTUP_ABORT,
};
#ifdef CONFIG_SMP
static int
__irq_startup_managed(struct irq_desc *desc, const struct cpumask *aff,
bool force)
{
struct irq_data *d = irq_desc_get_irq_data(desc);
if (!irqd_affinity_is_managed(d))
return IRQ_STARTUP_NORMAL;
irqd_clr_managed_shutdown(d);
if (!cpumask_intersects(aff, cpu_online_mask)) {
/*
* Catch code which fiddles with enable_irq() on a managed
* and potentially shutdown IRQ. Chained interrupt
* installment or irq auto probing should not happen on
* managed irqs either.
*/
if (WARN_ON_ONCE(force))
return IRQ_STARTUP_ABORT;
/*
* The interrupt was requested, but there is no online CPU
* in it's affinity mask. Put it into managed shutdown
* state and let the cpu hotplug mechanism start it up once
* a CPU in the mask becomes available.
*/
return IRQ_STARTUP_ABORT;
}
/*
* Managed interrupts have reserved resources, so this should not
* happen.
*/
if (WARN_ON(irq_domain_activate_irq(d, false)))
return IRQ_STARTUP_ABORT;
return IRQ_STARTUP_MANAGED;
}
void irq_startup_managed(struct irq_desc *desc)
{
struct irq_data *d = irq_desc_get_irq_data(desc);
/*
* Clear managed-shutdown flag, so we don't repeat managed-startup for
* multiple hotplugs, and cause imbalanced disable depth.
*/
irqd_clr_managed_shutdown(d);
/*
* Only start it up when the disable depth is 1, so that a disable,
* hotunplug, hotplug sequence does not end up enabling it during
* hotplug unconditionally.
*/
desc->depth--;
if (!desc->depth)
irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
}
#else
static __always_inline int
__irq_startup_managed(struct irq_desc *desc, const struct cpumask *aff,
bool force)
{
return IRQ_STARTUP_NORMAL;
}
#endif
static void irq_enable(struct irq_desc *desc)
{
if (!irqd_irq_disabled(&desc->irq_data)) {
unmask_irq(desc);
} else {
irq_state_clr_disabled(desc);
if (desc->irq_data.chip->irq_enable) {
desc->irq_data.chip->irq_enable(&desc->irq_data);
irq_state_clr_masked(desc);
} else {
unmask_irq(desc);
}
}
}
static int __irq_startup(struct irq_desc *desc)
{
struct irq_data *d = irq_desc_get_irq_data(desc);
int ret = 0;
/* Warn if this interrupt is not activated but try nevertheless */
WARN_ON_ONCE(!irqd_is_activated(d));
if (d->chip->irq_startup) {
ret = d->chip->irq_startup(d);
irq_state_clr_disabled(desc);
irq_state_clr_masked(desc);
} else {
irq_enable(desc);
}
irq_state_set_started(desc);
return ret;
}
int irq_startup(struct irq_desc *desc, bool resend, bool force)
{
struct irq_data *d = irq_desc_get_irq_data(desc);
const struct cpumask *aff = irq_data_get_affinity_mask(d);
int ret = 0;
desc->depth = 0;
if (irqd_is_started(d)) {
irq_enable(desc);
} else {
switch (__irq_startup_managed(desc, aff, force)) {
case IRQ_STARTUP_NORMAL:
if (d->chip->flags & IRQCHIP_AFFINITY_PRE_STARTUP)
irq_setup_affinity(desc);
ret = __irq_startup(desc);
if (!(d->chip->flags & IRQCHIP_AFFINITY_PRE_STARTUP))
irq_setup_affinity(desc);
break;
case IRQ_STARTUP_MANAGED:
irq_do_set_affinity(d, aff, false);
ret = __irq_startup(desc);
break;
case IRQ_STARTUP_ABORT:
desc->depth = 1;
irqd_set_managed_shutdown(d);
return 0;
}
}
if (resend)
check_irq_resend(desc, false);
return ret;
}
int irq_activate(struct irq_desc *desc)
{
struct irq_data *d = irq_desc_get_irq_data(desc);
if (!irqd_affinity_is_managed(d))
return irq_domain_activate_irq(d, false);
return 0;
}
int irq_activate_and_startup(struct irq_desc *desc, bool resend)
{
if (WARN_ON(irq_activate(desc)))
return 0;
return irq_startup(desc, resend, IRQ_START_FORCE);
}
static void __irq_disable(struct irq_desc *desc, bool mask);
void irq_shutdown(struct irq_desc *desc)
{
if (irqd_is_started(&desc->irq_data)) {
clear_irq_resend(desc);
/*
* Increment disable depth, so that a managed shutdown on
* CPU hotunplug preserves the actual disabled state when the
* CPU comes back online. See irq_startup_managed().
*/
desc->depth++;
if (desc->irq_data.chip->irq_shutdown) {
desc->irq_data.chip->irq_shutdown(&desc->irq_data);
irq_state_set_disabled(desc);
irq_state_set_masked(desc);
} else {
__irq_disable(desc, true);
}
irq_state_clr_started(desc);
}
}
void irq_shutdown_and_deactivate(struct irq_desc *desc)
{
irq_shutdown(desc);
/*
* This must be called even if the interrupt was never started up,
* because the activation can happen before the interrupt is
* available for request/startup. It has it's own state tracking so
* it's safe to call it unconditionally.
*/
irq_domain_deactivate_irq(&desc->irq_data);
}
static void __irq_disable(struct irq_desc *desc, bool mask)
{
if (irqd_irq_disabled(&desc->irq_data)) {
if (mask)
mask_irq(desc);
} else {
irq_state_set_disabled(desc);
if (desc->irq_data.chip->irq_disable) {
desc->irq_data.chip->irq_disable(&desc->irq_data);
irq_state_set_masked(desc);
} else if (mask) {
mask_irq(desc);
}
}
}
/**
* irq_disable - Mark interrupt disabled
* @desc: irq descriptor which should be disabled
*
* If the chip does not implement the irq_disable callback, we
* use a lazy disable approach. That means we mark the interrupt
* disabled, but leave the hardware unmasked. That's an
* optimization because we avoid the hardware access for the
* common case where no interrupt happens after we marked it
* disabled. If an interrupt happens, then the interrupt flow
* handler masks the line at the hardware level and marks it
* pending.
*
* If the interrupt chip does not implement the irq_disable callback,
* a driver can disable the lazy approach for a particular irq line by
* calling 'irq_set_status_flags(irq, IRQ_DISABLE_UNLAZY)'. This can
* be used for devices which cannot disable the interrupt at the
* device level under certain circumstances and have to use
* disable_irq[_nosync] instead.
*/
void irq_disable(struct irq_desc *desc)
{
__irq_disable(desc, irq_settings_disable_unlazy(desc));
}
void irq_percpu_enable(struct irq_desc *desc, unsigned int cpu)
{
if (desc->irq_data.chip->irq_enable)
desc->irq_data.chip->irq_enable(&desc->irq_data);
else
desc->irq_data.chip->irq_unmask(&desc->irq_data);
cpumask_set_cpu(cpu, desc->percpu_enabled);
}
void irq_percpu_disable(struct irq_desc *desc, unsigned int cpu)
{
if (desc->irq_data.chip->irq_disable)
desc->irq_data.chip->irq_disable(&desc->irq_data);
else
desc->irq_data.chip->irq_mask(&desc->irq_data);
cpumask_clear_cpu(cpu, desc->percpu_enabled);
}
static inline void mask_ack_irq(struct irq_desc *desc)
{
if (desc->irq_data.chip->irq_mask_ack) {
desc->irq_data.chip->irq_mask_ack(&desc->irq_data);
irq_state_set_masked(desc);
} else {
mask_irq(desc);
if (desc->irq_data.chip->irq_ack)
desc->irq_data.chip->irq_ack(&desc->irq_data);
}
}
void mask_irq(struct irq_desc *desc)
{
if (irqd_irq_masked(&desc->irq_data))
return;
if (desc->irq_data.chip->irq_mask) {
desc->irq_data.chip->irq_mask(&desc->irq_data);
irq_state_set_masked(desc);
}
}
void unmask_irq(struct irq_desc *desc)
{
if (!irqd_irq_masked(&desc->irq_data))
return;
if (desc->irq_data.chip->irq_unmask) {
desc->irq_data.chip->irq_unmask(&desc->irq_data);
irq_state_clr_masked(desc);
}
}
void unmask_threaded_irq(struct irq_desc *desc)
{
struct irq_chip *chip = desc->irq_data.chip;
if (chip->flags & IRQCHIP_EOI_THREADED)
chip->irq_eoi(&desc->irq_data);
unmask_irq(desc);
}
/* Busy wait until INPROGRESS is cleared */
static bool irq_wait_on_inprogress(struct irq_desc *desc)
{
if (IS_ENABLED(CONFIG_SMP)) {
do {
raw_spin_unlock(&desc->lock);
while (irqd_irq_inprogress(&desc->irq_data))
cpu_relax();
raw_spin_lock(&desc->lock);
} while (irqd_irq_inprogress(&desc->irq_data));
/* Might have been disabled in meantime */
return !irqd_irq_disabled(&desc->irq_data) && desc->action;
}
return false;
}
static bool irq_can_handle_pm(struct irq_desc *desc)
{
struct irq_data *irqd = &desc->irq_data;
const struct cpumask *aff;
/*
* If the interrupt is not in progress and is not an armed
* wakeup interrupt, proceed.
*/
if (!irqd_has_set(irqd, IRQD_IRQ_INPROGRESS | IRQD_WAKEUP_ARMED))
return true;
/*
* If the interrupt is an armed wakeup source, mark it pending
* and suspended, disable it and notify the pm core about the
* event.
*/
if (unlikely(irqd_has_set(irqd, IRQD_WAKEUP_ARMED))) {
irq_pm_handle_wakeup(desc);
return false;
}
/* Check whether the interrupt is polled on another CPU */
if (unlikely(desc->istate & IRQS_POLL_INPROGRESS)) {
if (WARN_ONCE(irq_poll_cpu == smp_processor_id(),
"irq poll in progress on cpu %d for irq %d\n",
smp_processor_id(), desc->irq_data.irq))
return false;
return irq_wait_on_inprogress(desc);
}
/* The below works only for single target interrupts */
if (!IS_ENABLED(CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK) ||
!irqd_is_single_target(irqd) || desc->handle_irq != handle_edge_irq)
return false;
/*
* If the interrupt affinity was moved to this CPU and the
* interrupt is currently handled on the previous target CPU, then
* busy wait for INPROGRESS to be cleared. Otherwise for edge type
* interrupts the handler might get stuck on the previous target:
*
* CPU 0 CPU 1 (new target)
* handle_edge_irq()
* repeat:
* handle_event() handle_edge_irq()
* if (INPROGESS) {
* set(PENDING);
* mask();
* return;
* }
* if (PENDING) {
* clear(PENDING);
* unmask();
* goto repeat;
* }
*
* This happens when the device raises interrupts with a high rate
* and always before handle_event() completes and the CPU0 handler
* can clear INPROGRESS. This has been observed in virtual machines.
*/
aff = irq_data_get_effective_affinity_mask(irqd);
if (cpumask_first(aff) != smp_processor_id())
return false;
return irq_wait_on_inprogress(desc);
}
static inline bool irq_can_handle_actions(struct irq_desc *desc)
{
desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING);
if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) {
desc->istate |= IRQS_PENDING;
return false;
}
return true;
}
static inline bool irq_can_handle(struct irq_desc *desc)
{
if (!irq_can_handle_pm(desc))
return false;
return irq_can_handle_actions(desc);
}
/**
* handle_nested_irq - Handle a nested irq from a irq thread
* @irq: the interrupt number
*
* Handle interrupts which are nested into a threaded interrupt
* handler. The handler function is called inside the calling threads
* context.
*/
void handle_nested_irq(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
struct irqaction *action;
irqreturn_t action_ret;
might_sleep();
scoped_guard(raw_spinlock_irq, &desc->lock) {
if (!irq_can_handle_actions(desc))
return;
action = desc->action;
kstat_incr_irqs_this_cpu(desc);
atomic_inc(&desc->threads_active);
}
action_ret = IRQ_NONE;
for_each_action_of_desc(desc, action)
action_ret |= action->thread_fn(action->irq, action->dev_id);
if (!irq_settings_no_debug(desc))
note_interrupt(desc, action_ret);
wake_threads_waitq(desc);
}
EXPORT_SYMBOL_GPL(handle_nested_irq);
/**
* handle_simple_irq - Simple and software-decoded IRQs.
* @desc: the interrupt description structure for this irq
*
* Simple interrupts are either sent from a demultiplexing interrupt
* handler or come from hardware, where no interrupt hardware control is
* necessary.
*
* Note: The caller is expected to handle the ack, clear, mask and unmask
* issues if necessary.
*/
void handle_simple_irq(struct irq_desc *desc)
{
guard(raw_spinlock)(&desc->lock);
if (!irq_can_handle_pm(desc)) {
if (irqd_needs_resend_when_in_progress(&desc->irq_data))
desc->istate |= IRQS_PENDING;
return;
}
if (!irq_can_handle_actions(desc))
return;
kstat_incr_irqs_this_cpu(desc);
handle_irq_event(desc);
}
EXPORT_SYMBOL_GPL(handle_simple_irq);
/**
* handle_untracked_irq - Simple and software-decoded IRQs.
* @desc: the interrupt description structure for this irq
*
* Untracked interrupts are sent from a demultiplexing interrupt handler
* when the demultiplexer does not know which device it its multiplexed irq
* domain generated the interrupt. IRQ's handled through here are not
* subjected to stats tracking, randomness, or spurious interrupt
* detection.
*
* Note: Like handle_simple_irq, the caller is expected to handle the ack,
* clear, mask and unmask issues if necessary.
*/
void handle_untracked_irq(struct irq_desc *desc)
{
scoped_guard(raw_spinlock, &desc->lock) {
if (!irq_can_handle(desc))
return;
desc->istate &= ~IRQS_PENDING;
irqd_set(&desc->irq_data, IRQD_IRQ_INPROGRESS);
}
__handle_irq_event_percpu(desc);
scoped_guard(raw_spinlock, &desc->lock)
irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
}
EXPORT_SYMBOL_GPL(handle_untracked_irq);
/*
* Called unconditionally from handle_level_irq() and only for oneshot
* interrupts from handle_fasteoi_irq()
*/
static void cond_unmask_irq(struct irq_desc *desc)
{
/*
* We need to unmask in the following cases:
* - Standard level irq (IRQF_ONESHOT is not set)
* - Oneshot irq which did not wake the thread (caused by a
* spurious interrupt or a primary handler handling it
* completely).
*/
if (!irqd_irq_disabled(&desc->irq_data) &&
irqd_irq_masked(&desc->irq_data) && !desc->threads_oneshot)
unmask_irq(desc);
}
/**
* handle_level_irq - Level type irq handler
* @desc: the interrupt description structure for this irq
*
* Level type interrupts are active as long as the hardware line has the
* active level. This may require to mask the interrupt and unmask it after
* the associated handler has acknowledged the device, so the interrupt
* line is back to inactive.
*/
void handle_level_irq(struct irq_desc *desc)
{
guard(raw_spinlock)(&desc->lock);
mask_ack_irq(desc);
if (!irq_can_handle(desc))
return;
kstat_incr_irqs_this_cpu(desc);
handle_irq_event(desc);
cond_unmask_irq(desc);
}
EXPORT_SYMBOL_GPL(handle_level_irq);
static void cond_unmask_eoi_irq(struct irq_desc *desc, struct irq_chip *chip)
{
if (!(desc->istate & IRQS_ONESHOT)) {
chip->irq_eoi(&desc->irq_data);
return;
}
/*
* We need to unmask in the following cases:
* - Oneshot irq which did not wake the thread (caused by a
* spurious interrupt or a primary handler handling it
* completely).
*/
if (!irqd_irq_disabled(&desc->irq_data) &&
irqd_irq_masked(&desc->irq_data) && !desc->threads_oneshot) {
chip->irq_eoi(&desc->irq_data);
unmask_irq(desc);
} else if (!(chip->flags & IRQCHIP_EOI_THREADED)) {
chip->irq_eoi(&desc->irq_data);
}
}
static inline void cond_eoi_irq(struct irq_chip *chip, struct irq_data *data)
{
if (!(chip->flags & IRQCHIP_EOI_IF_HANDLED))
chip->irq_eoi(data);
}
/**
* handle_fasteoi_irq - irq handler for transparent controllers
* @desc: the interrupt description structure for this irq
*
* Only a single callback will be issued to the chip: an ->eoi() call when
* the interrupt has been serviced. This enables support for modern forms
* of interrupt handlers, which handle the flow details in hardware,
* transparently.
*/
void handle_fasteoi_irq(struct irq_desc *desc)
{
struct irq_chip *chip = desc->irq_data.chip;
guard(raw_spinlock)(&desc->lock);
/*
* When an affinity change races with IRQ handling, the next interrupt
* can arrive on the new CPU before the original CPU has completed
* handling the previous one - it may need to be resent.
*/
if (!irq_can_handle_pm(desc)) {
if (irqd_needs_resend_when_in_progress(&desc->irq_data))
desc->istate |= IRQS_PENDING;
cond_eoi_irq(chip, &desc->irq_data);
return;
}
if (!irq_can_handle_actions(desc)) {
mask_irq(desc);
cond_eoi_irq(chip, &desc->irq_data);
return;
}
kstat_incr_irqs_this_cpu(desc);
if (desc->istate & IRQS_ONESHOT)
mask_irq(desc);
handle_irq_event(desc);
cond_unmask_eoi_irq(desc, chip);
/*
* When the race described above happens this will resend the interrupt.
*/
if (unlikely(desc->istate & IRQS_PENDING))
check_irq_resend(desc, false);
}
EXPORT_SYMBOL_GPL(handle_fasteoi_irq);
/**
* handle_fasteoi_nmi - irq handler for NMI interrupt lines
* @desc: the interrupt description structure for this irq
*
* A simple NMI-safe handler, considering the restrictions
* from request_nmi.
*
* Only a single callback will be issued to the chip: an ->eoi()
* call when the interrupt has been serviced. This enables support
* for modern forms of interrupt handlers, which handle the flow
* details in hardware, transparently.
*/
void handle_fasteoi_nmi(struct irq_desc *desc)
{
struct irq_chip *chip = irq_desc_get_chip(desc);
struct irqaction *action = desc->action;
unsigned int irq = irq_desc_get_irq(desc);
irqreturn_t res;
__kstat_incr_irqs_this_cpu(desc);
trace_irq_handler_entry(irq, action);
/*
* NMIs cannot be shared, there is only one action.
*/
res = action->handler(irq, action->dev_id);
trace_irq_handler_exit(irq, action, res);
if (chip->irq_eoi)
chip->irq_eoi(&desc->irq_data);
}
EXPORT_SYMBOL_GPL(handle_fasteoi_nmi);
/**
* handle_edge_irq - edge type IRQ handler
* @desc: the interrupt description structure for this irq
*
* Interrupt occurs on the falling and/or rising edge of a hardware
* signal. The occurrence is latched into the irq controller hardware and
* must be acked in order to be reenabled. After the ack another interrupt
* can happen on the same source even before the first one is handled by
* the associated event handler. If this happens it might be necessary to
* disable (mask) the interrupt depending on the controller hardware. This
* requires to reenable the interrupt inside of the loop which handles the
* interrupts which have arrived while the handler was running. If all
* pending interrupts are handled, the loop is left.
*/
void handle_edge_irq(struct irq_desc *desc)
{
guard(raw_spinlock)(&desc->lock);
if (!irq_can_handle(desc)) {
desc->istate |= IRQS_PENDING;
mask_ack_irq(desc);
return;
}
kstat_incr_irqs_this_cpu(desc);
/* Start handling the irq */
desc->irq_data.chip->irq_ack(&desc->irq_data);
do {
if (unlikely(!desc->action)) {
mask_irq(desc);
return;
}
/*
* When another irq arrived while we were handling
* one, we could have masked the irq.
* Reenable it, if it was not disabled in meantime.
*/
if (unlikely(desc->istate & IRQS_PENDING)) {
if (!irqd_irq_disabled(&desc->irq_data) &&
irqd_irq_masked(&desc->irq_data))
unmask_irq(desc);
}
handle_irq_event(desc);
} while ((desc->istate & IRQS_PENDING) && !irqd_irq_disabled(&desc->irq_data));
}
EXPORT_SYMBOL(handle_edge_irq);
/**
* handle_percpu_irq - Per CPU local irq handler
* @desc: the interrupt description structure for this irq
*
* Per CPU interrupts on SMP machines without locking requirements
*/
void handle_percpu_irq(struct irq_desc *desc)
{
struct irq_chip *chip = irq_desc_get_chip(desc);
/*
* PER CPU interrupts are not serialized. Do not touch
* desc->tot_count.
*/
__kstat_incr_irqs_this_cpu(desc);
if (chip->irq_ack)
chip->irq_ack(&desc->irq_data);
handle_irq_event_percpu(desc);
if (chip->irq_eoi)
chip->irq_eoi(&desc->irq_data);
}
/**
* handle_percpu_devid_irq - Per CPU local irq handler with per cpu dev ids
* @desc: the interrupt description structure for this irq
*
* Per CPU interrupts on SMP machines without locking requirements. Same as
* handle_percpu_irq() above but with the following extras:
*
* action->percpu_dev_id is a pointer to percpu variables which
* contain the real device id for the cpu on which this handler is
* called
*/
void handle_percpu_devid_irq(struct irq_desc *desc)
{
struct irq_chip *chip = irq_desc_get_chip(desc);
struct irqaction *action = desc->action;
unsigned int irq = irq_desc_get_irq(desc);
irqreturn_t res;
/*
* PER CPU interrupts are not serialized. Do not touch
* desc->tot_count.
*/
__kstat_incr_irqs_this_cpu(desc);
if (chip->irq_ack)
chip->irq_ack(&desc->irq_data);
if (likely(action)) {
trace_irq_handler_entry(irq, action);
res = action->handler(irq, raw_cpu_ptr(action->percpu_dev_id));
trace_irq_handler_exit(irq, action, res);
} else {
unsigned int cpu = smp_processor_id();
bool enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
if (enabled)
irq_percpu_disable(desc, cpu);
pr_err_once("Spurious%s percpu IRQ%u on CPU%u\n",
enabled ? " and unmasked" : "", irq, cpu);
}
if (chip->irq_eoi)
chip->irq_eoi(&desc->irq_data);
}
/**
* handle_percpu_devid_fasteoi_nmi - Per CPU local NMI handler with per cpu
* dev ids
* @desc: the interrupt description structure for this irq
*
* Similar to handle_fasteoi_nmi, but handling the dev_id cookie
* as a percpu pointer.
*/
void handle_percpu_devid_fasteoi_nmi(struct irq_desc *desc)
{
struct irq_chip *chip = irq_desc_get_chip(desc);
struct irqaction *action = desc->action;
unsigned int irq = irq_desc_get_irq(desc);
irqreturn_t res;
__kstat_incr_irqs_this_cpu(desc);
trace_irq_handler_entry(irq, action);
res = action->handler(irq, raw_cpu_ptr(action->percpu_dev_id));
trace_irq_handler_exit(irq, action, res);
if (chip->irq_eoi)
chip->irq_eoi(&desc->irq_data);
}
static void
__irq_do_set_handler(struct irq_desc *desc, irq_flow_handler_t handle,
int is_chained, const char *name)
{
if (!handle) {
handle = handle_bad_irq;
} else {
struct irq_data *irq_data = &desc->irq_data;
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
/*
* With hierarchical domains we might run into a
* situation where the outermost chip is not yet set
* up, but the inner chips are there. Instead of
* bailing we install the handler, but obviously we
* cannot enable/startup the interrupt at this point.
*/
while (irq_data) {
if (irq_data->chip != &no_irq_chip)
break;
/*
* Bail out if the outer chip is not set up
* and the interrupt supposed to be started
* right away.
*/
if (WARN_ON(is_chained))
return;
/* Try the parent */
irq_data = irq_data->parent_data;
}
#endif
if (WARN_ON(!irq_data || irq_data->chip == &no_irq_chip))
return;
}
/* Uninstall? */
if (handle == handle_bad_irq) {
if (desc->irq_data.chip != &no_irq_chip)
mask_ack_irq(desc);
irq_state_set_disabled(desc);
if (is_chained) {
desc->action = NULL;
WARN_ON(irq_chip_pm_put(irq_desc_get_irq_data(desc)));
}
desc->depth = 1;
}
desc->handle_irq = handle;
desc->name = name;
if (handle != handle_bad_irq && is_chained) {
unsigned int type = irqd_get_trigger_type(&desc->irq_data);
/*
* We're about to start this interrupt immediately,
* hence the need to set the trigger configuration.
* But the .set_type callback may have overridden the
* flow handler, ignoring that we're dealing with a
* chained interrupt. Reset it immediately because we
* do know better.
*/
if (type != IRQ_TYPE_NONE) {
__irq_set_trigger(desc, type);
desc->handle_irq = handle;
}
irq_settings_set_noprobe(desc);
irq_settings_set_norequest(desc);
irq_settings_set_nothread(desc);
desc->action = &chained_action;
WARN_ON(irq_chip_pm_get(irq_desc_get_irq_data(desc)));
irq_activate_and_startup(desc, IRQ_RESEND);
}
}
void __irq_set_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained,
const char *name)
{
scoped_irqdesc_get_and_lock(irq, 0)
__irq_do_set_handler(scoped_irqdesc, handle, is_chained, name);
}
EXPORT_SYMBOL_GPL(__irq_set_handler);
void irq_set_chained_handler_and_data(unsigned int irq, irq_flow_handler_t handle,
void *data)
{
scoped_irqdesc_get_and_buslock(irq, 0) {
struct irq_desc *desc = scoped_irqdesc;
desc->irq_common_data.handler_data = data;
__irq_do_set_handler(desc, handle, 1, NULL);
}
}
EXPORT_SYMBOL_GPL(irq_set_chained_handler_and_data);
void
irq_set_chip_and_handler_name(unsigned int irq, const struct irq_chip *chip,
irq_flow_handler_t handle, const char *name)
{
irq_set_chip(irq, chip);
__irq_set_handler(irq, handle, 0, name);
}
EXPORT_SYMBOL_GPL(irq_set_chip_and_handler_name);
void irq_modify_status(unsigned int irq, unsigned long clr, unsigned long set)
{
scoped_irqdesc_get_and_lock(irq, 0) {
struct irq_desc *desc = scoped_irqdesc;
unsigned long trigger, tmp;
/*
* Warn when a driver sets the no autoenable flag on an already
* active interrupt.
*/
WARN_ON_ONCE(!desc->depth && (set & _IRQ_NOAUTOEN));
irq_settings_clr_and_set(desc, clr, set);
trigger = irqd_get_trigger_type(&desc->irq_data);
irqd_clear(&desc->irq_data, IRQD_NO_BALANCING | IRQD_PER_CPU |
IRQD_TRIGGER_MASK | IRQD_LEVEL);
if (irq_settings_has_no_balance_set(desc))
irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
if (irq_settings_is_per_cpu(desc))
irqd_set(&desc->irq_data, IRQD_PER_CPU);
if (irq_settings_is_level(desc))
irqd_set(&desc->irq_data, IRQD_LEVEL);
tmp = irq_settings_get_trigger_mask(desc);
if (tmp != IRQ_TYPE_NONE)
trigger = tmp;
irqd_set(&desc->irq_data, trigger);
}
}
EXPORT_SYMBOL_GPL(irq_modify_status);
#ifdef CONFIG_DEPRECATED_IRQ_CPU_ONOFFLINE
/**
* irq_cpu_online - Invoke all irq_cpu_online functions.
*
* Iterate through all irqs and invoke the chip.irq_cpu_online()
* for each.
*/
void irq_cpu_online(void)
{
unsigned int irq;
for_each_active_irq(irq) {
struct irq_desc *desc = irq_to_desc(irq);
struct irq_chip *chip;
if (!desc)
continue;
guard(raw_spinlock_irqsave)(&desc->lock);
chip = irq_data_get_irq_chip(&desc->irq_data);
if (chip && chip->irq_cpu_online &&
(!(chip->flags & IRQCHIP_ONOFFLINE_ENABLED) ||
!irqd_irq_disabled(&desc->irq_data)))
chip->irq_cpu_online(&desc->irq_data);
}
}
/**
* irq_cpu_offline - Invoke all irq_cpu_offline functions.
*
* Iterate through all irqs and invoke the chip.irq_cpu_offline()
* for each.
*/
void irq_cpu_offline(void)
{
unsigned int irq;
for_each_active_irq(irq) {
struct irq_desc *desc = irq_to_desc(irq);
struct irq_chip *chip;
if (!desc)
continue;
guard(raw_spinlock_irqsave)(&desc->lock);
chip = irq_data_get_irq_chip(&desc->irq_data);
if (chip && chip->irq_cpu_offline &&
(!(chip->flags & IRQCHIP_ONOFFLINE_ENABLED) ||
!irqd_irq_disabled(&desc->irq_data)))
chip->irq_cpu_offline(&desc->irq_data);
}
}
#endif
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
#ifdef CONFIG_IRQ_FASTEOI_HIERARCHY_HANDLERS
/**
* handle_fasteoi_ack_irq - irq handler for edge hierarchy stacked on
* transparent controllers
*
* @desc: the interrupt description structure for this irq
*
* Like handle_fasteoi_irq(), but for use with hierarchy where the irq_chip
* also needs to have its ->irq_ack() function called.
*/
void handle_fasteoi_ack_irq(struct irq_desc *desc)
{
struct irq_chip *chip = desc->irq_data.chip;
guard(raw_spinlock)(&desc->lock);
if (!irq_can_handle_pm(desc)) {
cond_eoi_irq(chip, &desc->irq_data);
return;
}
if (unlikely(!irq_can_handle_actions(desc))) {
mask_irq(desc);
cond_eoi_irq(chip, &desc->irq_data);
return;
}
kstat_incr_irqs_this_cpu(desc);
if (desc->istate & IRQS_ONESHOT)
mask_irq(desc);
desc->irq_data.chip->irq_ack(&desc->irq_data);
handle_irq_event(desc);
cond_unmask_eoi_irq(desc, chip);
}
EXPORT_SYMBOL_GPL(handle_fasteoi_ack_irq);
/**
* handle_fasteoi_mask_irq - irq handler for level hierarchy stacked on
* transparent controllers
*
* @desc: the interrupt description structure for this irq
*
* Like handle_fasteoi_irq(), but for use with hierarchy where the irq_chip
* also needs to have its ->irq_mask_ack() function called.
*/
void handle_fasteoi_mask_irq(struct irq_desc *desc)
{
struct irq_chip *chip = desc->irq_data.chip;
guard(raw_spinlock)(&desc->lock);
mask_ack_irq(desc);
if (!irq_can_handle(desc)) {
cond_eoi_irq(chip, &desc->irq_data);
return;
}
kstat_incr_irqs_this_cpu(desc);
handle_irq_event(desc);
cond_unmask_eoi_irq(desc, chip);
}
EXPORT_SYMBOL_GPL(handle_fasteoi_mask_irq);
#endif /* CONFIG_IRQ_FASTEOI_HIERARCHY_HANDLERS */
/**
* irq_chip_set_parent_state - set the state of a parent interrupt.
*
* @data: Pointer to interrupt specific data
* @which: State to be restored (one of IRQCHIP_STATE_*)
* @val: Value corresponding to @which
*
* Conditional success, if the underlying irqchip does not implement it.
*/
int irq_chip_set_parent_state(struct irq_data *data,
enum irqchip_irq_state which,
bool val)
{
data = data->parent_data;
if (!data || !data->chip->irq_set_irqchip_state)
return 0;
return data->chip->irq_set_irqchip_state(data, which, val);
}
EXPORT_SYMBOL_GPL(irq_chip_set_parent_state);
/**
* irq_chip_get_parent_state - get the state of a parent interrupt.
*
* @data: Pointer to interrupt specific data
* @which: one of IRQCHIP_STATE_* the caller wants to know
* @state: a pointer to a boolean where the state is to be stored
*
* Conditional success, if the underlying irqchip does not implement it.
*/
int irq_chip_get_parent_state(struct irq_data *data,
enum irqchip_irq_state which,
bool *state)
{
data = data->parent_data;
if (!data || !data->chip->irq_get_irqchip_state)
return 0;
return data->chip->irq_get_irqchip_state(data, which, state);
}
EXPORT_SYMBOL_GPL(irq_chip_get_parent_state);
/**
* irq_chip_enable_parent - Enable the parent interrupt (defaults to unmask if
* NULL)
* @data: Pointer to interrupt specific data
*/
void irq_chip_enable_parent(struct irq_data *data)
{
data = data->parent_data;
if (data->chip->irq_enable)
data->chip->irq_enable(data);
else
data->chip->irq_unmask(data);
}
EXPORT_SYMBOL_GPL(irq_chip_enable_parent);
/**
* irq_chip_disable_parent - Disable the parent interrupt (defaults to mask if
* NULL)
* @data: Pointer to interrupt specific data
*/
void irq_chip_disable_parent(struct irq_data *data)
{
data = data->parent_data;
if (data->chip->irq_disable)
data->chip->irq_disable(data);
else
data->chip->irq_mask(data);
}
EXPORT_SYMBOL_GPL(irq_chip_disable_parent);
/**
* irq_chip_ack_parent - Acknowledge the parent interrupt
* @data: Pointer to interrupt specific data
*/
void irq_chip_ack_parent(struct irq_data *data)
{
data = data->parent_data;
data->chip->irq_ack(data);
}
EXPORT_SYMBOL_GPL(irq_chip_ack_parent);
/**
* irq_chip_mask_parent - Mask the parent interrupt
* @data: Pointer to interrupt specific data
*/
void irq_chip_mask_parent(struct irq_data *data)
{
data = data->parent_data;
data->chip->irq_mask(data);
}
EXPORT_SYMBOL_GPL(irq_chip_mask_parent);
/**
* irq_chip_mask_ack_parent - Mask and acknowledge the parent interrupt
* @data: Pointer to interrupt specific data
*/
void irq_chip_mask_ack_parent(struct irq_data *data)
{
data = data->parent_data;
data->chip->irq_mask_ack(data);
}
EXPORT_SYMBOL_GPL(irq_chip_mask_ack_parent);
/**
* irq_chip_unmask_parent - Unmask the parent interrupt
* @data: Pointer to interrupt specific data
*/
void irq_chip_unmask_parent(struct irq_data *data)
{
data = data->parent_data;
data->chip->irq_unmask(data);
}
EXPORT_SYMBOL_GPL(irq_chip_unmask_parent);
/**
* irq_chip_eoi_parent - Invoke EOI on the parent interrupt
* @data: Pointer to interrupt specific data
*/
void irq_chip_eoi_parent(struct irq_data *data)
{
data = data->parent_data;
data->chip->irq_eoi(data);
}
EXPORT_SYMBOL_GPL(irq_chip_eoi_parent);
/**
* irq_chip_set_affinity_parent - Set affinity on the parent interrupt
* @data: Pointer to interrupt specific data
* @dest: The affinity mask to set
* @force: Flag to enforce setting (disable online checks)
*
* Conditional, as the underlying parent chip might not implement it.
*/
int irq_chip_set_affinity_parent(struct irq_data *data,
const struct cpumask *dest, bool force)
{
data = data->parent_data;
if (data->chip->irq_set_affinity)
return data->chip->irq_set_affinity(data, dest, force);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(irq_chip_set_affinity_parent);
/**
* irq_chip_set_type_parent - Set IRQ type on the parent interrupt
* @data: Pointer to interrupt specific data
* @type: IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h
*
* Conditional, as the underlying parent chip might not implement it.
*/
int irq_chip_set_type_parent(struct irq_data *data, unsigned int type)
{
data = data->parent_data;
if (data->chip->irq_set_type)
return data->chip->irq_set_type(data, type);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(irq_chip_set_type_parent);
/**
* irq_chip_retrigger_hierarchy - Retrigger an interrupt in hardware
* @data: Pointer to interrupt specific data
*
* Iterate through the domain hierarchy of the interrupt and check
* whether a hw retrigger function exists. If yes, invoke it.
*/
int irq_chip_retrigger_hierarchy(struct irq_data *data)
{
for (data = data->parent_data; data; data = data->parent_data)
if (data->chip && data->chip->irq_retrigger)
return data->chip->irq_retrigger(data);
return 0;
}
EXPORT_SYMBOL_GPL(irq_chip_retrigger_hierarchy);
/**
* irq_chip_set_vcpu_affinity_parent - Set vcpu affinity on the parent interrupt
* @data: Pointer to interrupt specific data
* @vcpu_info: The vcpu affinity information
*/
int irq_chip_set_vcpu_affinity_parent(struct irq_data *data, void *vcpu_info)
{
data = data->parent_data;
if (data->chip->irq_set_vcpu_affinity)
return data->chip->irq_set_vcpu_affinity(data, vcpu_info);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(irq_chip_set_vcpu_affinity_parent);
/**
* irq_chip_set_wake_parent - Set/reset wake-up on the parent interrupt
* @data: Pointer to interrupt specific data
* @on: Whether to set or reset the wake-up capability of this irq
*
* Conditional, as the underlying parent chip might not implement it.
*/
int irq_chip_set_wake_parent(struct irq_data *data, unsigned int on)
{
data = data->parent_data;
if (data->chip->flags & IRQCHIP_SKIP_SET_WAKE)
return 0;
if (data->chip->irq_set_wake)
return data->chip->irq_set_wake(data, on);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(irq_chip_set_wake_parent);
/**
* irq_chip_request_resources_parent - Request resources on the parent interrupt
* @data: Pointer to interrupt specific data
*/
int irq_chip_request_resources_parent(struct irq_data *data)
{
data = data->parent_data;
if (data->chip->irq_request_resources)
return data->chip->irq_request_resources(data);
/* no error on missing optional irq_chip::irq_request_resources */
return 0;
}
EXPORT_SYMBOL_GPL(irq_chip_request_resources_parent);
/**
* irq_chip_release_resources_parent - Release resources on the parent interrupt
* @data: Pointer to interrupt specific data
*/
void irq_chip_release_resources_parent(struct irq_data *data)
{
data = data->parent_data;
if (data->chip->irq_release_resources)
data->chip->irq_release_resources(data);
}
EXPORT_SYMBOL_GPL(irq_chip_release_resources_parent);
#endif
/**
* irq_chip_compose_msi_msg - Compose msi message for a irq chip
* @data: Pointer to interrupt specific data
* @msg: Pointer to the MSI message
*
* For hierarchical domains we find the first chip in the hierarchy
* which implements the irq_compose_msi_msg callback. For non
* hierarchical we use the top level chip.
*/
int irq_chip_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
{
struct irq_data *pos;
for (pos = NULL; !pos && data; data = irqd_get_parent_data(data)) {
if (data->chip && data->chip->irq_compose_msi_msg)
pos = data;
}
if (!pos)
return -ENOSYS;
pos->chip->irq_compose_msi_msg(pos, msg);
return 0;
}
static struct device *irq_get_pm_device(struct irq_data *data)
{
if (data->domain)
return data->domain->pm_dev;
return NULL;
}
/**
* irq_chip_pm_get - Enable power for an IRQ chip
* @data: Pointer to interrupt specific data
*
* Enable the power to the IRQ chip referenced by the interrupt data
* structure.
*/
int irq_chip_pm_get(struct irq_data *data)
{
struct device *dev = irq_get_pm_device(data);
int retval = 0;
if (IS_ENABLED(CONFIG_PM) && dev)
retval = pm_runtime_resume_and_get(dev);
return retval;
}
/**
* irq_chip_pm_put - Disable power for an IRQ chip
* @data: Pointer to interrupt specific data
*
* Disable the power to the IRQ chip referenced by the interrupt data
* structure, belongs. Note that power will only be disabled, once this
* function has been called for all IRQs that have called irq_chip_pm_get().
*/
int irq_chip_pm_put(struct irq_data *data)
{
struct device *dev = irq_get_pm_device(data);
int retval = 0;
if (IS_ENABLED(CONFIG_PM) && dev)
retval = pm_runtime_put(dev);
return (retval < 0) ? retval : 0;
}