mirror of
https://github.com/torvalds/linux.git
synced 2025-08-15 14:11:42 +02:00

- Add support for cgroup "cpu.max" interface. - Code organization cleanup so that ext_idle.c doesn't depend on the source-file-inclusion build method of sched/. - Drop UP paths in accordance with sched core changes. - Documentation and other misc changes. -----BEGIN PGP SIGNATURE----- iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCaIqnxg4cdGpAa2VybmVs Lm9yZwAKCRCxYfJx3gVYGUh5AQC6YM7ggRPYRmy28m5B0nubpKtCHqPOAHSd/QbY MCiThgD+JuE9ewg3wYO/jvJx3NyIRB1McMnAaG59hf6R0Plh5Qo= =TeLF -----END PGP SIGNATURE----- Merge tag 'sched_ext-for-6.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext Pull sched_ext updates from Tejun Heo: - Add support for cgroup "cpu.max" interface - Code organization cleanup so that ext_idle.c doesn't depend on the source-file-inclusion build method of sched/ - Drop UP paths in accordance with sched core changes - Documentation and other misc changes * tag 'sched_ext-for-6.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: sched_ext: Fix scx_bpf_reenqueue_local() reference sched_ext: Drop kfuncs marked for removal in 6.15 sched_ext, rcu: Eject BPF scheduler on RCU CPU stall panic kernel/sched/ext.c: fix typo "occured" -> "occurred" in comments sched_ext: Add support for cgroup bandwidth control interface sched_ext, sched/core: Factor out struct scx_task_group sched_ext: Return NULL in llc_span sched_ext: Always use SMP versions in kernel/sched/ext_idle.h sched_ext: Always use SMP versions in kernel/sched/ext_idle.c sched_ext: Always use SMP versions in kernel/sched/ext.h sched_ext: Always use SMP versions in kernel/sched/ext.c sched_ext: Documentation: Clarify time slice handling in task lifecycle sched_ext: Make scx_locked_rq() inline sched_ext: Make scx_rq_bypassing() inline sched_ext: idle: Make local functions static in ext_idle.c sched_ext: idle: Remove unnecessary ifdef in scx_bpf_cpu_node()
1288 lines
37 KiB
C
1288 lines
37 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
|
|
*
|
|
* Built-in idle CPU tracking policy.
|
|
*
|
|
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
|
|
* Copyright (c) 2022 Tejun Heo <tj@kernel.org>
|
|
* Copyright (c) 2022 David Vernet <dvernet@meta.com>
|
|
* Copyright (c) 2024 Andrea Righi <arighi@nvidia.com>
|
|
*/
|
|
#include "ext_idle.h"
|
|
|
|
/* Enable/disable built-in idle CPU selection policy */
|
|
static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
|
|
|
|
/* Enable/disable per-node idle cpumasks */
|
|
static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_per_node);
|
|
|
|
/* Enable/disable LLC aware optimizations */
|
|
static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
|
|
|
|
/* Enable/disable NUMA aware optimizations */
|
|
static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
|
|
|
|
/*
|
|
* cpumasks to track idle CPUs within each NUMA node.
|
|
*
|
|
* If SCX_OPS_BUILTIN_IDLE_PER_NODE is not enabled, a single global cpumask
|
|
* from is used to track all the idle CPUs in the system.
|
|
*/
|
|
struct scx_idle_cpus {
|
|
cpumask_var_t cpu;
|
|
cpumask_var_t smt;
|
|
};
|
|
|
|
/*
|
|
* Global host-wide idle cpumasks (used when SCX_OPS_BUILTIN_IDLE_PER_NODE
|
|
* is not enabled).
|
|
*/
|
|
static struct scx_idle_cpus scx_idle_global_masks;
|
|
|
|
/*
|
|
* Per-node idle cpumasks.
|
|
*/
|
|
static struct scx_idle_cpus **scx_idle_node_masks;
|
|
|
|
/*
|
|
* Local per-CPU cpumasks (used to generate temporary idle cpumasks).
|
|
*/
|
|
static DEFINE_PER_CPU(cpumask_var_t, local_idle_cpumask);
|
|
static DEFINE_PER_CPU(cpumask_var_t, local_llc_idle_cpumask);
|
|
static DEFINE_PER_CPU(cpumask_var_t, local_numa_idle_cpumask);
|
|
|
|
/*
|
|
* Return the idle masks associated to a target @node.
|
|
*
|
|
* NUMA_NO_NODE identifies the global idle cpumask.
|
|
*/
|
|
static struct scx_idle_cpus *idle_cpumask(int node)
|
|
{
|
|
return node == NUMA_NO_NODE ? &scx_idle_global_masks : scx_idle_node_masks[node];
|
|
}
|
|
|
|
/*
|
|
* Returns the NUMA node ID associated with a @cpu, or NUMA_NO_NODE if
|
|
* per-node idle cpumasks are disabled.
|
|
*/
|
|
static int scx_cpu_node_if_enabled(int cpu)
|
|
{
|
|
if (!static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node))
|
|
return NUMA_NO_NODE;
|
|
|
|
return cpu_to_node(cpu);
|
|
}
|
|
|
|
static bool scx_idle_test_and_clear_cpu(int cpu)
|
|
{
|
|
int node = scx_cpu_node_if_enabled(cpu);
|
|
struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
/*
|
|
* SMT mask should be cleared whether we can claim @cpu or not. The SMT
|
|
* cluster is not wholly idle either way. This also prevents
|
|
* scx_pick_idle_cpu() from getting caught in an infinite loop.
|
|
*/
|
|
if (sched_smt_active()) {
|
|
const struct cpumask *smt = cpu_smt_mask(cpu);
|
|
struct cpumask *idle_smts = idle_cpumask(node)->smt;
|
|
|
|
/*
|
|
* If offline, @cpu is not its own sibling and
|
|
* scx_pick_idle_cpu() can get caught in an infinite loop as
|
|
* @cpu is never cleared from the idle SMT mask. Ensure that
|
|
* @cpu is eventually cleared.
|
|
*
|
|
* NOTE: Use cpumask_intersects() and cpumask_test_cpu() to
|
|
* reduce memory writes, which may help alleviate cache
|
|
* coherence pressure.
|
|
*/
|
|
if (cpumask_intersects(smt, idle_smts))
|
|
cpumask_andnot(idle_smts, idle_smts, smt);
|
|
else if (cpumask_test_cpu(cpu, idle_smts))
|
|
__cpumask_clear_cpu(cpu, idle_smts);
|
|
}
|
|
#endif
|
|
|
|
return cpumask_test_and_clear_cpu(cpu, idle_cpus);
|
|
}
|
|
|
|
/*
|
|
* Pick an idle CPU in a specific NUMA node.
|
|
*/
|
|
static s32 pick_idle_cpu_in_node(const struct cpumask *cpus_allowed, int node, u64 flags)
|
|
{
|
|
int cpu;
|
|
|
|
retry:
|
|
if (sched_smt_active()) {
|
|
cpu = cpumask_any_and_distribute(idle_cpumask(node)->smt, cpus_allowed);
|
|
if (cpu < nr_cpu_ids)
|
|
goto found;
|
|
|
|
if (flags & SCX_PICK_IDLE_CORE)
|
|
return -EBUSY;
|
|
}
|
|
|
|
cpu = cpumask_any_and_distribute(idle_cpumask(node)->cpu, cpus_allowed);
|
|
if (cpu >= nr_cpu_ids)
|
|
return -EBUSY;
|
|
|
|
found:
|
|
if (scx_idle_test_and_clear_cpu(cpu))
|
|
return cpu;
|
|
else
|
|
goto retry;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Tracks nodes that have not yet been visited when searching for an idle
|
|
* CPU across all available nodes.
|
|
*/
|
|
static DEFINE_PER_CPU(nodemask_t, per_cpu_unvisited);
|
|
|
|
/*
|
|
* Search for an idle CPU across all nodes, excluding @node.
|
|
*/
|
|
static s32 pick_idle_cpu_from_online_nodes(const struct cpumask *cpus_allowed, int node, u64 flags)
|
|
{
|
|
nodemask_t *unvisited;
|
|
s32 cpu = -EBUSY;
|
|
|
|
preempt_disable();
|
|
unvisited = this_cpu_ptr(&per_cpu_unvisited);
|
|
|
|
/*
|
|
* Restrict the search to the online nodes (excluding the current
|
|
* node that has been visited already).
|
|
*/
|
|
nodes_copy(*unvisited, node_states[N_ONLINE]);
|
|
node_clear(node, *unvisited);
|
|
|
|
/*
|
|
* Traverse all nodes in order of increasing distance, starting
|
|
* from @node.
|
|
*
|
|
* This loop is O(N^2), with N being the amount of NUMA nodes,
|
|
* which might be quite expensive in large NUMA systems. However,
|
|
* this complexity comes into play only when a scheduler enables
|
|
* SCX_OPS_BUILTIN_IDLE_PER_NODE and it's requesting an idle CPU
|
|
* without specifying a target NUMA node, so it shouldn't be a
|
|
* bottleneck is most cases.
|
|
*
|
|
* As a future optimization we may want to cache the list of nodes
|
|
* in a per-node array, instead of actually traversing them every
|
|
* time.
|
|
*/
|
|
for_each_node_numadist(node, *unvisited) {
|
|
cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
|
|
if (cpu >= 0)
|
|
break;
|
|
}
|
|
preempt_enable();
|
|
|
|
return cpu;
|
|
}
|
|
#else
|
|
static inline s32
|
|
pick_idle_cpu_from_online_nodes(const struct cpumask *cpus_allowed, int node, u64 flags)
|
|
{
|
|
return -EBUSY;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Find an idle CPU in the system, starting from @node.
|
|
*/
|
|
static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, int node, u64 flags)
|
|
{
|
|
s32 cpu;
|
|
|
|
/*
|
|
* Always search in the starting node first (this is an
|
|
* optimization that can save some cycles even when the search is
|
|
* not limited to a single node).
|
|
*/
|
|
cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
|
|
if (cpu >= 0)
|
|
return cpu;
|
|
|
|
/*
|
|
* Stop the search if we are using only a single global cpumask
|
|
* (NUMA_NO_NODE) or if the search is restricted to the first node
|
|
* only.
|
|
*/
|
|
if (node == NUMA_NO_NODE || flags & SCX_PICK_IDLE_IN_NODE)
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* Extend the search to the other online nodes.
|
|
*/
|
|
return pick_idle_cpu_from_online_nodes(cpus_allowed, node, flags);
|
|
}
|
|
|
|
/*
|
|
* Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC
|
|
* domain is not defined).
|
|
*/
|
|
static unsigned int llc_weight(s32 cpu)
|
|
{
|
|
struct sched_domain *sd;
|
|
|
|
sd = rcu_dereference(per_cpu(sd_llc, cpu));
|
|
if (!sd)
|
|
return 0;
|
|
|
|
return sd->span_weight;
|
|
}
|
|
|
|
/*
|
|
* Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC
|
|
* domain is not defined).
|
|
*/
|
|
static struct cpumask *llc_span(s32 cpu)
|
|
{
|
|
struct sched_domain *sd;
|
|
|
|
sd = rcu_dereference(per_cpu(sd_llc, cpu));
|
|
if (!sd)
|
|
return NULL;
|
|
|
|
return sched_domain_span(sd);
|
|
}
|
|
|
|
/*
|
|
* Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the
|
|
* NUMA domain is not defined).
|
|
*/
|
|
static unsigned int numa_weight(s32 cpu)
|
|
{
|
|
struct sched_domain *sd;
|
|
struct sched_group *sg;
|
|
|
|
sd = rcu_dereference(per_cpu(sd_numa, cpu));
|
|
if (!sd)
|
|
return 0;
|
|
sg = sd->groups;
|
|
if (!sg)
|
|
return 0;
|
|
|
|
return sg->group_weight;
|
|
}
|
|
|
|
/*
|
|
* Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA
|
|
* domain is not defined).
|
|
*/
|
|
static struct cpumask *numa_span(s32 cpu)
|
|
{
|
|
struct sched_domain *sd;
|
|
struct sched_group *sg;
|
|
|
|
sd = rcu_dereference(per_cpu(sd_numa, cpu));
|
|
if (!sd)
|
|
return NULL;
|
|
sg = sd->groups;
|
|
if (!sg)
|
|
return NULL;
|
|
|
|
return sched_group_span(sg);
|
|
}
|
|
|
|
/*
|
|
* Return true if the LLC domains do not perfectly overlap with the NUMA
|
|
* domains, false otherwise.
|
|
*/
|
|
static bool llc_numa_mismatch(void)
|
|
{
|
|
int cpu;
|
|
|
|
/*
|
|
* We need to scan all online CPUs to verify whether their scheduling
|
|
* domains overlap.
|
|
*
|
|
* While it is rare to encounter architectures with asymmetric NUMA
|
|
* topologies, CPU hotplugging or virtualized environments can result
|
|
* in asymmetric configurations.
|
|
*
|
|
* For example:
|
|
*
|
|
* NUMA 0:
|
|
* - LLC 0: cpu0..cpu7
|
|
* - LLC 1: cpu8..cpu15 [offline]
|
|
*
|
|
* NUMA 1:
|
|
* - LLC 0: cpu16..cpu23
|
|
* - LLC 1: cpu24..cpu31
|
|
*
|
|
* In this case, if we only check the first online CPU (cpu0), we might
|
|
* incorrectly assume that the LLC and NUMA domains are fully
|
|
* overlapping, which is incorrect (as NUMA 1 has two distinct LLC
|
|
* domains).
|
|
*/
|
|
for_each_online_cpu(cpu)
|
|
if (llc_weight(cpu) != numa_weight(cpu))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Initialize topology-aware scheduling.
|
|
*
|
|
* Detect if the system has multiple LLC or multiple NUMA domains and enable
|
|
* cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
|
|
* selection policy.
|
|
*
|
|
* Assumption: the kernel's internal topology representation assumes that each
|
|
* CPU belongs to a single LLC domain, and that each LLC domain is entirely
|
|
* contained within a single NUMA node.
|
|
*/
|
|
void scx_idle_update_selcpu_topology(struct sched_ext_ops *ops)
|
|
{
|
|
bool enable_llc = false, enable_numa = false;
|
|
unsigned int nr_cpus;
|
|
s32 cpu = cpumask_first(cpu_online_mask);
|
|
|
|
/*
|
|
* Enable LLC domain optimization only when there are multiple LLC
|
|
* domains among the online CPUs. If all online CPUs are part of a
|
|
* single LLC domain, the idle CPU selection logic can choose any
|
|
* online CPU without bias.
|
|
*
|
|
* Note that it is sufficient to check the LLC domain of the first
|
|
* online CPU to determine whether a single LLC domain includes all
|
|
* CPUs.
|
|
*/
|
|
rcu_read_lock();
|
|
nr_cpus = llc_weight(cpu);
|
|
if (nr_cpus > 0) {
|
|
if (nr_cpus < num_online_cpus())
|
|
enable_llc = true;
|
|
pr_debug("sched_ext: LLC=%*pb weight=%u\n",
|
|
cpumask_pr_args(llc_span(cpu)), llc_weight(cpu));
|
|
}
|
|
|
|
/*
|
|
* Enable NUMA optimization only when there are multiple NUMA domains
|
|
* among the online CPUs and the NUMA domains don't perfectly overlaps
|
|
* with the LLC domains.
|
|
*
|
|
* If all CPUs belong to the same NUMA node and the same LLC domain,
|
|
* enabling both NUMA and LLC optimizations is unnecessary, as checking
|
|
* for an idle CPU in the same domain twice is redundant.
|
|
*
|
|
* If SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled ignore the NUMA
|
|
* optimization, as we would naturally select idle CPUs within
|
|
* specific NUMA nodes querying the corresponding per-node cpumask.
|
|
*/
|
|
if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
|
|
nr_cpus = numa_weight(cpu);
|
|
if (nr_cpus > 0) {
|
|
if (nr_cpus < num_online_cpus() && llc_numa_mismatch())
|
|
enable_numa = true;
|
|
pr_debug("sched_ext: NUMA=%*pb weight=%u\n",
|
|
cpumask_pr_args(numa_span(cpu)), nr_cpus);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
pr_debug("sched_ext: LLC idle selection %s\n",
|
|
str_enabled_disabled(enable_llc));
|
|
pr_debug("sched_ext: NUMA idle selection %s\n",
|
|
str_enabled_disabled(enable_numa));
|
|
|
|
if (enable_llc)
|
|
static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
|
|
else
|
|
static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
|
|
if (enable_numa)
|
|
static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
|
|
else
|
|
static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
|
|
}
|
|
|
|
/*
|
|
* Return true if @p can run on all possible CPUs, false otherwise.
|
|
*/
|
|
static inline bool task_affinity_all(const struct task_struct *p)
|
|
{
|
|
return p->nr_cpus_allowed >= num_possible_cpus();
|
|
}
|
|
|
|
/*
|
|
* Built-in CPU idle selection policy:
|
|
*
|
|
* 1. Prioritize full-idle cores:
|
|
* - always prioritize CPUs from fully idle cores (both logical CPUs are
|
|
* idle) to avoid interference caused by SMT.
|
|
*
|
|
* 2. Reuse the same CPU:
|
|
* - prefer the last used CPU to take advantage of cached data (L1, L2) and
|
|
* branch prediction optimizations.
|
|
*
|
|
* 3. Pick a CPU within the same LLC (Last-Level Cache):
|
|
* - if the above conditions aren't met, pick a CPU that shares the same
|
|
* LLC, if the LLC domain is a subset of @cpus_allowed, to maintain
|
|
* cache locality.
|
|
*
|
|
* 4. Pick a CPU within the same NUMA node, if enabled:
|
|
* - choose a CPU from the same NUMA node, if the node cpumask is a
|
|
* subset of @cpus_allowed, to reduce memory access latency.
|
|
*
|
|
* 5. Pick any idle CPU within the @cpus_allowed domain.
|
|
*
|
|
* Step 3 and 4 are performed only if the system has, respectively,
|
|
* multiple LLCs / multiple NUMA nodes (see scx_selcpu_topo_llc and
|
|
* scx_selcpu_topo_numa) and they don't contain the same subset of CPUs.
|
|
*
|
|
* If %SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled, the search will always
|
|
* begin in @prev_cpu's node and proceed to other nodes in order of
|
|
* increasing distance.
|
|
*
|
|
* Return the picked CPU if idle, or a negative value otherwise.
|
|
*
|
|
* NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
|
|
* we never call ops.select_cpu() for them, see select_task_rq().
|
|
*/
|
|
s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
|
|
const struct cpumask *cpus_allowed, u64 flags)
|
|
{
|
|
const struct cpumask *llc_cpus = NULL, *numa_cpus = NULL;
|
|
const struct cpumask *allowed = cpus_allowed ?: p->cpus_ptr;
|
|
int node = scx_cpu_node_if_enabled(prev_cpu);
|
|
bool is_prev_allowed;
|
|
s32 cpu;
|
|
|
|
preempt_disable();
|
|
|
|
/*
|
|
* Check whether @prev_cpu is still within the allowed set. If not,
|
|
* we can still try selecting a nearby CPU.
|
|
*/
|
|
is_prev_allowed = cpumask_test_cpu(prev_cpu, allowed);
|
|
|
|
/*
|
|
* Determine the subset of CPUs usable by @p within @cpus_allowed.
|
|
*/
|
|
if (allowed != p->cpus_ptr) {
|
|
struct cpumask *local_cpus = this_cpu_cpumask_var_ptr(local_idle_cpumask);
|
|
|
|
if (task_affinity_all(p)) {
|
|
allowed = cpus_allowed;
|
|
} else if (cpumask_and(local_cpus, cpus_allowed, p->cpus_ptr)) {
|
|
allowed = local_cpus;
|
|
} else {
|
|
cpu = -EBUSY;
|
|
goto out_enable;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is necessary to protect llc_cpus.
|
|
*/
|
|
rcu_read_lock();
|
|
|
|
/*
|
|
* Determine the subset of CPUs that the task can use in its
|
|
* current LLC and node.
|
|
*
|
|
* If the task can run on all CPUs, use the node and LLC cpumasks
|
|
* directly.
|
|
*/
|
|
if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa)) {
|
|
struct cpumask *local_cpus = this_cpu_cpumask_var_ptr(local_numa_idle_cpumask);
|
|
const struct cpumask *cpus = numa_span(prev_cpu);
|
|
|
|
if (allowed == p->cpus_ptr && task_affinity_all(p))
|
|
numa_cpus = cpus;
|
|
else if (cpus && cpumask_and(local_cpus, allowed, cpus))
|
|
numa_cpus = local_cpus;
|
|
}
|
|
|
|
if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) {
|
|
struct cpumask *local_cpus = this_cpu_cpumask_var_ptr(local_llc_idle_cpumask);
|
|
const struct cpumask *cpus = llc_span(prev_cpu);
|
|
|
|
if (allowed == p->cpus_ptr && task_affinity_all(p))
|
|
llc_cpus = cpus;
|
|
else if (cpus && cpumask_and(local_cpus, allowed, cpus))
|
|
llc_cpus = local_cpus;
|
|
}
|
|
|
|
/*
|
|
* If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
|
|
*/
|
|
if (wake_flags & SCX_WAKE_SYNC) {
|
|
int waker_node;
|
|
|
|
/*
|
|
* If the waker's CPU is cache affine and prev_cpu is idle,
|
|
* then avoid a migration.
|
|
*/
|
|
cpu = smp_processor_id();
|
|
if (is_prev_allowed && cpus_share_cache(cpu, prev_cpu) &&
|
|
scx_idle_test_and_clear_cpu(prev_cpu)) {
|
|
cpu = prev_cpu;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* If the waker's local DSQ is empty, and the system is under
|
|
* utilized, try to wake up @p to the local DSQ of the waker.
|
|
*
|
|
* Checking only for an empty local DSQ is insufficient as it
|
|
* could give the wakee an unfair advantage when the system is
|
|
* oversaturated.
|
|
*
|
|
* Checking only for the presence of idle CPUs is also
|
|
* insufficient as the local DSQ of the waker could have tasks
|
|
* piled up on it even if there is an idle core elsewhere on
|
|
* the system.
|
|
*/
|
|
waker_node = cpu_to_node(cpu);
|
|
if (!(current->flags & PF_EXITING) &&
|
|
cpu_rq(cpu)->scx.local_dsq.nr == 0 &&
|
|
(!(flags & SCX_PICK_IDLE_IN_NODE) || (waker_node == node)) &&
|
|
!cpumask_empty(idle_cpumask(waker_node)->cpu)) {
|
|
if (cpumask_test_cpu(cpu, allowed))
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If CPU has SMT, any wholly idle CPU is likely a better pick than
|
|
* partially idle @prev_cpu.
|
|
*/
|
|
if (sched_smt_active()) {
|
|
/*
|
|
* Keep using @prev_cpu if it's part of a fully idle core.
|
|
*/
|
|
if (is_prev_allowed &&
|
|
cpumask_test_cpu(prev_cpu, idle_cpumask(node)->smt) &&
|
|
scx_idle_test_and_clear_cpu(prev_cpu)) {
|
|
cpu = prev_cpu;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Search for any fully idle core in the same LLC domain.
|
|
*/
|
|
if (llc_cpus) {
|
|
cpu = pick_idle_cpu_in_node(llc_cpus, node, SCX_PICK_IDLE_CORE);
|
|
if (cpu >= 0)
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Search for any fully idle core in the same NUMA node.
|
|
*/
|
|
if (numa_cpus) {
|
|
cpu = pick_idle_cpu_in_node(numa_cpus, node, SCX_PICK_IDLE_CORE);
|
|
if (cpu >= 0)
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Search for any full-idle core usable by the task.
|
|
*
|
|
* If the node-aware idle CPU selection policy is enabled
|
|
* (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always
|
|
* begin in prev_cpu's node and proceed to other nodes in
|
|
* order of increasing distance.
|
|
*/
|
|
cpu = scx_pick_idle_cpu(allowed, node, flags | SCX_PICK_IDLE_CORE);
|
|
if (cpu >= 0)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Give up if we're strictly looking for a full-idle SMT
|
|
* core.
|
|
*/
|
|
if (flags & SCX_PICK_IDLE_CORE) {
|
|
cpu = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Use @prev_cpu if it's idle.
|
|
*/
|
|
if (is_prev_allowed && scx_idle_test_and_clear_cpu(prev_cpu)) {
|
|
cpu = prev_cpu;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Search for any idle CPU in the same LLC domain.
|
|
*/
|
|
if (llc_cpus) {
|
|
cpu = pick_idle_cpu_in_node(llc_cpus, node, 0);
|
|
if (cpu >= 0)
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Search for any idle CPU in the same NUMA node.
|
|
*/
|
|
if (numa_cpus) {
|
|
cpu = pick_idle_cpu_in_node(numa_cpus, node, 0);
|
|
if (cpu >= 0)
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Search for any idle CPU usable by the task.
|
|
*
|
|
* If the node-aware idle CPU selection policy is enabled
|
|
* (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always begin
|
|
* in prev_cpu's node and proceed to other nodes in order of
|
|
* increasing distance.
|
|
*/
|
|
cpu = scx_pick_idle_cpu(allowed, node, flags);
|
|
|
|
out_unlock:
|
|
rcu_read_unlock();
|
|
out_enable:
|
|
preempt_enable();
|
|
|
|
return cpu;
|
|
}
|
|
|
|
/*
|
|
* Initialize global and per-node idle cpumasks.
|
|
*/
|
|
void scx_idle_init_masks(void)
|
|
{
|
|
int i;
|
|
|
|
/* Allocate global idle cpumasks */
|
|
BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.cpu, GFP_KERNEL));
|
|
BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.smt, GFP_KERNEL));
|
|
|
|
/* Allocate per-node idle cpumasks */
|
|
scx_idle_node_masks = kcalloc(num_possible_nodes(),
|
|
sizeof(*scx_idle_node_masks), GFP_KERNEL);
|
|
BUG_ON(!scx_idle_node_masks);
|
|
|
|
for_each_node(i) {
|
|
scx_idle_node_masks[i] = kzalloc_node(sizeof(**scx_idle_node_masks),
|
|
GFP_KERNEL, i);
|
|
BUG_ON(!scx_idle_node_masks[i]);
|
|
|
|
BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[i]->cpu, GFP_KERNEL, i));
|
|
BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[i]->smt, GFP_KERNEL, i));
|
|
}
|
|
|
|
/* Allocate local per-cpu idle cpumasks */
|
|
for_each_possible_cpu(i) {
|
|
BUG_ON(!alloc_cpumask_var_node(&per_cpu(local_idle_cpumask, i),
|
|
GFP_KERNEL, cpu_to_node(i)));
|
|
BUG_ON(!alloc_cpumask_var_node(&per_cpu(local_llc_idle_cpumask, i),
|
|
GFP_KERNEL, cpu_to_node(i)));
|
|
BUG_ON(!alloc_cpumask_var_node(&per_cpu(local_numa_idle_cpumask, i),
|
|
GFP_KERNEL, cpu_to_node(i)));
|
|
}
|
|
}
|
|
|
|
static void update_builtin_idle(int cpu, bool idle)
|
|
{
|
|
int node = scx_cpu_node_if_enabled(cpu);
|
|
struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
|
|
|
|
assign_cpu(cpu, idle_cpus, idle);
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
if (sched_smt_active()) {
|
|
const struct cpumask *smt = cpu_smt_mask(cpu);
|
|
struct cpumask *idle_smts = idle_cpumask(node)->smt;
|
|
|
|
if (idle) {
|
|
/*
|
|
* idle_smt handling is racy but that's fine as it's
|
|
* only for optimization and self-correcting.
|
|
*/
|
|
if (!cpumask_subset(smt, idle_cpus))
|
|
return;
|
|
cpumask_or(idle_smts, idle_smts, smt);
|
|
} else {
|
|
cpumask_andnot(idle_smts, idle_smts, smt);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Update the idle state of a CPU to @idle.
|
|
*
|
|
* If @do_notify is true, ops.update_idle() is invoked to notify the scx
|
|
* scheduler of an actual idle state transition (idle to busy or vice
|
|
* versa). If @do_notify is false, only the idle state in the idle masks is
|
|
* refreshed without invoking ops.update_idle().
|
|
*
|
|
* This distinction is necessary, because an idle CPU can be "reserved" and
|
|
* awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as
|
|
* busy even if no tasks are dispatched. In this case, the CPU may return
|
|
* to idle without a true state transition. Refreshing the idle masks
|
|
* without invoking ops.update_idle() ensures accurate idle state tracking
|
|
* while avoiding unnecessary updates and maintaining balanced state
|
|
* transitions.
|
|
*/
|
|
void __scx_update_idle(struct rq *rq, bool idle, bool do_notify)
|
|
{
|
|
struct scx_sched *sch = scx_root;
|
|
int cpu = cpu_of(rq);
|
|
|
|
lockdep_assert_rq_held(rq);
|
|
|
|
/*
|
|
* Update the idle masks:
|
|
* - for real idle transitions (do_notify == true)
|
|
* - for idle-to-idle transitions (indicated by the previous task
|
|
* being the idle thread, managed by pick_task_idle())
|
|
*
|
|
* Skip updating idle masks if the previous task is not the idle
|
|
* thread, since set_next_task_idle() has already handled it when
|
|
* transitioning from a task to the idle thread (calling this
|
|
* function with do_notify == true).
|
|
*
|
|
* In this way we can avoid updating the idle masks twice,
|
|
* unnecessarily.
|
|
*/
|
|
if (static_branch_likely(&scx_builtin_idle_enabled))
|
|
if (do_notify || is_idle_task(rq->curr))
|
|
update_builtin_idle(cpu, idle);
|
|
|
|
/*
|
|
* Trigger ops.update_idle() only when transitioning from a task to
|
|
* the idle thread and vice versa.
|
|
*
|
|
* Idle transitions are indicated by do_notify being set to true,
|
|
* managed by put_prev_task_idle()/set_next_task_idle().
|
|
*
|
|
* This must come after builtin idle update so that BPF schedulers can
|
|
* create interlocking between ops.update_idle() and ops.enqueue() -
|
|
* either enqueue() sees the idle bit or update_idle() sees the task
|
|
* that enqueue() queued.
|
|
*/
|
|
if (SCX_HAS_OP(sch, update_idle) && do_notify && !scx_rq_bypassing(rq))
|
|
SCX_CALL_OP(sch, SCX_KF_REST, update_idle, rq, cpu_of(rq), idle);
|
|
}
|
|
|
|
static void reset_idle_masks(struct sched_ext_ops *ops)
|
|
{
|
|
int node;
|
|
|
|
/*
|
|
* Consider all online cpus idle. Should converge to the actual state
|
|
* quickly.
|
|
*/
|
|
if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
|
|
cpumask_copy(idle_cpumask(NUMA_NO_NODE)->cpu, cpu_online_mask);
|
|
cpumask_copy(idle_cpumask(NUMA_NO_NODE)->smt, cpu_online_mask);
|
|
return;
|
|
}
|
|
|
|
for_each_node(node) {
|
|
const struct cpumask *node_mask = cpumask_of_node(node);
|
|
|
|
cpumask_and(idle_cpumask(node)->cpu, cpu_online_mask, node_mask);
|
|
cpumask_and(idle_cpumask(node)->smt, cpu_online_mask, node_mask);
|
|
}
|
|
}
|
|
|
|
void scx_idle_enable(struct sched_ext_ops *ops)
|
|
{
|
|
if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))
|
|
static_branch_enable_cpuslocked(&scx_builtin_idle_enabled);
|
|
else
|
|
static_branch_disable_cpuslocked(&scx_builtin_idle_enabled);
|
|
|
|
if (ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)
|
|
static_branch_enable_cpuslocked(&scx_builtin_idle_per_node);
|
|
else
|
|
static_branch_disable_cpuslocked(&scx_builtin_idle_per_node);
|
|
|
|
reset_idle_masks(ops);
|
|
}
|
|
|
|
void scx_idle_disable(void)
|
|
{
|
|
static_branch_disable(&scx_builtin_idle_enabled);
|
|
static_branch_disable(&scx_builtin_idle_per_node);
|
|
}
|
|
|
|
/********************************************************************************
|
|
* Helpers that can be called from the BPF scheduler.
|
|
*/
|
|
|
|
static int validate_node(int node)
|
|
{
|
|
if (!static_branch_likely(&scx_builtin_idle_per_node)) {
|
|
scx_kf_error("per-node idle tracking is disabled");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* Return no entry for NUMA_NO_NODE (not a critical scx error) */
|
|
if (node == NUMA_NO_NODE)
|
|
return -ENOENT;
|
|
|
|
/* Make sure node is in a valid range */
|
|
if (node < 0 || node >= nr_node_ids) {
|
|
scx_kf_error("invalid node %d", node);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Make sure the node is part of the set of possible nodes */
|
|
if (!node_possible(node)) {
|
|
scx_kf_error("unavailable node %d", node);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
__bpf_kfunc_start_defs();
|
|
|
|
static bool check_builtin_idle_enabled(void)
|
|
{
|
|
if (static_branch_likely(&scx_builtin_idle_enabled))
|
|
return true;
|
|
|
|
scx_kf_error("built-in idle tracking is disabled");
|
|
return false;
|
|
}
|
|
|
|
static s32 select_cpu_from_kfunc(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
|
|
const struct cpumask *allowed, u64 flags)
|
|
{
|
|
struct rq *rq;
|
|
struct rq_flags rf;
|
|
s32 cpu;
|
|
|
|
if (!kf_cpu_valid(prev_cpu, NULL))
|
|
return -EINVAL;
|
|
|
|
if (!check_builtin_idle_enabled())
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* If called from an unlocked context, acquire the task's rq lock,
|
|
* so that we can safely access p->cpus_ptr and p->nr_cpus_allowed.
|
|
*
|
|
* Otherwise, allow to use this kfunc only from ops.select_cpu()
|
|
* and ops.select_enqueue().
|
|
*/
|
|
if (scx_kf_allowed_if_unlocked()) {
|
|
rq = task_rq_lock(p, &rf);
|
|
} else {
|
|
if (!scx_kf_allowed(SCX_KF_SELECT_CPU | SCX_KF_ENQUEUE))
|
|
return -EPERM;
|
|
rq = scx_locked_rq();
|
|
}
|
|
|
|
/*
|
|
* Validate locking correctness to access p->cpus_ptr and
|
|
* p->nr_cpus_allowed: if we're holding an rq lock, we're safe;
|
|
* otherwise, assert that p->pi_lock is held.
|
|
*/
|
|
if (!rq)
|
|
lockdep_assert_held(&p->pi_lock);
|
|
|
|
/*
|
|
* This may also be called from ops.enqueue(), so we need to handle
|
|
* per-CPU tasks as well. For these tasks, we can skip all idle CPU
|
|
* selection optimizations and simply check whether the previously
|
|
* used CPU is idle and within the allowed cpumask.
|
|
*/
|
|
if (p->nr_cpus_allowed == 1 || is_migration_disabled(p)) {
|
|
if (cpumask_test_cpu(prev_cpu, allowed ?: p->cpus_ptr) &&
|
|
scx_idle_test_and_clear_cpu(prev_cpu))
|
|
cpu = prev_cpu;
|
|
else
|
|
cpu = -EBUSY;
|
|
} else {
|
|
cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags,
|
|
allowed ?: p->cpus_ptr, flags);
|
|
}
|
|
|
|
if (scx_kf_allowed_if_unlocked())
|
|
task_rq_unlock(rq, p, &rf);
|
|
|
|
return cpu;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_cpu_node - Return the NUMA node the given @cpu belongs to, or
|
|
* trigger an error if @cpu is invalid
|
|
* @cpu: target CPU
|
|
*/
|
|
__bpf_kfunc int scx_bpf_cpu_node(s32 cpu)
|
|
{
|
|
if (!kf_cpu_valid(cpu, NULL))
|
|
return NUMA_NO_NODE;
|
|
|
|
return cpu_to_node(cpu);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
|
|
* @p: task_struct to select a CPU for
|
|
* @prev_cpu: CPU @p was on previously
|
|
* @wake_flags: %SCX_WAKE_* flags
|
|
* @is_idle: out parameter indicating whether the returned CPU is idle
|
|
*
|
|
* Can be called from ops.select_cpu(), ops.enqueue(), or from an unlocked
|
|
* context such as a BPF test_run() call, as long as built-in CPU selection
|
|
* is enabled: ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE
|
|
* is set.
|
|
*
|
|
* Returns the picked CPU with *@is_idle indicating whether the picked CPU is
|
|
* currently idle and thus a good candidate for direct dispatching.
|
|
*/
|
|
__bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
|
|
u64 wake_flags, bool *is_idle)
|
|
{
|
|
s32 cpu;
|
|
|
|
cpu = select_cpu_from_kfunc(p, prev_cpu, wake_flags, NULL, 0);
|
|
if (cpu >= 0) {
|
|
*is_idle = true;
|
|
return cpu;
|
|
}
|
|
*is_idle = false;
|
|
|
|
return prev_cpu;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_select_cpu_and - Pick an idle CPU usable by task @p,
|
|
* prioritizing those in @cpus_allowed
|
|
* @p: task_struct to select a CPU for
|
|
* @prev_cpu: CPU @p was on previously
|
|
* @wake_flags: %SCX_WAKE_* flags
|
|
* @cpus_allowed: cpumask of allowed CPUs
|
|
* @flags: %SCX_PICK_IDLE* flags
|
|
*
|
|
* Can be called from ops.select_cpu(), ops.enqueue(), or from an unlocked
|
|
* context such as a BPF test_run() call, as long as built-in CPU selection
|
|
* is enabled: ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE
|
|
* is set.
|
|
*
|
|
* @p, @prev_cpu and @wake_flags match ops.select_cpu().
|
|
*
|
|
* Returns the selected idle CPU, which will be automatically awakened upon
|
|
* returning from ops.select_cpu() and can be used for direct dispatch, or
|
|
* a negative value if no idle CPU is available.
|
|
*/
|
|
__bpf_kfunc s32 scx_bpf_select_cpu_and(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
|
|
const struct cpumask *cpus_allowed, u64 flags)
|
|
{
|
|
return select_cpu_from_kfunc(p, prev_cpu, wake_flags, cpus_allowed, flags);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_get_idle_cpumask_node - Get a referenced kptr to the
|
|
* idle-tracking per-CPU cpumask of a target NUMA node.
|
|
* @node: target NUMA node
|
|
*
|
|
* Returns an empty cpumask if idle tracking is not enabled, if @node is
|
|
* not valid, or running on a UP kernel. In this case the actual error will
|
|
* be reported to the BPF scheduler via scx_error().
|
|
*/
|
|
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask_node(int node)
|
|
{
|
|
node = validate_node(node);
|
|
if (node < 0)
|
|
return cpu_none_mask;
|
|
|
|
return idle_cpumask(node)->cpu;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
|
|
* per-CPU cpumask.
|
|
*
|
|
* Returns an empty mask if idle tracking is not enabled, or running on a
|
|
* UP kernel.
|
|
*/
|
|
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
|
|
{
|
|
if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
|
|
scx_kf_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
|
|
return cpu_none_mask;
|
|
}
|
|
|
|
if (!check_builtin_idle_enabled())
|
|
return cpu_none_mask;
|
|
|
|
return idle_cpumask(NUMA_NO_NODE)->cpu;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_get_idle_smtmask_node - Get a referenced kptr to the
|
|
* idle-tracking, per-physical-core cpumask of a target NUMA node. Can be
|
|
* used to determine if an entire physical core is free.
|
|
* @node: target NUMA node
|
|
*
|
|
* Returns an empty cpumask if idle tracking is not enabled, if @node is
|
|
* not valid, or running on a UP kernel. In this case the actual error will
|
|
* be reported to the BPF scheduler via scx_error().
|
|
*/
|
|
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask_node(int node)
|
|
{
|
|
node = validate_node(node);
|
|
if (node < 0)
|
|
return cpu_none_mask;
|
|
|
|
if (sched_smt_active())
|
|
return idle_cpumask(node)->smt;
|
|
else
|
|
return idle_cpumask(node)->cpu;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
|
|
* per-physical-core cpumask. Can be used to determine if an entire physical
|
|
* core is free.
|
|
*
|
|
* Returns an empty mask if idle tracking is not enabled, or running on a
|
|
* UP kernel.
|
|
*/
|
|
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
|
|
{
|
|
if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
|
|
scx_kf_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
|
|
return cpu_none_mask;
|
|
}
|
|
|
|
if (!check_builtin_idle_enabled())
|
|
return cpu_none_mask;
|
|
|
|
if (sched_smt_active())
|
|
return idle_cpumask(NUMA_NO_NODE)->smt;
|
|
else
|
|
return idle_cpumask(NUMA_NO_NODE)->cpu;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
|
|
* either the percpu, or SMT idle-tracking cpumask.
|
|
* @idle_mask: &cpumask to use
|
|
*/
|
|
__bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
|
|
{
|
|
/*
|
|
* Empty function body because we aren't actually acquiring or releasing
|
|
* a reference to a global idle cpumask, which is read-only in the
|
|
* caller and is never released. The acquire / release semantics here
|
|
* are just used to make the cpumask a trusted pointer in the caller.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
|
|
* @cpu: cpu to test and clear idle for
|
|
*
|
|
* Returns %true if @cpu was idle and its idle state was successfully cleared.
|
|
* %false otherwise.
|
|
*
|
|
* Unavailable if ops.update_idle() is implemented and
|
|
* %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
|
|
*/
|
|
__bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
|
|
{
|
|
if (!check_builtin_idle_enabled())
|
|
return false;
|
|
|
|
if (!kf_cpu_valid(cpu, NULL))
|
|
return false;
|
|
|
|
return scx_idle_test_and_clear_cpu(cpu);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_pick_idle_cpu_node - Pick and claim an idle cpu from @node
|
|
* @cpus_allowed: Allowed cpumask
|
|
* @node: target NUMA node
|
|
* @flags: %SCX_PICK_IDLE_* flags
|
|
*
|
|
* Pick and claim an idle cpu in @cpus_allowed from the NUMA node @node.
|
|
*
|
|
* Returns the picked idle cpu number on success, or -%EBUSY if no matching
|
|
* cpu was found.
|
|
*
|
|
* The search starts from @node and proceeds to other online NUMA nodes in
|
|
* order of increasing distance (unless SCX_PICK_IDLE_IN_NODE is specified,
|
|
* in which case the search is limited to the target @node).
|
|
*
|
|
* Always returns an error if ops.update_idle() is implemented and
|
|
* %SCX_OPS_KEEP_BUILTIN_IDLE is not set, or if
|
|
* %SCX_OPS_BUILTIN_IDLE_PER_NODE is not set.
|
|
*/
|
|
__bpf_kfunc s32 scx_bpf_pick_idle_cpu_node(const struct cpumask *cpus_allowed,
|
|
int node, u64 flags)
|
|
{
|
|
node = validate_node(node);
|
|
if (node < 0)
|
|
return node;
|
|
|
|
return scx_pick_idle_cpu(cpus_allowed, node, flags);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
|
|
* @cpus_allowed: Allowed cpumask
|
|
* @flags: %SCX_PICK_IDLE_CPU_* flags
|
|
*
|
|
* Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
|
|
* number on success. -%EBUSY if no matching cpu was found.
|
|
*
|
|
* Idle CPU tracking may race against CPU scheduling state transitions. For
|
|
* example, this function may return -%EBUSY as CPUs are transitioning into the
|
|
* idle state. If the caller then assumes that there will be dispatch events on
|
|
* the CPUs as they were all busy, the scheduler may end up stalling with CPUs
|
|
* idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
|
|
* scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
|
|
* event in the near future.
|
|
*
|
|
* Unavailable if ops.update_idle() is implemented and
|
|
* %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
|
|
*
|
|
* Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use
|
|
* scx_bpf_pick_idle_cpu_node() instead.
|
|
*/
|
|
__bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
|
|
u64 flags)
|
|
{
|
|
if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) {
|
|
scx_kf_error("per-node idle tracking is enabled");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (!check_builtin_idle_enabled())
|
|
return -EBUSY;
|
|
|
|
return scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_pick_any_cpu_node - Pick and claim an idle cpu if available
|
|
* or pick any CPU from @node
|
|
* @cpus_allowed: Allowed cpumask
|
|
* @node: target NUMA node
|
|
* @flags: %SCX_PICK_IDLE_CPU_* flags
|
|
*
|
|
* Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
|
|
* CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
|
|
* number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
|
|
* empty.
|
|
*
|
|
* The search starts from @node and proceeds to other online NUMA nodes in
|
|
* order of increasing distance (unless %SCX_PICK_IDLE_IN_NODE is specified,
|
|
* in which case the search is limited to the target @node, regardless of
|
|
* the CPU idle state).
|
|
*
|
|
* If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
|
|
* set, this function can't tell which CPUs are idle and will always pick any
|
|
* CPU.
|
|
*/
|
|
__bpf_kfunc s32 scx_bpf_pick_any_cpu_node(const struct cpumask *cpus_allowed,
|
|
int node, u64 flags)
|
|
{
|
|
s32 cpu;
|
|
|
|
node = validate_node(node);
|
|
if (node < 0)
|
|
return node;
|
|
|
|
cpu = scx_pick_idle_cpu(cpus_allowed, node, flags);
|
|
if (cpu >= 0)
|
|
return cpu;
|
|
|
|
if (flags & SCX_PICK_IDLE_IN_NODE)
|
|
cpu = cpumask_any_and_distribute(cpumask_of_node(node), cpus_allowed);
|
|
else
|
|
cpu = cpumask_any_distribute(cpus_allowed);
|
|
if (cpu < nr_cpu_ids)
|
|
return cpu;
|
|
else
|
|
return -EBUSY;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
|
|
* @cpus_allowed: Allowed cpumask
|
|
* @flags: %SCX_PICK_IDLE_CPU_* flags
|
|
*
|
|
* Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
|
|
* CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
|
|
* number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
|
|
* empty.
|
|
*
|
|
* If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
|
|
* set, this function can't tell which CPUs are idle and will always pick any
|
|
* CPU.
|
|
*
|
|
* Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use
|
|
* scx_bpf_pick_any_cpu_node() instead.
|
|
*/
|
|
__bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
|
|
u64 flags)
|
|
{
|
|
s32 cpu;
|
|
|
|
if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) {
|
|
scx_kf_error("per-node idle tracking is enabled");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (static_branch_likely(&scx_builtin_idle_enabled)) {
|
|
cpu = scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
|
|
if (cpu >= 0)
|
|
return cpu;
|
|
}
|
|
|
|
cpu = cpumask_any_distribute(cpus_allowed);
|
|
if (cpu < nr_cpu_ids)
|
|
return cpu;
|
|
else
|
|
return -EBUSY;
|
|
}
|
|
|
|
__bpf_kfunc_end_defs();
|
|
|
|
BTF_KFUNCS_START(scx_kfunc_ids_idle)
|
|
BTF_ID_FLAGS(func, scx_bpf_cpu_node)
|
|
BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask_node, KF_ACQUIRE)
|
|
BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
|
|
BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask_node, KF_ACQUIRE)
|
|
BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
|
|
BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
|
|
BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
|
|
BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu_node, KF_RCU)
|
|
BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
|
|
BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu_node, KF_RCU)
|
|
BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
|
|
BTF_ID_FLAGS(func, scx_bpf_select_cpu_and, KF_RCU)
|
|
BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
|
|
BTF_KFUNCS_END(scx_kfunc_ids_idle)
|
|
|
|
static const struct btf_kfunc_id_set scx_kfunc_set_idle = {
|
|
.owner = THIS_MODULE,
|
|
.set = &scx_kfunc_ids_idle,
|
|
};
|
|
|
|
int scx_idle_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_idle) ||
|
|
register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &scx_kfunc_set_idle) ||
|
|
register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &scx_kfunc_set_idle);
|
|
|
|
return ret;
|
|
}
|