linux/rust/kernel/dma.rs
Miguel Ojeda 8ecb65b7b6 Alloc & DMA changes for v6.17
Box:
   - Implement Borrow / BorrowMut for Box<T, A>.
 
 Vec:
   - Implement Default for Vec<T, A>.
 
   - Implement Borrow / BorrowMut for Vec<T, A>.
 
 DMA:
   - Clarify wording and be consistent in 'coherent' nomenclature.
 
   - Convert the read!() / write!() macros to return a Result.
 
   - Add as_slice() / write() methods in CoherentAllocation.
 
   - Fix doc-comment of dma_handle().
 
   - Expose count() and size() in CoherentAllocation and add the
     corresponding type invariants.
 
   - Implement CoherentAllocation::dma_handle_with_offset().
 
   - Require mutable reference for as_slice_mut() and write().
 
 - Add Vlastimil Babka, Liam R. Howlett, Uladzislau Rezki and Lorenzo Stoakes
   as reviewers (thanks everyone).
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQS2q/xV6QjXAdC7k+1FlHeO1qrKLgUCaHZWlAAKCRBFlHeO1qrK
 LgBrAQDgp1+5ocMJKJDgBtCXpRCe2F9OBz9L7CY1EzSRz2JHTAD/YZ5D1DeSi1l8
 U+tqG9+5i8twB3PR/TC4d7+GaBfTcQQ=
 =LaOk
 -----END PGP SIGNATURE-----

Merge tag 'alloc-next-v6.17-2025-07-15' of https://github.com/Rust-for-Linux/linux into rust-next

Pull alloc and DMA updates from Danilo Krummrich:

  Box:
   - Implement Borrow / BorrowMut for Box<T, A>.

  Vec:
   - Implement Default for Vec<T, A>.

   - Implement Borrow / BorrowMut for Vec<T, A>.

  DMA:
   - Clarify wording and be consistent in 'coherent' nomenclature.

   - Convert the read!() / write!() macros to return a Result.

   - Add as_slice() / write() methods in CoherentAllocation.

   - Fix doc-comment of dma_handle().

   - Expose count() and size() in CoherentAllocation and add the
     corresponding type invariants.

   - Implement CoherentAllocation::dma_handle_with_offset().

   - Require mutable reference for as_slice_mut() and write().

  MAINTAINERS:
   - Add Vlastimil Babka, Liam R. Howlett, Uladzislau Rezki and Lorenzo
     Stoakes as reviewers (thanks everyone).

* tag 'alloc-next-v6.17-2025-07-15' of https://github.com/Rust-for-Linux/linux:
  MAINTAINERS: add mm folks as reviewers to rust alloc
  rust: dma: require mutable reference for as_slice_mut() and write()
  rust: dma: add dma_handle_with_offset method to CoherentAllocation
  rust: dma: expose the count and size of CoherentAllocation
  rust: dma: fix doc-comment of dma_handle()
  rust: dma: add as_slice/write functions for CoherentAllocation
  rust: dma: convert the read/write macros to return Result
  rust: dma: clarify wording and be consistent in `coherent` nomenclature
  rust: alloc: implement `Borrow` and `BorrowMut` for `KBox`
  rust: alloc: implement `Borrow` and `BorrowMut` for `Vec`
  rust: vec: impl Default for Vec with any allocator
2025-07-15 23:42:55 +02:00

522 lines
21 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! Direct memory access (DMA).
//!
//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
use crate::{
bindings, build_assert,
device::{Bound, Device},
error::code::*,
error::Result,
transmute::{AsBytes, FromBytes},
types::ARef,
};
/// Possible attributes associated with a DMA mapping.
///
/// They can be combined with the operators `|`, `&`, and `!`.
///
/// Values can be used from the [`attrs`] module.
///
/// # Examples
///
/// ```
/// # use kernel::device::{Bound, Device};
/// use kernel::dma::{attrs::*, CoherentAllocation};
///
/// # fn test(dev: &Device<Bound>) -> Result {
/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
/// let c: CoherentAllocation<u64> =
/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
/// # Ok::<(), Error>(()) }
/// ```
#[derive(Clone, Copy, PartialEq)]
#[repr(transparent)]
pub struct Attrs(u32);
impl Attrs {
/// Get the raw representation of this attribute.
pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
self.0 as crate::ffi::c_ulong
}
/// Check whether `flags` is contained in `self`.
pub fn contains(self, flags: Attrs) -> bool {
(self & flags) == flags
}
}
impl core::ops::BitOr for Attrs {
type Output = Self;
fn bitor(self, rhs: Self) -> Self::Output {
Self(self.0 | rhs.0)
}
}
impl core::ops::BitAnd for Attrs {
type Output = Self;
fn bitand(self, rhs: Self) -> Self::Output {
Self(self.0 & rhs.0)
}
}
impl core::ops::Not for Attrs {
type Output = Self;
fn not(self) -> Self::Output {
Self(!self.0)
}
}
/// DMA mapping attributes.
pub mod attrs {
use super::Attrs;
/// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
/// and writes may pass each other.
pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
/// Specifies that writes to the mapping may be buffered to improve performance.
pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
/// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
/// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
/// that it has been already transferred to 'device' domain.
pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
/// Forces contiguous allocation of the buffer in physical memory.
pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
/// Hints DMA-mapping subsystem that it's probably not worth the time to try
/// to allocate memory to in a way that gives better TLB efficiency.
pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
/// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
/// `__GFP_NOWARN`).
pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
/// Indicates that the buffer is fully accessible at an elevated privilege level (and
/// ideally inaccessible or at least read-only at lesser-privileged levels).
pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
}
/// An abstraction of the `dma_alloc_coherent` API.
///
/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
/// large coherent DMA regions.
///
/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
/// processor's virtual address space) and the device address which can be given to the device
/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
/// is dropped.
///
/// # Invariants
///
/// - For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
/// to an allocated region of coherent memory and `dma_handle` is the DMA address base of the
/// region.
/// - The size in bytes of the allocation is equal to `size_of::<T> * count`.
/// - `size_of::<T> * count` fits into a `usize`.
// TODO
//
// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
// that device resources can never survive device unbind.
//
// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
// allocation from surviving device unbind; it would require RCU read side critical sections to
// access the memory, which may require subsequent unnecessary copies.
//
// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
// entire `CoherentAllocation` including the allocated memory itself.
pub struct CoherentAllocation<T: AsBytes + FromBytes> {
dev: ARef<Device>,
dma_handle: bindings::dma_addr_t,
count: usize,
cpu_addr: *mut T,
dma_attrs: Attrs,
}
impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
/// Allocates a region of `size_of::<T> * count` of coherent memory.
///
/// # Examples
///
/// ```
/// # use kernel::device::{Bound, Device};
/// use kernel::dma::{attrs::*, CoherentAllocation};
///
/// # fn test(dev: &Device<Bound>) -> Result {
/// let c: CoherentAllocation<u64> =
/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
/// # Ok::<(), Error>(()) }
/// ```
pub fn alloc_attrs(
dev: &Device<Bound>,
count: usize,
gfp_flags: kernel::alloc::Flags,
dma_attrs: Attrs,
) -> Result<CoherentAllocation<T>> {
build_assert!(
core::mem::size_of::<T>() > 0,
"It doesn't make sense for the allocated type to be a ZST"
);
let size = count
.checked_mul(core::mem::size_of::<T>())
.ok_or(EOVERFLOW)?;
let mut dma_handle = 0;
// SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
let ret = unsafe {
bindings::dma_alloc_attrs(
dev.as_raw(),
size,
&mut dma_handle,
gfp_flags.as_raw(),
dma_attrs.as_raw(),
)
};
if ret.is_null() {
return Err(ENOMEM);
}
// INVARIANT:
// - We just successfully allocated a coherent region which is accessible for
// `count` elements, hence the cpu address is valid. We also hold a refcounted reference
// to the device.
// - The allocated `size` is equal to `size_of::<T> * count`.
// - The allocated `size` fits into a `usize`.
Ok(Self {
dev: dev.into(),
dma_handle,
count,
cpu_addr: ret.cast::<T>(),
dma_attrs,
})
}
/// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
/// `dma_attrs` is 0 by default.
pub fn alloc_coherent(
dev: &Device<Bound>,
count: usize,
gfp_flags: kernel::alloc::Flags,
) -> Result<CoherentAllocation<T>> {
CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
}
/// Returns the number of elements `T` in this allocation.
///
/// Note that this is not the size of the allocation in bytes, which is provided by
/// [`Self::size`].
pub fn count(&self) -> usize {
self.count
}
/// Returns the size in bytes of this allocation.
pub fn size(&self) -> usize {
// INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits into
// a `usize`.
self.count * core::mem::size_of::<T>()
}
/// Returns the base address to the allocated region in the CPU's virtual address space.
pub fn start_ptr(&self) -> *const T {
self.cpu_addr
}
/// Returns the base address to the allocated region in the CPU's virtual address space as
/// a mutable pointer.
pub fn start_ptr_mut(&mut self) -> *mut T {
self.cpu_addr
}
/// Returns a DMA handle which may be given to the device as the DMA address base of
/// the region.
pub fn dma_handle(&self) -> bindings::dma_addr_t {
self.dma_handle
}
/// Returns a DMA handle starting at `offset` (in units of `T`) which may be given to the
/// device as the DMA address base of the region.
///
/// Returns `EINVAL` if `offset` is not within the bounds of the allocation.
pub fn dma_handle_with_offset(&self, offset: usize) -> Result<bindings::dma_addr_t> {
if offset >= self.count {
Err(EINVAL)
} else {
// INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits
// into a `usize`, and `offset` is inferior to `count`.
Ok(self.dma_handle + (offset * core::mem::size_of::<T>()) as bindings::dma_addr_t)
}
}
/// Common helper to validate a range applied from the allocated region in the CPU's virtual
/// address space.
fn validate_range(&self, offset: usize, count: usize) -> Result {
if offset.checked_add(count).ok_or(EOVERFLOW)? > self.count {
return Err(EINVAL);
}
Ok(())
}
/// Returns the data from the region starting from `offset` as a slice.
/// `offset` and `count` are in units of `T`, not the number of bytes.
///
/// For ringbuffer type of r/w access or use-cases where the pointer to the live data is needed,
/// [`CoherentAllocation::start_ptr`] or [`CoherentAllocation::start_ptr_mut`] could be used
/// instead.
///
/// # Safety
///
/// * Callers must ensure that the device does not read/write to/from memory while the returned
/// slice is live.
/// * Callers must ensure that this call does not race with a write to the same region while
/// the returned slice is live.
pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> {
self.validate_range(offset, count)?;
// SAFETY:
// - The pointer is valid due to type invariant on `CoherentAllocation`,
// we've just checked that the range and index is within bounds. The immutability of the
// data is also guaranteed by the safety requirements of the function.
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
// that `self.count` won't overflow early in the constructor.
Ok(unsafe { core::slice::from_raw_parts(self.cpu_addr.add(offset), count) })
}
/// Performs the same functionality as [`CoherentAllocation::as_slice`], except that a mutable
/// slice is returned.
///
/// # Safety
///
/// * Callers must ensure that the device does not read/write to/from memory while the returned
/// slice is live.
/// * Callers must ensure that this call does not race with a read or write to the same region
/// while the returned slice is live.
pub unsafe fn as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]> {
self.validate_range(offset, count)?;
// SAFETY:
// - The pointer is valid due to type invariant on `CoherentAllocation`,
// we've just checked that the range and index is within bounds. The immutability of the
// data is also guaranteed by the safety requirements of the function.
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
// that `self.count` won't overflow early in the constructor.
Ok(unsafe { core::slice::from_raw_parts_mut(self.cpu_addr.add(offset), count) })
}
/// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the
/// number of bytes.
///
/// # Safety
///
/// * Callers must ensure that the device does not read/write to/from memory while the returned
/// slice is live.
/// * Callers must ensure that this call does not race with a read or write to the same region
/// that overlaps with this write.
///
/// # Examples
///
/// ```
/// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result {
/// let somedata: [u8; 4] = [0xf; 4];
/// let buf: &[u8] = &somedata;
/// // SAFETY: There is no concurrent HW operation on the device and no other R/W access to the
/// // region.
/// unsafe { alloc.write(buf, 0)?; }
/// # Ok::<(), Error>(()) }
/// ```
pub unsafe fn write(&mut self, src: &[T], offset: usize) -> Result {
self.validate_range(offset, src.len())?;
// SAFETY:
// - The pointer is valid due to type invariant on `CoherentAllocation`
// and we've just checked that the range and index is within bounds.
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
// that `self.count` won't overflow early in the constructor.
unsafe {
core::ptr::copy_nonoverlapping(src.as_ptr(), self.cpu_addr.add(offset), src.len())
};
Ok(())
}
/// Returns a pointer to an element from the region with bounds checking. `offset` is in
/// units of `T`, not the number of bytes.
///
/// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
#[doc(hidden)]
pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
if offset >= self.count {
return Err(EINVAL);
}
// SAFETY:
// - The pointer is valid due to type invariant on `CoherentAllocation`
// and we've just checked that the range and index is within bounds.
// - `offset` can't overflow since it is smaller than `self.count` and we've checked
// that `self.count` won't overflow early in the constructor.
Ok(unsafe { self.cpu_addr.add(offset) })
}
/// Reads the value of `field` and ensures that its type is [`FromBytes`].
///
/// # Safety
///
/// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
/// validated beforehand.
///
/// Public but hidden since it should only be used from [`dma_read`] macro.
#[doc(hidden)]
pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
// SAFETY:
// - By the safety requirements field is valid.
// - Using read_volatile() here is not sound as per the usual rules, the usage here is
// a special exception with the following notes in place. When dealing with a potential
// race from a hardware or code outside kernel (e.g. user-space program), we need that
// read on a valid memory is not UB. Currently read_volatile() is used for this, and the
// rationale behind is that it should generate the same code as READ_ONCE() which the
// kernel already relies on to avoid UB on data races. Note that the usage of
// read_volatile() is limited to this particular case, it cannot be used to prevent
// the UB caused by racing between two kernel functions nor do they provide atomicity.
unsafe { field.read_volatile() }
}
/// Writes a value to `field` and ensures that its type is [`AsBytes`].
///
/// # Safety
///
/// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
/// validated beforehand.
///
/// Public but hidden since it should only be used from [`dma_write`] macro.
#[doc(hidden)]
pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
// SAFETY:
// - By the safety requirements field is valid.
// - Using write_volatile() here is not sound as per the usual rules, the usage here is
// a special exception with the following notes in place. When dealing with a potential
// race from a hardware or code outside kernel (e.g. user-space program), we need that
// write on a valid memory is not UB. Currently write_volatile() is used for this, and the
// rationale behind is that it should generate the same code as WRITE_ONCE() which the
// kernel already relies on to avoid UB on data races. Note that the usage of
// write_volatile() is limited to this particular case, it cannot be used to prevent
// the UB caused by racing between two kernel functions nor do they provide atomicity.
unsafe { field.write_volatile(val) }
}
}
/// Note that the device configured to do DMA must be halted before this object is dropped.
impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
fn drop(&mut self) {
let size = self.count * core::mem::size_of::<T>();
// SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
// The cpu address, and the dma handle are valid due to the type invariants on
// `CoherentAllocation`.
unsafe {
bindings::dma_free_attrs(
self.dev.as_raw(),
size,
self.cpu_addr.cast(),
self.dma_handle,
self.dma_attrs.as_raw(),
)
}
}
}
// SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T`
// can be sent to another thread.
unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
/// Reads a field of an item from an allocated region of structs.
///
/// # Examples
///
/// ```
/// use kernel::device::Device;
/// use kernel::dma::{attrs::*, CoherentAllocation};
///
/// struct MyStruct { field: u32, }
///
/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
///
/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
/// let whole = kernel::dma_read!(alloc[2]);
/// let field = kernel::dma_read!(alloc[1].field);
/// # Ok::<(), Error>(()) }
/// ```
#[macro_export]
macro_rules! dma_read {
($dma:expr, $idx: expr, $($field:tt)*) => {{
(|| -> ::core::result::Result<_, $crate::error::Error> {
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
// SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
// dereferenced. The compiler also further validates the expression on whether `field`
// is a member of `item` when expanded by the macro.
unsafe {
let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
::core::result::Result::Ok(
$crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
)
}
})()
}};
($dma:ident [ $idx:expr ] $($field:tt)* ) => {
$crate::dma_read!($dma, $idx, $($field)*)
};
($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
$crate::dma_read!($($dma).*, $idx, $($field)*)
};
}
/// Writes to a field of an item from an allocated region of structs.
///
/// # Examples
///
/// ```
/// use kernel::device::Device;
/// use kernel::dma::{attrs::*, CoherentAllocation};
///
/// struct MyStruct { member: u32, }
///
/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
///
/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
/// kernel::dma_write!(alloc[2].member = 0xf);
/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
/// # Ok::<(), Error>(()) }
/// ```
#[macro_export]
macro_rules! dma_write {
($dma:ident [ $idx:expr ] $($field:tt)*) => {{
$crate::dma_write!($dma, $idx, $($field)*)
}};
($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
$crate::dma_write!($($dma).*, $idx, $($field)*)
}};
($dma:expr, $idx: expr, = $val:expr) => {
(|| -> ::core::result::Result<_, $crate::error::Error> {
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
// SAFETY: `item_from_index` ensures that `item` is always a valid item.
unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
::core::result::Result::Ok(())
})()
};
($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
(|| -> ::core::result::Result<_, $crate::error::Error> {
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
// SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
// dereferenced. The compiler also further validates the expression on whether `field`
// is a member of `item` when expanded by the macro.
unsafe {
let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
$crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
}
::core::result::Result::Ok(())
})()
};
}