linux/rust/kernel/cpufreq.rs
Viresh Kumar 33db8c97b4 rust: Use CpuId in place of raw CPU numbers
Use the newly defined `CpuId` abstraction instead of raw CPU numbers.

This also fixes a doctest failure for configurations where `nr_cpu_ids <
4`.

The C `cpumask_{set|clear}_cpu()` APIs emit a warning when given an
invalid CPU number — but only if `CONFIG_DEBUG_PER_CPU_MAPS=y` is set.

Meanwhile, `cpumask_weight()` only considers CPUs up to `nr_cpu_ids`,
which can cause inconsistencies: a CPU number greater than `nr_cpu_ids`
may be set in the mask, yet the weight calculation won't reflect it.

This leads to doctest failures when `nr_cpu_ids < 4`, as the test tries
to set CPUs 2 and 3:

  rust_doctest_kernel_cpumask_rs_0.location: rust/kernel/cpumask.rs:180
  rust_doctest_kernel_cpumask_rs_0: ASSERTION FAILED at rust/kernel/cpumask.rs:190

Fixes: 8961b8cb30 ("rust: cpumask: Add initial abstractions")
Reported-by: Miguel Ojeda <ojeda@kernel.org>
Closes: https://lore.kernel.org/rust-for-linux/CANiq72k3ozKkLMinTLQwvkyg9K=BeRxs1oYZSKhJHY-veEyZdg@mail.gmail.com/
Reported-by: Andreas Hindborg <a.hindborg@kernel.org>
Closes: https://lore.kernel.org/all/87qzzy3ric.fsf@kernel.org/
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Boqun Feng <boqun.feng@gmail.com>
2025-06-12 10:31:28 +05:30

1404 lines
45 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! CPU frequency scaling.
//!
//! This module provides rust abstractions for interacting with the cpufreq subsystem.
//!
//! C header: [`include/linux/cpufreq.h`](srctree/include/linux/cpufreq.h)
//!
//! Reference: <https://docs.kernel.org/admin-guide/pm/cpufreq.html>
use crate::{
clk::Hertz,
cpu::CpuId,
cpumask,
device::{Bound, Device},
devres::Devres,
error::{code::*, from_err_ptr, from_result, to_result, Result, VTABLE_DEFAULT_ERROR},
ffi::{c_char, c_ulong},
prelude::*,
types::ForeignOwnable,
types::Opaque,
};
#[cfg(CONFIG_COMMON_CLK)]
use crate::clk::Clk;
use core::{
cell::UnsafeCell,
marker::PhantomData,
mem::MaybeUninit,
ops::{Deref, DerefMut},
pin::Pin,
ptr,
};
use macros::vtable;
/// Maximum length of CPU frequency driver's name.
const CPUFREQ_NAME_LEN: usize = bindings::CPUFREQ_NAME_LEN as usize;
/// Default transition latency value in nanoseconds.
pub const ETERNAL_LATENCY_NS: u32 = bindings::CPUFREQ_ETERNAL as u32;
/// CPU frequency driver flags.
pub mod flags {
/// Driver needs to update internal limits even if frequency remains unchanged.
pub const NEED_UPDATE_LIMITS: u16 = 1 << 0;
/// Platform where constants like `loops_per_jiffy` are unaffected by frequency changes.
pub const CONST_LOOPS: u16 = 1 << 1;
/// Register driver as a thermal cooling device automatically.
pub const IS_COOLING_DEV: u16 = 1 << 2;
/// Supports multiple clock domains with per-policy governors in `cpu/cpuN/cpufreq/`.
pub const HAVE_GOVERNOR_PER_POLICY: u16 = 1 << 3;
/// Allows post-change notifications outside of the `target()` routine.
pub const ASYNC_NOTIFICATION: u16 = 1 << 4;
/// Ensure CPU starts at a valid frequency from the driver's freq-table.
pub const NEED_INITIAL_FREQ_CHECK: u16 = 1 << 5;
/// Disallow governors with `dynamic_switching` capability.
pub const NO_AUTO_DYNAMIC_SWITCHING: u16 = 1 << 6;
}
/// Relations from the C code.
const CPUFREQ_RELATION_L: u32 = 0;
const CPUFREQ_RELATION_H: u32 = 1;
const CPUFREQ_RELATION_C: u32 = 2;
/// Can be used with any of the above values.
const CPUFREQ_RELATION_E: u32 = 1 << 2;
/// CPU frequency selection relations.
///
/// CPU frequency selection relations, each optionally marked as "efficient".
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Relation {
/// Select the lowest frequency at or above target.
Low(bool),
/// Select the highest frequency below or at target.
High(bool),
/// Select the closest frequency to the target.
Close(bool),
}
impl Relation {
// Construct from a C-compatible `u32` value.
fn new(val: u32) -> Result<Self> {
let efficient = val & CPUFREQ_RELATION_E != 0;
Ok(match val & !CPUFREQ_RELATION_E {
CPUFREQ_RELATION_L => Self::Low(efficient),
CPUFREQ_RELATION_H => Self::High(efficient),
CPUFREQ_RELATION_C => Self::Close(efficient),
_ => return Err(EINVAL),
})
}
}
impl From<Relation> for u32 {
// Convert to a C-compatible `u32` value.
fn from(rel: Relation) -> Self {
let (mut val, efficient) = match rel {
Relation::Low(e) => (CPUFREQ_RELATION_L, e),
Relation::High(e) => (CPUFREQ_RELATION_H, e),
Relation::Close(e) => (CPUFREQ_RELATION_C, e),
};
if efficient {
val |= CPUFREQ_RELATION_E;
}
val
}
}
/// Policy data.
///
/// Rust abstraction for the C `struct cpufreq_policy_data`.
///
/// # Invariants
///
/// A [`PolicyData`] instance always corresponds to a valid C `struct cpufreq_policy_data`.
///
/// The callers must ensure that the `struct cpufreq_policy_data` is valid for access and remains
/// valid for the lifetime of the returned reference.
#[repr(transparent)]
pub struct PolicyData(Opaque<bindings::cpufreq_policy_data>);
impl PolicyData {
/// Creates a mutable reference to an existing `struct cpufreq_policy_data` pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid for writing and remains valid for the lifetime
/// of the returned reference.
#[inline]
pub unsafe fn from_raw_mut<'a>(ptr: *mut bindings::cpufreq_policy_data) -> &'a mut Self {
// SAFETY: Guaranteed by the safety requirements of the function.
//
// INVARIANT: The caller ensures that `ptr` is valid for writing and remains valid for the
// lifetime of the returned reference.
unsafe { &mut *ptr.cast() }
}
/// Returns a raw pointer to the underlying C `cpufreq_policy_data`.
#[inline]
pub fn as_raw(&self) -> *mut bindings::cpufreq_policy_data {
let this: *const Self = self;
this.cast_mut().cast()
}
/// Wrapper for `cpufreq_generic_frequency_table_verify`.
#[inline]
pub fn generic_verify(&self) -> Result {
// SAFETY: By the type invariant, the pointer stored in `self` is valid.
to_result(unsafe { bindings::cpufreq_generic_frequency_table_verify(self.as_raw()) })
}
}
/// The frequency table index.
///
/// Represents index with a frequency table.
///
/// # Invariants
///
/// The index must correspond to a valid entry in the [`Table`] it is used for.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct TableIndex(usize);
impl TableIndex {
/// Creates an instance of [`TableIndex`].
///
/// # Safety
///
/// The caller must ensure that `index` correspond to a valid entry in the [`Table`] it is used
/// for.
pub unsafe fn new(index: usize) -> Self {
// INVARIANT: The caller ensures that `index` correspond to a valid entry in the [`Table`].
Self(index)
}
}
impl From<TableIndex> for usize {
#[inline]
fn from(index: TableIndex) -> Self {
index.0
}
}
/// CPU frequency table.
///
/// Rust abstraction for the C `struct cpufreq_frequency_table`.
///
/// # Invariants
///
/// A [`Table`] instance always corresponds to a valid C `struct cpufreq_frequency_table`.
///
/// The callers must ensure that the `struct cpufreq_frequency_table` is valid for access and
/// remains valid for the lifetime of the returned reference.
///
/// ## Examples
///
/// The following example demonstrates how to read a frequency value from [`Table`].
///
/// ```
/// use kernel::cpufreq::{Policy, TableIndex};
///
/// fn show_freq(policy: &Policy) -> Result {
/// let table = policy.freq_table()?;
///
/// // SAFETY: Index is a valid entry in the table.
/// let index = unsafe { TableIndex::new(0) };
///
/// pr_info!("The frequency at index 0 is: {:?}\n", table.freq(index)?);
/// pr_info!("The flags at index 0 is: {}\n", table.flags(index));
/// pr_info!("The data at index 0 is: {}\n", table.data(index));
/// Ok(())
/// }
/// ```
#[repr(transparent)]
pub struct Table(Opaque<bindings::cpufreq_frequency_table>);
impl Table {
/// Creates a reference to an existing C `struct cpufreq_frequency_table` pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid for reading and remains valid for the lifetime
/// of the returned reference.
#[inline]
pub unsafe fn from_raw<'a>(ptr: *const bindings::cpufreq_frequency_table) -> &'a Self {
// SAFETY: Guaranteed by the safety requirements of the function.
//
// INVARIANT: The caller ensures that `ptr` is valid for reading and remains valid for the
// lifetime of the returned reference.
unsafe { &*ptr.cast() }
}
/// Returns the raw mutable pointer to the C `struct cpufreq_frequency_table`.
#[inline]
pub fn as_raw(&self) -> *mut bindings::cpufreq_frequency_table {
let this: *const Self = self;
this.cast_mut().cast()
}
/// Returns frequency at `index` in the [`Table`].
#[inline]
pub fn freq(&self, index: TableIndex) -> Result<Hertz> {
// SAFETY: By the type invariant, the pointer stored in `self` is valid and `index` is
// guaranteed to be valid by its safety requirements.
Ok(Hertz::from_khz(unsafe {
(*self.as_raw().add(index.into())).frequency.try_into()?
}))
}
/// Returns flags at `index` in the [`Table`].
#[inline]
pub fn flags(&self, index: TableIndex) -> u32 {
// SAFETY: By the type invariant, the pointer stored in `self` is valid and `index` is
// guaranteed to be valid by its safety requirements.
unsafe { (*self.as_raw().add(index.into())).flags }
}
/// Returns data at `index` in the [`Table`].
#[inline]
pub fn data(&self, index: TableIndex) -> u32 {
// SAFETY: By the type invariant, the pointer stored in `self` is valid and `index` is
// guaranteed to be valid by its safety requirements.
unsafe { (*self.as_raw().add(index.into())).driver_data }
}
}
/// CPU frequency table owned and pinned in memory, created from a [`TableBuilder`].
pub struct TableBox {
entries: Pin<KVec<bindings::cpufreq_frequency_table>>,
}
impl TableBox {
/// Constructs a new [`TableBox`] from a [`KVec`] of entries.
///
/// # Errors
///
/// Returns `EINVAL` if the entries list is empty.
#[inline]
fn new(entries: KVec<bindings::cpufreq_frequency_table>) -> Result<Self> {
if entries.is_empty() {
return Err(EINVAL);
}
Ok(Self {
// Pin the entries to memory, since we are passing its pointer to the C code.
entries: Pin::new(entries),
})
}
/// Returns a raw pointer to the underlying C `cpufreq_frequency_table`.
#[inline]
fn as_raw(&self) -> *const bindings::cpufreq_frequency_table {
// The pointer is valid until the table gets dropped.
self.entries.as_ptr()
}
}
impl Deref for TableBox {
type Target = Table;
fn deref(&self) -> &Self::Target {
// SAFETY: The caller owns TableBox, it is safe to deref.
unsafe { Self::Target::from_raw(self.as_raw()) }
}
}
/// CPU frequency table builder.
///
/// This is used by the CPU frequency drivers to build a frequency table dynamically.
///
/// ## Examples
///
/// The following example demonstrates how to create a CPU frequency table.
///
/// ```
/// use kernel::cpufreq::{TableBuilder, TableIndex};
/// use kernel::clk::Hertz;
///
/// let mut builder = TableBuilder::new();
///
/// // Adds few entries to the table.
/// builder.add(Hertz::from_mhz(700), 0, 1).unwrap();
/// builder.add(Hertz::from_mhz(800), 2, 3).unwrap();
/// builder.add(Hertz::from_mhz(900), 4, 5).unwrap();
/// builder.add(Hertz::from_ghz(1), 6, 7).unwrap();
///
/// let table = builder.to_table().unwrap();
///
/// // SAFETY: Index values correspond to valid entries in the table.
/// let (index0, index2) = unsafe { (TableIndex::new(0), TableIndex::new(2)) };
///
/// assert_eq!(table.freq(index0), Ok(Hertz::from_mhz(700)));
/// assert_eq!(table.flags(index0), 0);
/// assert_eq!(table.data(index0), 1);
///
/// assert_eq!(table.freq(index2), Ok(Hertz::from_mhz(900)));
/// assert_eq!(table.flags(index2), 4);
/// assert_eq!(table.data(index2), 5);
/// ```
#[derive(Default)]
#[repr(transparent)]
pub struct TableBuilder {
entries: KVec<bindings::cpufreq_frequency_table>,
}
impl TableBuilder {
/// Creates a new instance of [`TableBuilder`].
#[inline]
pub fn new() -> Self {
Self {
entries: KVec::new(),
}
}
/// Adds a new entry to the table.
pub fn add(&mut self, freq: Hertz, flags: u32, driver_data: u32) -> Result {
// Adds the new entry at the end of the vector.
Ok(self.entries.push(
bindings::cpufreq_frequency_table {
flags,
driver_data,
frequency: freq.as_khz() as u32,
},
GFP_KERNEL,
)?)
}
/// Consumes the [`TableBuilder`] and returns [`TableBox`].
pub fn to_table(mut self) -> Result<TableBox> {
// Add last entry to the table.
self.add(Hertz(c_ulong::MAX), 0, 0)?;
TableBox::new(self.entries)
}
}
/// CPU frequency policy.
///
/// Rust abstraction for the C `struct cpufreq_policy`.
///
/// # Invariants
///
/// A [`Policy`] instance always corresponds to a valid C `struct cpufreq_policy`.
///
/// The callers must ensure that the `struct cpufreq_policy` is valid for access and remains valid
/// for the lifetime of the returned reference.
///
/// ## Examples
///
/// The following example demonstrates how to create a CPU frequency table.
///
/// ```
/// use kernel::cpufreq::{ETERNAL_LATENCY_NS, Policy};
///
/// fn update_policy(policy: &mut Policy) {
/// policy
/// .set_dvfs_possible_from_any_cpu(true)
/// .set_fast_switch_possible(true)
/// .set_transition_latency_ns(ETERNAL_LATENCY_NS);
///
/// pr_info!("The policy details are: {:?}\n", (policy.cpu(), policy.cur()));
/// }
/// ```
#[repr(transparent)]
pub struct Policy(Opaque<bindings::cpufreq_policy>);
impl Policy {
/// Creates a reference to an existing `struct cpufreq_policy` pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid for reading and remains valid for the lifetime
/// of the returned reference.
#[inline]
pub unsafe fn from_raw<'a>(ptr: *const bindings::cpufreq_policy) -> &'a Self {
// SAFETY: Guaranteed by the safety requirements of the function.
//
// INVARIANT: The caller ensures that `ptr` is valid for reading and remains valid for the
// lifetime of the returned reference.
unsafe { &*ptr.cast() }
}
/// Creates a mutable reference to an existing `struct cpufreq_policy` pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid for writing and remains valid for the lifetime
/// of the returned reference.
#[inline]
pub unsafe fn from_raw_mut<'a>(ptr: *mut bindings::cpufreq_policy) -> &'a mut Self {
// SAFETY: Guaranteed by the safety requirements of the function.
//
// INVARIANT: The caller ensures that `ptr` is valid for writing and remains valid for the
// lifetime of the returned reference.
unsafe { &mut *ptr.cast() }
}
/// Returns a raw mutable pointer to the C `struct cpufreq_policy`.
#[inline]
fn as_raw(&self) -> *mut bindings::cpufreq_policy {
let this: *const Self = self;
this.cast_mut().cast()
}
#[inline]
fn as_ref(&self) -> &bindings::cpufreq_policy {
// SAFETY: By the type invariant, the pointer stored in `self` is valid.
unsafe { &*self.as_raw() }
}
#[inline]
fn as_mut_ref(&mut self) -> &mut bindings::cpufreq_policy {
// SAFETY: By the type invariant, the pointer stored in `self` is valid.
unsafe { &mut *self.as_raw() }
}
/// Returns the primary CPU for the [`Policy`].
#[inline]
pub fn cpu(&self) -> CpuId {
// SAFETY: The C API guarantees that `cpu` refers to a valid CPU number.
unsafe { CpuId::from_u32_unchecked(self.as_ref().cpu) }
}
/// Returns the minimum frequency for the [`Policy`].
#[inline]
pub fn min(&self) -> Hertz {
Hertz::from_khz(self.as_ref().min as usize)
}
/// Set the minimum frequency for the [`Policy`].
#[inline]
pub fn set_min(&mut self, min: Hertz) -> &mut Self {
self.as_mut_ref().min = min.as_khz() as u32;
self
}
/// Returns the maximum frequency for the [`Policy`].
#[inline]
pub fn max(&self) -> Hertz {
Hertz::from_khz(self.as_ref().max as usize)
}
/// Set the maximum frequency for the [`Policy`].
#[inline]
pub fn set_max(&mut self, max: Hertz) -> &mut Self {
self.as_mut_ref().max = max.as_khz() as u32;
self
}
/// Returns the current frequency for the [`Policy`].
#[inline]
pub fn cur(&self) -> Hertz {
Hertz::from_khz(self.as_ref().cur as usize)
}
/// Returns the suspend frequency for the [`Policy`].
#[inline]
pub fn suspend_freq(&self) -> Hertz {
Hertz::from_khz(self.as_ref().suspend_freq as usize)
}
/// Sets the suspend frequency for the [`Policy`].
#[inline]
pub fn set_suspend_freq(&mut self, freq: Hertz) -> &mut Self {
self.as_mut_ref().suspend_freq = freq.as_khz() as u32;
self
}
/// Provides a wrapper to the generic suspend routine.
#[inline]
pub fn generic_suspend(&mut self) -> Result {
// SAFETY: By the type invariant, the pointer stored in `self` is valid.
to_result(unsafe { bindings::cpufreq_generic_suspend(self.as_mut_ref()) })
}
/// Provides a wrapper to the generic get routine.
#[inline]
pub fn generic_get(&self) -> Result<u32> {
// SAFETY: By the type invariant, the pointer stored in `self` is valid.
Ok(unsafe { bindings::cpufreq_generic_get(u32::from(self.cpu())) })
}
/// Provides a wrapper to the register with energy model using the OPP core.
#[cfg(CONFIG_PM_OPP)]
#[inline]
pub fn register_em_opp(&mut self) {
// SAFETY: By the type invariant, the pointer stored in `self` is valid.
unsafe { bindings::cpufreq_register_em_with_opp(self.as_mut_ref()) };
}
/// Gets [`cpumask::Cpumask`] for a cpufreq [`Policy`].
#[inline]
pub fn cpus(&mut self) -> &mut cpumask::Cpumask {
// SAFETY: The pointer to `cpus` is valid for writing and remains valid for the lifetime of
// the returned reference.
unsafe { cpumask::CpumaskVar::as_mut_ref(&mut self.as_mut_ref().cpus) }
}
/// Sets clock for the [`Policy`].
///
/// # Safety
///
/// The caller must guarantee that the returned [`Clk`] is not dropped while it is getting used
/// by the C code.
#[cfg(CONFIG_COMMON_CLK)]
pub unsafe fn set_clk(&mut self, dev: &Device, name: Option<&CStr>) -> Result<Clk> {
let clk = Clk::get(dev, name)?;
self.as_mut_ref().clk = clk.as_raw();
Ok(clk)
}
/// Allows / disallows frequency switching code to run on any CPU.
#[inline]
pub fn set_dvfs_possible_from_any_cpu(&mut self, val: bool) -> &mut Self {
self.as_mut_ref().dvfs_possible_from_any_cpu = val;
self
}
/// Returns if fast switching of frequencies is possible or not.
#[inline]
pub fn fast_switch_possible(&self) -> bool {
self.as_ref().fast_switch_possible
}
/// Enables / disables fast frequency switching.
#[inline]
pub fn set_fast_switch_possible(&mut self, val: bool) -> &mut Self {
self.as_mut_ref().fast_switch_possible = val;
self
}
/// Sets transition latency (in nanoseconds) for the [`Policy`].
#[inline]
pub fn set_transition_latency_ns(&mut self, latency_ns: u32) -> &mut Self {
self.as_mut_ref().cpuinfo.transition_latency = latency_ns;
self
}
/// Sets cpuinfo `min_freq`.
#[inline]
pub fn set_cpuinfo_min_freq(&mut self, min_freq: Hertz) -> &mut Self {
self.as_mut_ref().cpuinfo.min_freq = min_freq.as_khz() as u32;
self
}
/// Sets cpuinfo `max_freq`.
#[inline]
pub fn set_cpuinfo_max_freq(&mut self, max_freq: Hertz) -> &mut Self {
self.as_mut_ref().cpuinfo.max_freq = max_freq.as_khz() as u32;
self
}
/// Set `transition_delay_us`, i.e. the minimum time between successive frequency change
/// requests.
#[inline]
pub fn set_transition_delay_us(&mut self, transition_delay_us: u32) -> &mut Self {
self.as_mut_ref().transition_delay_us = transition_delay_us;
self
}
/// Returns reference to the CPU frequency [`Table`] for the [`Policy`].
pub fn freq_table(&self) -> Result<&Table> {
if self.as_ref().freq_table.is_null() {
return Err(EINVAL);
}
// SAFETY: The `freq_table` is guaranteed to be valid for reading and remains valid for the
// lifetime of the returned reference.
Ok(unsafe { Table::from_raw(self.as_ref().freq_table) })
}
/// Sets the CPU frequency [`Table`] for the [`Policy`].
///
/// # Safety
///
/// The caller must guarantee that the [`Table`] is not dropped while it is getting used by the
/// C code.
#[inline]
pub unsafe fn set_freq_table(&mut self, table: &Table) -> &mut Self {
self.as_mut_ref().freq_table = table.as_raw();
self
}
/// Returns the [`Policy`]'s private data.
pub fn data<T: ForeignOwnable>(&mut self) -> Option<<T>::Borrowed<'_>> {
if self.as_ref().driver_data.is_null() {
None
} else {
// SAFETY: The data is earlier set from [`set_data`].
Some(unsafe { T::borrow(self.as_ref().driver_data.cast()) })
}
}
/// Sets the private data of the [`Policy`] using a foreign-ownable wrapper.
///
/// # Errors
///
/// Returns `EBUSY` if private data is already set.
fn set_data<T: ForeignOwnable>(&mut self, data: T) -> Result {
if self.as_ref().driver_data.is_null() {
// Transfer the ownership of the data to the foreign interface.
self.as_mut_ref().driver_data = <T as ForeignOwnable>::into_foreign(data) as _;
Ok(())
} else {
Err(EBUSY)
}
}
/// Clears and returns ownership of the private data.
fn clear_data<T: ForeignOwnable>(&mut self) -> Option<T> {
if self.as_ref().driver_data.is_null() {
None
} else {
let data = Some(
// SAFETY: The data is earlier set by us from [`set_data`]. It is safe to take
// back the ownership of the data from the foreign interface.
unsafe { <T as ForeignOwnable>::from_foreign(self.as_ref().driver_data.cast()) },
);
self.as_mut_ref().driver_data = ptr::null_mut();
data
}
}
}
/// CPU frequency policy created from a CPU number.
///
/// This struct represents the CPU frequency policy obtained for a specific CPU, providing safe
/// access to the underlying `cpufreq_policy` and ensuring proper cleanup when the `PolicyCpu` is
/// dropped.
struct PolicyCpu<'a>(&'a mut Policy);
impl<'a> PolicyCpu<'a> {
fn from_cpu(cpu: CpuId) -> Result<Self> {
// SAFETY: It is safe to call `cpufreq_cpu_get` for any valid CPU.
let ptr = from_err_ptr(unsafe { bindings::cpufreq_cpu_get(u32::from(cpu)) })?;
Ok(Self(
// SAFETY: The `ptr` is guaranteed to be valid and remains valid for the lifetime of
// the returned reference.
unsafe { Policy::from_raw_mut(ptr) },
))
}
}
impl<'a> Deref for PolicyCpu<'a> {
type Target = Policy;
fn deref(&self) -> &Self::Target {
self.0
}
}
impl<'a> DerefMut for PolicyCpu<'a> {
fn deref_mut(&mut self) -> &mut Policy {
self.0
}
}
impl<'a> Drop for PolicyCpu<'a> {
fn drop(&mut self) {
// SAFETY: The underlying pointer is guaranteed to be valid for the lifetime of `self`.
unsafe { bindings::cpufreq_cpu_put(self.0.as_raw()) };
}
}
/// CPU frequency driver.
///
/// Implement this trait to provide a CPU frequency driver and its callbacks.
///
/// Reference: <https://docs.kernel.org/cpu-freq/cpu-drivers.html>
#[vtable]
pub trait Driver {
/// Driver's name.
const NAME: &'static CStr;
/// Driver's flags.
const FLAGS: u16;
/// Boost support.
const BOOST_ENABLED: bool;
/// Policy specific data.
///
/// Require that `PData` implements `ForeignOwnable`. We guarantee to never move the underlying
/// wrapped data structure.
type PData: ForeignOwnable;
/// Driver's `init` callback.
fn init(policy: &mut Policy) -> Result<Self::PData>;
/// Driver's `exit` callback.
fn exit(_policy: &mut Policy, _data: Option<Self::PData>) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `online` callback.
fn online(_policy: &mut Policy) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `offline` callback.
fn offline(_policy: &mut Policy) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `suspend` callback.
fn suspend(_policy: &mut Policy) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `resume` callback.
fn resume(_policy: &mut Policy) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `ready` callback.
fn ready(_policy: &mut Policy) {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `verify` callback.
fn verify(data: &mut PolicyData) -> Result;
/// Driver's `setpolicy` callback.
fn setpolicy(_policy: &mut Policy) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `target` callback.
fn target(_policy: &mut Policy, _target_freq: u32, _relation: Relation) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `target_index` callback.
fn target_index(_policy: &mut Policy, _index: TableIndex) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `fast_switch` callback.
fn fast_switch(_policy: &mut Policy, _target_freq: u32) -> u32 {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `adjust_perf` callback.
fn adjust_perf(_policy: &mut Policy, _min_perf: usize, _target_perf: usize, _capacity: usize) {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `get_intermediate` callback.
fn get_intermediate(_policy: &mut Policy, _index: TableIndex) -> u32 {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `target_intermediate` callback.
fn target_intermediate(_policy: &mut Policy, _index: TableIndex) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `get` callback.
fn get(_policy: &mut Policy) -> Result<u32> {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `update_limits` callback.
fn update_limits(_policy: &mut Policy) {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `bios_limit` callback.
fn bios_limit(_policy: &mut Policy, _limit: &mut u32) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `set_boost` callback.
fn set_boost(_policy: &mut Policy, _state: i32) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `register_em` callback.
fn register_em(_policy: &mut Policy) {
build_error!(VTABLE_DEFAULT_ERROR)
}
}
/// CPU frequency driver Registration.
///
/// ## Examples
///
/// The following example demonstrates how to register a cpufreq driver.
///
/// ```
/// use kernel::{
/// cpufreq,
/// c_str,
/// device::{Core, Device},
/// macros::vtable,
/// of, platform,
/// sync::Arc,
/// };
/// struct SampleDevice;
///
/// #[derive(Default)]
/// struct SampleDriver;
///
/// #[vtable]
/// impl cpufreq::Driver for SampleDriver {
/// const NAME: &'static CStr = c_str!("cpufreq-sample");
/// const FLAGS: u16 = cpufreq::flags::NEED_INITIAL_FREQ_CHECK | cpufreq::flags::IS_COOLING_DEV;
/// const BOOST_ENABLED: bool = true;
///
/// type PData = Arc<SampleDevice>;
///
/// fn init(policy: &mut cpufreq::Policy) -> Result<Self::PData> {
/// // Initialize here
/// Ok(Arc::new(SampleDevice, GFP_KERNEL)?)
/// }
///
/// fn exit(_policy: &mut cpufreq::Policy, _data: Option<Self::PData>) -> Result {
/// Ok(())
/// }
///
/// fn suspend(policy: &mut cpufreq::Policy) -> Result {
/// policy.generic_suspend()
/// }
///
/// fn verify(data: &mut cpufreq::PolicyData) -> Result {
/// data.generic_verify()
/// }
///
/// fn target_index(policy: &mut cpufreq::Policy, index: cpufreq::TableIndex) -> Result {
/// // Update CPU frequency
/// Ok(())
/// }
///
/// fn get(policy: &mut cpufreq::Policy) -> Result<u32> {
/// policy.generic_get()
/// }
/// }
///
/// impl platform::Driver for SampleDriver {
/// type IdInfo = ();
/// const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None;
///
/// fn probe(
/// pdev: &platform::Device<Core>,
/// _id_info: Option<&Self::IdInfo>,
/// ) -> Result<Pin<KBox<Self>>> {
/// cpufreq::Registration::<SampleDriver>::new_foreign_owned(pdev.as_ref())?;
/// Ok(KBox::new(Self {}, GFP_KERNEL)?.into())
/// }
/// }
/// ```
#[repr(transparent)]
pub struct Registration<T: Driver>(KBox<UnsafeCell<bindings::cpufreq_driver>>, PhantomData<T>);
/// SAFETY: `Registration` doesn't offer any methods or access to fields when shared between threads
/// or CPUs, so it is safe to share it.
unsafe impl<T: Driver> Sync for Registration<T> {}
#[allow(clippy::non_send_fields_in_send_ty)]
/// SAFETY: Registration with and unregistration from the cpufreq subsystem can happen from any
/// thread.
unsafe impl<T: Driver> Send for Registration<T> {}
impl<T: Driver> Registration<T> {
const VTABLE: bindings::cpufreq_driver = bindings::cpufreq_driver {
name: Self::copy_name(T::NAME),
boost_enabled: T::BOOST_ENABLED,
flags: T::FLAGS,
// Initialize mandatory callbacks.
init: Some(Self::init_callback),
verify: Some(Self::verify_callback),
// Initialize optional callbacks based on the traits of `T`.
setpolicy: if T::HAS_SETPOLICY {
Some(Self::setpolicy_callback)
} else {
None
},
target: if T::HAS_TARGET {
Some(Self::target_callback)
} else {
None
},
target_index: if T::HAS_TARGET_INDEX {
Some(Self::target_index_callback)
} else {
None
},
fast_switch: if T::HAS_FAST_SWITCH {
Some(Self::fast_switch_callback)
} else {
None
},
adjust_perf: if T::HAS_ADJUST_PERF {
Some(Self::adjust_perf_callback)
} else {
None
},
get_intermediate: if T::HAS_GET_INTERMEDIATE {
Some(Self::get_intermediate_callback)
} else {
None
},
target_intermediate: if T::HAS_TARGET_INTERMEDIATE {
Some(Self::target_intermediate_callback)
} else {
None
},
get: if T::HAS_GET {
Some(Self::get_callback)
} else {
None
},
update_limits: if T::HAS_UPDATE_LIMITS {
Some(Self::update_limits_callback)
} else {
None
},
bios_limit: if T::HAS_BIOS_LIMIT {
Some(Self::bios_limit_callback)
} else {
None
},
online: if T::HAS_ONLINE {
Some(Self::online_callback)
} else {
None
},
offline: if T::HAS_OFFLINE {
Some(Self::offline_callback)
} else {
None
},
exit: if T::HAS_EXIT {
Some(Self::exit_callback)
} else {
None
},
suspend: if T::HAS_SUSPEND {
Some(Self::suspend_callback)
} else {
None
},
resume: if T::HAS_RESUME {
Some(Self::resume_callback)
} else {
None
},
ready: if T::HAS_READY {
Some(Self::ready_callback)
} else {
None
},
set_boost: if T::HAS_SET_BOOST {
Some(Self::set_boost_callback)
} else {
None
},
register_em: if T::HAS_REGISTER_EM {
Some(Self::register_em_callback)
} else {
None
},
// SAFETY: All zeros is a valid value for `bindings::cpufreq_driver`.
..unsafe { MaybeUninit::zeroed().assume_init() }
};
const fn copy_name(name: &'static CStr) -> [c_char; CPUFREQ_NAME_LEN] {
let src = name.as_bytes_with_nul();
let mut dst = [0; CPUFREQ_NAME_LEN];
build_assert!(src.len() <= CPUFREQ_NAME_LEN);
let mut i = 0;
while i < src.len() {
dst[i] = src[i];
i += 1;
}
dst
}
/// Registers a CPU frequency driver with the cpufreq core.
pub fn new() -> Result<Self> {
// We can't use `&Self::VTABLE` directly because the cpufreq core modifies some fields in
// the C `struct cpufreq_driver`, which requires a mutable reference.
let mut drv = KBox::new(UnsafeCell::new(Self::VTABLE), GFP_KERNEL)?;
// SAFETY: `drv` is guaranteed to be valid for the lifetime of `Registration`.
to_result(unsafe { bindings::cpufreq_register_driver(drv.get_mut()) })?;
Ok(Self(drv, PhantomData))
}
/// Same as [`Registration::new`], but does not return a [`Registration`] instance.
///
/// Instead the [`Registration`] is owned by [`Devres`] and will be revoked / dropped, once the
/// device is detached.
pub fn new_foreign_owned(dev: &Device<Bound>) -> Result {
Devres::new_foreign_owned(dev, Self::new()?, GFP_KERNEL)
}
}
/// CPU frequency driver callbacks.
impl<T: Driver> Registration<T> {
/// Driver's `init` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn init_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
let data = T::init(policy)?;
policy.set_data(data)?;
Ok(0)
})
}
/// Driver's `exit` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn exit_callback(ptr: *mut bindings::cpufreq_policy) {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
let data = policy.clear_data();
let _ = T::exit(policy, data);
}
/// Driver's `online` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn online_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::online(policy).map(|()| 0)
})
}
/// Driver's `offline` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn offline_callback(
ptr: *mut bindings::cpufreq_policy,
) -> kernel::ffi::c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::offline(policy).map(|()| 0)
})
}
/// Driver's `suspend` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn suspend_callback(
ptr: *mut bindings::cpufreq_policy,
) -> kernel::ffi::c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::suspend(policy).map(|()| 0)
})
}
/// Driver's `resume` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn resume_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::resume(policy).map(|()| 0)
})
}
/// Driver's `ready` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn ready_callback(ptr: *mut bindings::cpufreq_policy) {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::ready(policy);
}
/// Driver's `verify` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn verify_callback(
ptr: *mut bindings::cpufreq_policy_data,
) -> kernel::ffi::c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let data = unsafe { PolicyData::from_raw_mut(ptr) };
T::verify(data).map(|()| 0)
})
}
/// Driver's `setpolicy` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn setpolicy_callback(
ptr: *mut bindings::cpufreq_policy,
) -> kernel::ffi::c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::setpolicy(policy).map(|()| 0)
})
}
/// Driver's `target` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn target_callback(
ptr: *mut bindings::cpufreq_policy,
target_freq: u32,
relation: u32,
) -> kernel::ffi::c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::target(policy, target_freq, Relation::new(relation)?).map(|()| 0)
})
}
/// Driver's `target_index` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn target_index_callback(
ptr: *mut bindings::cpufreq_policy,
index: u32,
) -> kernel::ffi::c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
// SAFETY: The C code guarantees that `index` corresponds to a valid entry in the
// frequency table.
let index = unsafe { TableIndex::new(index as usize) };
T::target_index(policy, index).map(|()| 0)
})
}
/// Driver's `fast_switch` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn fast_switch_callback(
ptr: *mut bindings::cpufreq_policy,
target_freq: u32,
) -> kernel::ffi::c_uint {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::fast_switch(policy, target_freq)
}
/// Driver's `adjust_perf` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
unsafe extern "C" fn adjust_perf_callback(
cpu: u32,
min_perf: usize,
target_perf: usize,
capacity: usize,
) {
// SAFETY: The C API guarantees that `cpu` refers to a valid CPU number.
let cpu_id = unsafe { CpuId::from_u32_unchecked(cpu) };
if let Ok(mut policy) = PolicyCpu::from_cpu(cpu_id) {
T::adjust_perf(&mut policy, min_perf, target_perf, capacity);
}
}
/// Driver's `get_intermediate` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn get_intermediate_callback(
ptr: *mut bindings::cpufreq_policy,
index: u32,
) -> kernel::ffi::c_uint {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
// SAFETY: The C code guarantees that `index` corresponds to a valid entry in the
// frequency table.
let index = unsafe { TableIndex::new(index as usize) };
T::get_intermediate(policy, index)
}
/// Driver's `target_intermediate` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn target_intermediate_callback(
ptr: *mut bindings::cpufreq_policy,
index: u32,
) -> kernel::ffi::c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
// SAFETY: The C code guarantees that `index` corresponds to a valid entry in the
// frequency table.
let index = unsafe { TableIndex::new(index as usize) };
T::target_intermediate(policy, index).map(|()| 0)
})
}
/// Driver's `get` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
unsafe extern "C" fn get_callback(cpu: u32) -> kernel::ffi::c_uint {
// SAFETY: The C API guarantees that `cpu` refers to a valid CPU number.
let cpu_id = unsafe { CpuId::from_u32_unchecked(cpu) };
PolicyCpu::from_cpu(cpu_id).map_or(0, |mut policy| T::get(&mut policy).map_or(0, |f| f))
}
/// Driver's `update_limit` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn update_limits_callback(ptr: *mut bindings::cpufreq_policy) {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::update_limits(policy);
}
/// Driver's `bios_limit` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn bios_limit_callback(cpu: i32, limit: *mut u32) -> kernel::ffi::c_int {
// SAFETY: The C API guarantees that `cpu` refers to a valid CPU number.
let cpu_id = unsafe { CpuId::from_i32_unchecked(cpu) };
from_result(|| {
let mut policy = PolicyCpu::from_cpu(cpu_id)?;
// SAFETY: `limit` is guaranteed by the C code to be valid.
T::bios_limit(&mut policy, &mut (unsafe { *limit })).map(|()| 0)
})
}
/// Driver's `set_boost` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn set_boost_callback(
ptr: *mut bindings::cpufreq_policy,
state: i32,
) -> kernel::ffi::c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::set_boost(policy, state).map(|()| 0)
})
}
/// Driver's `register_em` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn register_em_callback(ptr: *mut bindings::cpufreq_policy) {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::register_em(policy);
}
}
impl<T: Driver> Drop for Registration<T> {
/// Unregisters with the cpufreq core.
fn drop(&mut self) {
// SAFETY: `self.0` is guaranteed to be valid for the lifetime of `Registration`.
unsafe { bindings::cpufreq_unregister_driver(self.0.get_mut()) };
}
}