linux/fs/nfs/file.c
Linus Torvalds 7031769e10 vfs-6.17-rc1.mmap_prepare
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCaINCgQAKCRCRxhvAZXjc
 os+nAP9LFHUwWO6EBzHJJGEVjJvvzsbzqeYrRFamYiMc5ulPJwD+KW4RIgJa/MWO
 pcYE40CacaekD8rFWwYUyszpgmv6ewc=
 =wCwp
 -----END PGP SIGNATURE-----

Merge tag 'vfs-6.17-rc1.mmap_prepare' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull mmap_prepare updates from Christian Brauner:
 "Last cycle we introduce f_op->mmap_prepare() in c84bf6dd2b ("mm:
  introduce new .mmap_prepare() file callback").

  This is preferred to the existing f_op->mmap() hook as it does require
  a VMA to be established yet, thus allowing the mmap logic to invoke
  this hook far, far earlier, prior to inserting a VMA into the virtual
  address space, or performing any other heavy handed operations.

  This allows for much simpler unwinding on error, and for there to be a
  single attempt at merging a VMA rather than having to possibly
  reattempt a merge based on potentially altered VMA state.

  Far more importantly, it prevents inappropriate manipulation of
  incompletely initialised VMA state, which is something that has been
  the cause of bugs and complexity in the past.

  The intent is to gradually deprecate f_op->mmap, and in that vein this
  series coverts the majority of file systems to using f_op->mmap_prepare.

  Prerequisite steps are taken - firstly ensuring all checks for mmap
  capabilities use the file_has_valid_mmap_hooks() helper rather than
  directly checking for f_op->mmap (which is now not a valid check) and
  secondly updating daxdev_mapping_supported() to not require a VMA
  parameter to allow ext4 and xfs to be converted.

  Commit bb666b7c27 ("mm: add mmap_prepare() compatibility layer for
  nested file systems") handles the nasty edge-case of nested file
  systems like overlayfs, which introduces a compatibility shim to allow
  f_op->mmap_prepare() to be invoked from an f_op->mmap() callback.

  This allows for nested filesystems to continue to function correctly
  with all file systems regardless of which callback is used. Once we
  finally convert all file systems, this shim can be removed.

  As a result, ecryptfs, fuse, and overlayfs remain unaltered so they
  can nest all other file systems.

  We additionally do not update resctl - as this requires an update to
  remap_pfn_range() (or an alternative to it) which we defer to a later
  series, equally we do not update cramfs which needs a mixed mapping
  insertion with the same issue, nor do we update procfs, hugetlbfs,
  syfs or kernfs all of which require VMAs for internal state and hooks.
  We shall return to all of these later"

* tag 'vfs-6.17-rc1.mmap_prepare' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
  doc: update porting, vfs documentation to describe mmap_prepare()
  fs: replace mmap hook with .mmap_prepare for simple mappings
  fs: convert most other generic_file_*mmap() users to .mmap_prepare()
  fs: convert simple use of generic_file_*_mmap() to .mmap_prepare()
  mm/filemap: introduce generic_file_*_mmap_prepare() helpers
  fs/xfs: transition from deprecated .mmap hook to .mmap_prepare
  fs/ext4: transition from deprecated .mmap hook to .mmap_prepare
  fs/dax: make it possible to check dev dax support without a VMA
  fs: consistently use can_mmap_file() helper
  mm/nommu: use file_has_valid_mmap_hooks() helper
  mm: rename call_mmap/mmap_prepare to vfs_mmap/mmap_prepare
2025-07-28 13:43:25 -07:00

919 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/fs/nfs/file.c
*
* Copyright (C) 1992 Rick Sladkey
*
* Changes Copyright (C) 1994 by Florian La Roche
* - Do not copy data too often around in the kernel.
* - In nfs_file_read the return value of kmalloc wasn't checked.
* - Put in a better version of read look-ahead buffering. Original idea
* and implementation by Wai S Kok elekokws@ee.nus.sg.
*
* Expire cache on write to a file by Wai S Kok (Oct 1994).
*
* Total rewrite of read side for new NFS buffer cache.. Linus.
*
* nfs regular file handling functions
*/
#include <linux/module.h>
#include <linux/time.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/fcntl.h>
#include <linux/stat.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_mount.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/gfp.h>
#include <linux/swap.h>
#include <linux/compaction.h>
#include <linux/uaccess.h>
#include <linux/filelock.h>
#include "delegation.h"
#include "internal.h"
#include "iostat.h"
#include "fscache.h"
#include "pnfs.h"
#include "nfstrace.h"
#define NFSDBG_FACILITY NFSDBG_FILE
static const struct vm_operations_struct nfs_file_vm_ops;
int nfs_check_flags(int flags)
{
if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(nfs_check_flags);
/*
* Open file
*/
static int
nfs_file_open(struct inode *inode, struct file *filp)
{
int res;
dprintk("NFS: open file(%pD2)\n", filp);
nfs_inc_stats(inode, NFSIOS_VFSOPEN);
res = nfs_check_flags(filp->f_flags);
if (res)
return res;
res = nfs_open(inode, filp);
if (res == 0)
filp->f_mode |= FMODE_CAN_ODIRECT;
return res;
}
int
nfs_file_release(struct inode *inode, struct file *filp)
{
dprintk("NFS: release(%pD2)\n", filp);
nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
nfs_file_clear_open_context(filp);
nfs_fscache_release_file(inode, filp);
return 0;
}
EXPORT_SYMBOL_GPL(nfs_file_release);
/**
* nfs_revalidate_file_size - Revalidate the file size
* @inode: pointer to inode struct
* @filp: pointer to struct file
*
* Revalidates the file length. This is basically a wrapper around
* nfs_revalidate_inode() that takes into account the fact that we may
* have cached writes (in which case we don't care about the server's
* idea of what the file length is), or O_DIRECT (in which case we
* shouldn't trust the cache).
*/
static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
{
struct nfs_server *server = NFS_SERVER(inode);
if (filp->f_flags & O_DIRECT)
goto force_reval;
if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
goto force_reval;
return 0;
force_reval:
return __nfs_revalidate_inode(server, inode);
}
loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
{
dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
filp, offset, whence);
/*
* whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
* the cached file length
*/
if (whence != SEEK_SET && whence != SEEK_CUR) {
struct inode *inode = filp->f_mapping->host;
int retval = nfs_revalidate_file_size(inode, filp);
if (retval < 0)
return (loff_t)retval;
}
return generic_file_llseek(filp, offset, whence);
}
EXPORT_SYMBOL_GPL(nfs_file_llseek);
/*
* Flush all dirty pages, and check for write errors.
*/
static int
nfs_file_flush(struct file *file, fl_owner_t id)
{
struct inode *inode = file_inode(file);
errseq_t since;
dprintk("NFS: flush(%pD2)\n", file);
nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
if ((file->f_mode & FMODE_WRITE) == 0)
return 0;
/* Flush writes to the server and return any errors */
since = filemap_sample_wb_err(file->f_mapping);
nfs_wb_all(inode);
return filemap_check_wb_err(file->f_mapping, since);
}
ssize_t
nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
{
struct inode *inode = file_inode(iocb->ki_filp);
ssize_t result;
if (iocb->ki_flags & IOCB_DIRECT)
return nfs_file_direct_read(iocb, to, false);
dprintk("NFS: read(%pD2, %zu@%lu)\n",
iocb->ki_filp,
iov_iter_count(to), (unsigned long) iocb->ki_pos);
result = nfs_start_io_read(inode);
if (result)
return result;
result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
if (!result) {
result = generic_file_read_iter(iocb, to);
if (result > 0)
nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
}
nfs_end_io_read(inode);
return result;
}
EXPORT_SYMBOL_GPL(nfs_file_read);
ssize_t
nfs_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe,
size_t len, unsigned int flags)
{
struct inode *inode = file_inode(in);
ssize_t result;
dprintk("NFS: splice_read(%pD2, %zu@%llu)\n", in, len, *ppos);
result = nfs_start_io_read(inode);
if (result)
return result;
result = nfs_revalidate_mapping(inode, in->f_mapping);
if (!result) {
result = filemap_splice_read(in, ppos, pipe, len, flags);
if (result > 0)
nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
}
nfs_end_io_read(inode);
return result;
}
EXPORT_SYMBOL_GPL(nfs_file_splice_read);
int
nfs_file_mmap_prepare(struct vm_area_desc *desc)
{
struct file *file = desc->file;
struct inode *inode = file_inode(file);
int status;
dprintk("NFS: mmap(%pD2)\n", file);
/* Note: generic_file_mmap_prepare() returns ENOSYS on nommu systems
* so we call that before revalidating the mapping
*/
status = generic_file_mmap_prepare(desc);
if (!status) {
desc->vm_ops = &nfs_file_vm_ops;
status = nfs_revalidate_mapping(inode, file->f_mapping);
}
return status;
}
EXPORT_SYMBOL_GPL(nfs_file_mmap_prepare);
/*
* Flush any dirty pages for this process, and check for write errors.
* The return status from this call provides a reliable indication of
* whether any write errors occurred for this process.
*/
static int
nfs_file_fsync_commit(struct file *file, int datasync)
{
struct inode *inode = file_inode(file);
int ret, ret2;
dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
ret = nfs_commit_inode(inode, FLUSH_SYNC);
ret2 = file_check_and_advance_wb_err(file);
if (ret2 < 0)
return ret2;
return ret;
}
int
nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
struct inode *inode = file_inode(file);
struct nfs_inode *nfsi = NFS_I(inode);
long save_nredirtied = atomic_long_read(&nfsi->redirtied_pages);
long nredirtied;
int ret;
trace_nfs_fsync_enter(inode);
for (;;) {
ret = file_write_and_wait_range(file, start, end);
if (ret != 0)
break;
ret = nfs_file_fsync_commit(file, datasync);
if (ret != 0)
break;
ret = pnfs_sync_inode(inode, !!datasync);
if (ret != 0)
break;
nredirtied = atomic_long_read(&nfsi->redirtied_pages);
if (nredirtied == save_nredirtied)
break;
save_nredirtied = nredirtied;
}
trace_nfs_fsync_exit(inode, ret);
return ret;
}
EXPORT_SYMBOL_GPL(nfs_file_fsync);
/*
* Decide whether a read/modify/write cycle may be more efficient
* then a modify/write/read cycle when writing to a page in the
* page cache.
*
* Some pNFS layout drivers can only read/write at a certain block
* granularity like all block devices and therefore we must perform
* read/modify/write whenever a page hasn't read yet and the data
* to be written there is not aligned to a block boundary and/or
* smaller than the block size.
*
* The modify/write/read cycle may occur if a page is read before
* being completely filled by the writer. In this situation, the
* page must be completely written to stable storage on the server
* before it can be refilled by reading in the page from the server.
* This can lead to expensive, small, FILE_SYNC mode writes being
* done.
*
* It may be more efficient to read the page first if the file is
* open for reading in addition to writing, the page is not marked
* as Uptodate, it is not dirty or waiting to be committed,
* indicating that it was previously allocated and then modified,
* that there were valid bytes of data in that range of the file,
* and that the new data won't completely replace the old data in
* that range of the file.
*/
static bool nfs_folio_is_full_write(struct folio *folio, loff_t pos,
unsigned int len)
{
unsigned int pglen = nfs_folio_length(folio);
unsigned int offset = offset_in_folio(folio, pos);
unsigned int end = offset + len;
return !pglen || (end >= pglen && !offset);
}
static bool nfs_want_read_modify_write(struct file *file, struct folio *folio,
loff_t pos, unsigned int len)
{
/*
* Up-to-date pages, those with ongoing or full-page write
* don't need read/modify/write
*/
if (folio_test_uptodate(folio) || folio_test_private(folio) ||
nfs_folio_is_full_write(folio, pos, len))
return false;
if (pnfs_ld_read_whole_page(file_inode(file)))
return true;
/* Open for reading too? */
if (file->f_mode & FMODE_READ)
return true;
return false;
}
/*
* This does the "real" work of the write. We must allocate and lock the
* page to be sent back to the generic routine, which then copies the
* data from user space.
*
* If the writer ends up delaying the write, the writer needs to
* increment the page use counts until he is done with the page.
*/
static int nfs_write_begin(const struct kiocb *iocb,
struct address_space *mapping,
loff_t pos, unsigned len, struct folio **foliop,
void **fsdata)
{
fgf_t fgp = FGP_WRITEBEGIN;
struct folio *folio;
struct file *file = iocb->ki_filp;
int once_thru = 0;
int ret;
dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
file, mapping->host->i_ino, len, (long long) pos);
fgp |= fgf_set_order(len);
start:
folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT, fgp,
mapping_gfp_mask(mapping));
if (IS_ERR(folio))
return PTR_ERR(folio);
*foliop = folio;
ret = nfs_flush_incompatible(file, folio);
if (ret) {
folio_unlock(folio);
folio_put(folio);
} else if (!once_thru &&
nfs_want_read_modify_write(file, folio, pos, len)) {
once_thru = 1;
ret = nfs_read_folio(file, folio);
folio_put(folio);
if (!ret)
goto start;
}
return ret;
}
static int nfs_write_end(const struct kiocb *iocb,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct folio *folio, void *fsdata)
{
struct file *file = iocb->ki_filp;
struct nfs_open_context *ctx = nfs_file_open_context(file);
unsigned offset = offset_in_folio(folio, pos);
int status;
dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
file, mapping->host->i_ino, len, (long long) pos);
/*
* Zero any uninitialised parts of the page, and then mark the page
* as up to date if it turns out that we're extending the file.
*/
if (!folio_test_uptodate(folio)) {
size_t fsize = folio_size(folio);
unsigned pglen = nfs_folio_length(folio);
unsigned end = offset + copied;
if (pglen == 0) {
folio_zero_segments(folio, 0, offset, end, fsize);
folio_mark_uptodate(folio);
} else if (end >= pglen) {
folio_zero_segment(folio, end, fsize);
if (offset == 0)
folio_mark_uptodate(folio);
} else
folio_zero_segment(folio, pglen, fsize);
}
status = nfs_update_folio(file, folio, offset, copied);
folio_unlock(folio);
folio_put(folio);
if (status < 0)
return status;
NFS_I(mapping->host)->write_io += copied;
if (nfs_ctx_key_to_expire(ctx, mapping->host))
nfs_wb_all(mapping->host);
return copied;
}
/*
* Partially or wholly invalidate a page
* - Release the private state associated with a page if undergoing complete
* page invalidation
* - Called if either PG_private or PG_fscache is set on the page
* - Caller holds page lock
*/
static void nfs_invalidate_folio(struct folio *folio, size_t offset,
size_t length)
{
struct inode *inode = folio->mapping->host;
dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n",
folio->index, offset, length);
if (offset != 0 || length < folio_size(folio))
return;
/* Cancel any unstarted writes on this page */
nfs_wb_folio_cancel(inode, folio);
folio_wait_private_2(folio); /* [DEPRECATED] */
trace_nfs_invalidate_folio(inode, folio_pos(folio) + offset, length);
}
/*
* Attempt to release the private state associated with a folio
* - Called if either private or fscache flags are set on the folio
* - Caller holds folio lock
* - Return true (may release folio) or false (may not)
*/
static bool nfs_release_folio(struct folio *folio, gfp_t gfp)
{
dfprintk(PAGECACHE, "NFS: release_folio(%p)\n", folio);
/* If the private flag is set, then the folio is not freeable */
if (folio_test_private(folio)) {
if ((current_gfp_context(gfp) & GFP_KERNEL) != GFP_KERNEL ||
current_is_kswapd() || current_is_kcompactd())
return false;
if (nfs_wb_folio(folio->mapping->host, folio) < 0)
return false;
}
return nfs_fscache_release_folio(folio, gfp);
}
static void nfs_check_dirty_writeback(struct folio *folio,
bool *dirty, bool *writeback)
{
struct nfs_inode *nfsi;
struct address_space *mapping = folio->mapping;
/*
* Check if an unstable folio is currently being committed and
* if so, have the VM treat it as if the folio is under writeback
* so it will not block due to folios that will shortly be freeable.
*/
nfsi = NFS_I(mapping->host);
if (atomic_read(&nfsi->commit_info.rpcs_out)) {
*writeback = true;
return;
}
/*
* If the private flag is set, then the folio is not freeable
* and as the inode is not being committed, it's not going to
* be cleaned in the near future so treat it as dirty
*/
if (folio_test_private(folio))
*dirty = true;
}
/*
* Attempt to clear the private state associated with a page when an error
* occurs that requires the cached contents of an inode to be written back or
* destroyed
* - Called if either PG_private or fscache is set on the page
* - Caller holds page lock
* - Return 0 if successful, -error otherwise
*/
static int nfs_launder_folio(struct folio *folio)
{
struct inode *inode = folio->mapping->host;
int ret;
dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n",
inode->i_ino, folio_pos(folio));
folio_wait_private_2(folio); /* [DEPRECATED] */
ret = nfs_wb_folio(inode, folio);
trace_nfs_launder_folio_done(inode, folio_pos(folio),
folio_size(folio), ret);
return ret;
}
static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
sector_t *span)
{
unsigned long blocks;
long long isize;
int ret;
struct inode *inode = file_inode(file);
struct rpc_clnt *clnt = NFS_CLIENT(inode);
struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
spin_lock(&inode->i_lock);
blocks = inode->i_blocks;
isize = inode->i_size;
spin_unlock(&inode->i_lock);
if (blocks*512 < isize) {
pr_warn("swap activate: swapfile has holes\n");
return -EINVAL;
}
ret = rpc_clnt_swap_activate(clnt);
if (ret)
return ret;
ret = add_swap_extent(sis, 0, sis->max, 0);
if (ret < 0) {
rpc_clnt_swap_deactivate(clnt);
return ret;
}
*span = sis->pages;
if (cl->rpc_ops->enable_swap)
cl->rpc_ops->enable_swap(inode);
sis->flags |= SWP_FS_OPS;
return ret;
}
static void nfs_swap_deactivate(struct file *file)
{
struct inode *inode = file_inode(file);
struct rpc_clnt *clnt = NFS_CLIENT(inode);
struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
rpc_clnt_swap_deactivate(clnt);
if (cl->rpc_ops->disable_swap)
cl->rpc_ops->disable_swap(file_inode(file));
}
const struct address_space_operations nfs_file_aops = {
.read_folio = nfs_read_folio,
.readahead = nfs_readahead,
.dirty_folio = filemap_dirty_folio,
.writepages = nfs_writepages,
.write_begin = nfs_write_begin,
.write_end = nfs_write_end,
.invalidate_folio = nfs_invalidate_folio,
.release_folio = nfs_release_folio,
.migrate_folio = nfs_migrate_folio,
.launder_folio = nfs_launder_folio,
.is_dirty_writeback = nfs_check_dirty_writeback,
.error_remove_folio = generic_error_remove_folio,
.swap_activate = nfs_swap_activate,
.swap_deactivate = nfs_swap_deactivate,
.swap_rw = nfs_swap_rw,
};
/*
* Notification that a PTE pointing to an NFS page is about to be made
* writable, implying that someone is about to modify the page through a
* shared-writable mapping
*/
static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
{
struct file *filp = vmf->vma->vm_file;
struct inode *inode = file_inode(filp);
unsigned pagelen;
vm_fault_t ret = VM_FAULT_NOPAGE;
struct address_space *mapping;
struct folio *folio = page_folio(vmf->page);
dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
filp, filp->f_mapping->host->i_ino,
(long long)folio_pos(folio));
sb_start_pagefault(inode->i_sb);
/* make sure the cache has finished storing the page */
if (folio_test_private_2(folio) && /* [DEPRECATED] */
folio_wait_private_2_killable(folio) < 0) {
ret = VM_FAULT_RETRY;
goto out;
}
wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
nfs_wait_bit_killable,
TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
folio_lock(folio);
mapping = folio->mapping;
if (mapping != inode->i_mapping)
goto out_unlock;
folio_wait_writeback(folio);
pagelen = nfs_folio_length(folio);
if (pagelen == 0)
goto out_unlock;
ret = VM_FAULT_LOCKED;
if (nfs_flush_incompatible(filp, folio) == 0 &&
nfs_update_folio(filp, folio, 0, pagelen) == 0)
goto out;
ret = VM_FAULT_SIGBUS;
out_unlock:
folio_unlock(folio);
out:
sb_end_pagefault(inode->i_sb);
return ret;
}
static const struct vm_operations_struct nfs_file_vm_ops = {
.fault = filemap_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = nfs_vm_page_mkwrite,
};
ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
unsigned int mntflags = NFS_SERVER(inode)->flags;
ssize_t result, written;
errseq_t since;
int error;
result = nfs_key_timeout_notify(file, inode);
if (result)
return result;
if (iocb->ki_flags & IOCB_DIRECT)
return nfs_file_direct_write(iocb, from, false);
dprintk("NFS: write(%pD2, %zu@%Ld)\n",
file, iov_iter_count(from), (long long) iocb->ki_pos);
if (IS_SWAPFILE(inode))
goto out_swapfile;
/*
* O_APPEND implies that we must revalidate the file length.
*/
if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
result = nfs_revalidate_file_size(inode, file);
if (result)
return result;
}
nfs_clear_invalid_mapping(file->f_mapping);
since = filemap_sample_wb_err(file->f_mapping);
error = nfs_start_io_write(inode);
if (error)
return error;
result = generic_write_checks(iocb, from);
if (result > 0)
result = generic_perform_write(iocb, from);
nfs_end_io_write(inode);
if (result <= 0)
goto out;
written = result;
nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
if (mntflags & NFS_MOUNT_WRITE_EAGER) {
result = filemap_fdatawrite_range(file->f_mapping,
iocb->ki_pos - written,
iocb->ki_pos - 1);
if (result < 0)
goto out;
}
if (mntflags & NFS_MOUNT_WRITE_WAIT) {
filemap_fdatawait_range(file->f_mapping,
iocb->ki_pos - written,
iocb->ki_pos - 1);
}
result = generic_write_sync(iocb, written);
if (result < 0)
return result;
out:
/* Return error values */
error = filemap_check_wb_err(file->f_mapping, since);
switch (error) {
default:
break;
case -EDQUOT:
case -EFBIG:
case -ENOSPC:
nfs_wb_all(inode);
error = file_check_and_advance_wb_err(file);
if (error < 0)
result = error;
}
return result;
out_swapfile:
printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
return -ETXTBSY;
}
EXPORT_SYMBOL_GPL(nfs_file_write);
static int
do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
{
struct inode *inode = filp->f_mapping->host;
int status = 0;
unsigned int saved_type = fl->c.flc_type;
/* Try local locking first */
posix_test_lock(filp, fl);
if (fl->c.flc_type != F_UNLCK) {
/* found a conflict */
goto out;
}
fl->c.flc_type = saved_type;
if (nfs_have_read_or_write_delegation(inode))
goto out_noconflict;
if (is_local)
goto out_noconflict;
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
out:
return status;
out_noconflict:
fl->c.flc_type = F_UNLCK;
goto out;
}
static int
do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
{
struct inode *inode = filp->f_mapping->host;
struct nfs_lock_context *l_ctx;
int status;
/*
* Flush all pending writes before doing anything
* with locks..
*/
nfs_wb_all(inode);
l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
if (!IS_ERR(l_ctx)) {
status = nfs_iocounter_wait(l_ctx);
nfs_put_lock_context(l_ctx);
/* NOTE: special case
* If we're signalled while cleaning up locks on process exit, we
* still need to complete the unlock.
*/
if (status < 0 && !(fl->c.flc_flags & FL_CLOSE))
return status;
}
/*
* Use local locking if mounted with "-onolock" or with appropriate
* "-olocal_lock="
*/
if (!is_local)
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
else
status = locks_lock_file_wait(filp, fl);
return status;
}
static int
do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
{
struct inode *inode = filp->f_mapping->host;
int status;
/*
* Flush all pending writes before doing anything
* with locks..
*/
status = nfs_sync_mapping(filp->f_mapping);
if (status != 0)
goto out;
/*
* Use local locking if mounted with "-onolock" or with appropriate
* "-olocal_lock="
*/
if (!is_local)
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
else
status = locks_lock_file_wait(filp, fl);
if (status < 0)
goto out;
/*
* Invalidate cache to prevent missing any changes. If
* the file is mapped, clear the page cache as well so
* those mappings will be loaded.
*
* This makes locking act as a cache coherency point.
*/
nfs_sync_mapping(filp->f_mapping);
if (!nfs_have_read_or_write_delegation(inode)) {
nfs_zap_caches(inode);
if (mapping_mapped(filp->f_mapping))
nfs_revalidate_mapping(inode, filp->f_mapping);
}
out:
return status;
}
/*
* Lock a (portion of) a file
*/
int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
{
struct inode *inode = filp->f_mapping->host;
int ret = -ENOLCK;
int is_local = 0;
dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
filp, fl->c.flc_type, fl->c.flc_flags,
(long long)fl->fl_start, (long long)fl->fl_end);
nfs_inc_stats(inode, NFSIOS_VFSLOCK);
if (fl->c.flc_flags & FL_RECLAIM)
return -ENOGRACE;
if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
is_local = 1;
if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
ret = NFS_PROTO(inode)->lock_check_bounds(fl);
if (ret < 0)
goto out_err;
}
if (IS_GETLK(cmd))
ret = do_getlk(filp, cmd, fl, is_local);
else if (lock_is_unlock(fl))
ret = do_unlk(filp, cmd, fl, is_local);
else
ret = do_setlk(filp, cmd, fl, is_local);
out_err:
return ret;
}
EXPORT_SYMBOL_GPL(nfs_lock);
/*
* Lock a (portion of) a file
*/
int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
{
struct inode *inode = filp->f_mapping->host;
int is_local = 0;
dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
filp, fl->c.flc_type, fl->c.flc_flags);
if (!(fl->c.flc_flags & FL_FLOCK))
return -ENOLCK;
if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
is_local = 1;
/* We're simulating flock() locks using posix locks on the server */
if (lock_is_unlock(fl))
return do_unlk(filp, cmd, fl, is_local);
return do_setlk(filp, cmd, fl, is_local);
}
EXPORT_SYMBOL_GPL(nfs_flock);
const struct file_operations nfs_file_operations = {
.llseek = nfs_file_llseek,
.read_iter = nfs_file_read,
.write_iter = nfs_file_write,
.mmap_prepare = nfs_file_mmap_prepare,
.open = nfs_file_open,
.flush = nfs_file_flush,
.release = nfs_file_release,
.fsync = nfs_file_fsync,
.lock = nfs_lock,
.flock = nfs_flock,
.splice_read = nfs_file_splice_read,
.splice_write = iter_file_splice_write,
.check_flags = nfs_check_flags,
.setlease = simple_nosetlease,
};
EXPORT_SYMBOL_GPL(nfs_file_operations);