linux/rust/kernel/pci.rs
Danilo Krummrich 8eb698f547 rust: pci: implement the dma::Device trait
The PCI bus is potentially capable of performing DMA, hence implement
the `dma:Device` trait for `pci::Device`.

Reviewed-by: Daniel Almeida <daniel.almeida@collabora.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/20250716150354.51081-4-dakr@kernel.org
Signed-off-by: Danilo Krummrich <dakr@kernel.org>
2025-07-19 19:37:17 +02:00

503 lines
17 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! Abstractions for the PCI bus.
//!
//! C header: [`include/linux/pci.h`](srctree/include/linux/pci.h)
use crate::{
bindings, container_of, device,
device_id::{RawDeviceId, RawDeviceIdIndex},
devres::Devres,
driver,
error::{from_result, to_result, Result},
io::Io,
io::IoRaw,
str::CStr,
types::{ARef, Opaque},
ThisModule,
};
use core::{
marker::PhantomData,
ops::Deref,
ptr::{addr_of_mut, NonNull},
};
use kernel::prelude::*;
/// An adapter for the registration of PCI drivers.
pub struct Adapter<T: Driver>(T);
// SAFETY: A call to `unregister` for a given instance of `RegType` is guaranteed to be valid if
// a preceding call to `register` has been successful.
unsafe impl<T: Driver + 'static> driver::RegistrationOps for Adapter<T> {
type RegType = bindings::pci_driver;
unsafe fn register(
pdrv: &Opaque<Self::RegType>,
name: &'static CStr,
module: &'static ThisModule,
) -> Result {
// SAFETY: It's safe to set the fields of `struct pci_driver` on initialization.
unsafe {
(*pdrv.get()).name = name.as_char_ptr();
(*pdrv.get()).probe = Some(Self::probe_callback);
(*pdrv.get()).remove = Some(Self::remove_callback);
(*pdrv.get()).id_table = T::ID_TABLE.as_ptr();
}
// SAFETY: `pdrv` is guaranteed to be a valid `RegType`.
to_result(unsafe {
bindings::__pci_register_driver(pdrv.get(), module.0, name.as_char_ptr())
})
}
unsafe fn unregister(pdrv: &Opaque<Self::RegType>) {
// SAFETY: `pdrv` is guaranteed to be a valid `RegType`.
unsafe { bindings::pci_unregister_driver(pdrv.get()) }
}
}
impl<T: Driver + 'static> Adapter<T> {
extern "C" fn probe_callback(
pdev: *mut bindings::pci_dev,
id: *const bindings::pci_device_id,
) -> kernel::ffi::c_int {
// SAFETY: The PCI bus only ever calls the probe callback with a valid pointer to a
// `struct pci_dev`.
//
// INVARIANT: `pdev` is valid for the duration of `probe_callback()`.
let pdev = unsafe { &*pdev.cast::<Device<device::CoreInternal>>() };
// SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct pci_device_id` and
// does not add additional invariants, so it's safe to transmute.
let id = unsafe { &*id.cast::<DeviceId>() };
let info = T::ID_TABLE.info(id.index());
from_result(|| {
let data = T::probe(pdev, info)?;
pdev.as_ref().set_drvdata(data);
Ok(0)
})
}
extern "C" fn remove_callback(pdev: *mut bindings::pci_dev) {
// SAFETY: The PCI bus only ever calls the remove callback with a valid pointer to a
// `struct pci_dev`.
//
// INVARIANT: `pdev` is valid for the duration of `remove_callback()`.
let pdev = unsafe { &*pdev.cast::<Device<device::CoreInternal>>() };
// SAFETY: `remove_callback` is only ever called after a successful call to
// `probe_callback`, hence it's guaranteed that `Device::set_drvdata()` has been called
// and stored a `Pin<KBox<T>>`.
let data = unsafe { pdev.as_ref().drvdata_obtain::<Pin<KBox<T>>>() };
T::unbind(pdev, data.as_ref());
}
}
/// Declares a kernel module that exposes a single PCI driver.
///
/// # Example
///
///```ignore
/// kernel::module_pci_driver! {
/// type: MyDriver,
/// name: "Module name",
/// authors: ["Author name"],
/// description: "Description",
/// license: "GPL v2",
/// }
///```
#[macro_export]
macro_rules! module_pci_driver {
($($f:tt)*) => {
$crate::module_driver!(<T>, $crate::pci::Adapter<T>, { $($f)* });
};
}
/// Abstraction for the PCI device ID structure ([`struct pci_device_id`]).
///
/// [`struct pci_device_id`]: https://docs.kernel.org/PCI/pci.html#c.pci_device_id
#[repr(transparent)]
#[derive(Clone, Copy)]
pub struct DeviceId(bindings::pci_device_id);
impl DeviceId {
const PCI_ANY_ID: u32 = !0;
/// Equivalent to C's `PCI_DEVICE` macro.
///
/// Create a new `pci::DeviceId` from a vendor and device ID number.
pub const fn from_id(vendor: u32, device: u32) -> Self {
Self(bindings::pci_device_id {
vendor,
device,
subvendor: DeviceId::PCI_ANY_ID,
subdevice: DeviceId::PCI_ANY_ID,
class: 0,
class_mask: 0,
driver_data: 0,
override_only: 0,
})
}
/// Equivalent to C's `PCI_DEVICE_CLASS` macro.
///
/// Create a new `pci::DeviceId` from a class number and mask.
pub const fn from_class(class: u32, class_mask: u32) -> Self {
Self(bindings::pci_device_id {
vendor: DeviceId::PCI_ANY_ID,
device: DeviceId::PCI_ANY_ID,
subvendor: DeviceId::PCI_ANY_ID,
subdevice: DeviceId::PCI_ANY_ID,
class,
class_mask,
driver_data: 0,
override_only: 0,
})
}
}
// SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `pci_device_id` and does not add
// additional invariants, so it's safe to transmute to `RawType`.
unsafe impl RawDeviceId for DeviceId {
type RawType = bindings::pci_device_id;
}
// SAFETY: `DRIVER_DATA_OFFSET` is the offset to the `driver_data` field.
unsafe impl RawDeviceIdIndex for DeviceId {
const DRIVER_DATA_OFFSET: usize = core::mem::offset_of!(bindings::pci_device_id, driver_data);
fn index(&self) -> usize {
self.0.driver_data as _
}
}
/// `IdTable` type for PCI.
pub type IdTable<T> = &'static dyn kernel::device_id::IdTable<DeviceId, T>;
/// Create a PCI `IdTable` with its alias for modpost.
#[macro_export]
macro_rules! pci_device_table {
($table_name:ident, $module_table_name:ident, $id_info_type: ty, $table_data: expr) => {
const $table_name: $crate::device_id::IdArray<
$crate::pci::DeviceId,
$id_info_type,
{ $table_data.len() },
> = $crate::device_id::IdArray::new($table_data);
$crate::module_device_table!("pci", $module_table_name, $table_name);
};
}
/// The PCI driver trait.
///
/// # Example
///
///```
/// # use kernel::{bindings, device::Core, pci};
///
/// struct MyDriver;
///
/// kernel::pci_device_table!(
/// PCI_TABLE,
/// MODULE_PCI_TABLE,
/// <MyDriver as pci::Driver>::IdInfo,
/// [
/// (pci::DeviceId::from_id(bindings::PCI_VENDOR_ID_REDHAT, bindings::PCI_ANY_ID as _), ())
/// ]
/// );
///
/// impl pci::Driver for MyDriver {
/// type IdInfo = ();
/// const ID_TABLE: pci::IdTable<Self::IdInfo> = &PCI_TABLE;
///
/// fn probe(
/// _pdev: &pci::Device<Core>,
/// _id_info: &Self::IdInfo,
/// ) -> Result<Pin<KBox<Self>>> {
/// Err(ENODEV)
/// }
/// }
///```
/// Drivers must implement this trait in order to get a PCI driver registered. Please refer to the
/// `Adapter` documentation for an example.
pub trait Driver: Send {
/// The type holding information about each device id supported by the driver.
// TODO: Use `associated_type_defaults` once stabilized:
//
// ```
// type IdInfo: 'static = ();
// ```
type IdInfo: 'static;
/// The table of device ids supported by the driver.
const ID_TABLE: IdTable<Self::IdInfo>;
/// PCI driver probe.
///
/// Called when a new platform device is added or discovered.
/// Implementers should attempt to initialize the device here.
fn probe(dev: &Device<device::Core>, id_info: &Self::IdInfo) -> Result<Pin<KBox<Self>>>;
/// Platform driver unbind.
///
/// Called when a [`Device`] is unbound from its bound [`Driver`]. Implementing this callback
/// is optional.
///
/// This callback serves as a place for drivers to perform teardown operations that require a
/// `&Device<Core>` or `&Device<Bound>` reference. For instance, drivers may try to perform I/O
/// operations to gracefully tear down the device.
///
/// Otherwise, release operations for driver resources should be performed in `Self::drop`.
fn unbind(dev: &Device<device::Core>, this: Pin<&Self>) {
let _ = (dev, this);
}
}
/// The PCI device representation.
///
/// This structure represents the Rust abstraction for a C `struct pci_dev`. The implementation
/// abstracts the usage of an already existing C `struct pci_dev` within Rust code that we get
/// passed from the C side.
///
/// # Invariants
///
/// A [`Device`] instance represents a valid `struct pci_dev` created by the C portion of the
/// kernel.
#[repr(transparent)]
pub struct Device<Ctx: device::DeviceContext = device::Normal>(
Opaque<bindings::pci_dev>,
PhantomData<Ctx>,
);
/// A PCI BAR to perform I/O-Operations on.
///
/// # Invariants
///
/// `Bar` always holds an `IoRaw` inststance that holds a valid pointer to the start of the I/O
/// memory mapped PCI bar and its size.
pub struct Bar<const SIZE: usize = 0> {
pdev: ARef<Device>,
io: IoRaw<SIZE>,
num: i32,
}
impl<const SIZE: usize> Bar<SIZE> {
fn new(pdev: &Device, num: u32, name: &CStr) -> Result<Self> {
let len = pdev.resource_len(num)?;
if len == 0 {
return Err(ENOMEM);
}
// Convert to `i32`, since that's what all the C bindings use.
let num = i32::try_from(num)?;
// SAFETY:
// `pdev` is valid by the invariants of `Device`.
// `num` is checked for validity by a previous call to `Device::resource_len`.
// `name` is always valid.
let ret = unsafe { bindings::pci_request_region(pdev.as_raw(), num, name.as_char_ptr()) };
if ret != 0 {
return Err(EBUSY);
}
// SAFETY:
// `pdev` is valid by the invariants of `Device`.
// `num` is checked for validity by a previous call to `Device::resource_len`.
// `name` is always valid.
let ioptr: usize = unsafe { bindings::pci_iomap(pdev.as_raw(), num, 0) } as usize;
if ioptr == 0 {
// SAFETY:
// `pdev` valid by the invariants of `Device`.
// `num` is checked for validity by a previous call to `Device::resource_len`.
unsafe { bindings::pci_release_region(pdev.as_raw(), num) };
return Err(ENOMEM);
}
let io = match IoRaw::new(ioptr, len as usize) {
Ok(io) => io,
Err(err) => {
// SAFETY:
// `pdev` is valid by the invariants of `Device`.
// `ioptr` is guaranteed to be the start of a valid I/O mapped memory region.
// `num` is checked for validity by a previous call to `Device::resource_len`.
unsafe { Self::do_release(pdev, ioptr, num) };
return Err(err);
}
};
Ok(Bar {
pdev: pdev.into(),
io,
num,
})
}
/// # Safety
///
/// `ioptr` must be a valid pointer to the memory mapped PCI bar number `num`.
unsafe fn do_release(pdev: &Device, ioptr: usize, num: i32) {
// SAFETY:
// `pdev` is valid by the invariants of `Device`.
// `ioptr` is valid by the safety requirements.
// `num` is valid by the safety requirements.
unsafe {
bindings::pci_iounmap(pdev.as_raw(), ioptr as _);
bindings::pci_release_region(pdev.as_raw(), num);
}
}
fn release(&self) {
// SAFETY: The safety requirements are guaranteed by the type invariant of `self.pdev`.
unsafe { Self::do_release(&self.pdev, self.io.addr(), self.num) };
}
}
impl Bar {
fn index_is_valid(index: u32) -> bool {
// A `struct pci_dev` owns an array of resources with at most `PCI_NUM_RESOURCES` entries.
index < bindings::PCI_NUM_RESOURCES
}
}
impl<const SIZE: usize> Drop for Bar<SIZE> {
fn drop(&mut self) {
self.release();
}
}
impl<const SIZE: usize> Deref for Bar<SIZE> {
type Target = Io<SIZE>;
fn deref(&self) -> &Self::Target {
// SAFETY: By the type invariant of `Self`, the MMIO range in `self.io` is properly mapped.
unsafe { Io::from_raw(&self.io) }
}
}
impl<Ctx: device::DeviceContext> Device<Ctx> {
fn as_raw(&self) -> *mut bindings::pci_dev {
self.0.get()
}
}
impl Device {
/// Returns the PCI vendor ID.
pub fn vendor_id(&self) -> u16 {
// SAFETY: `self.as_raw` is a valid pointer to a `struct pci_dev`.
unsafe { (*self.as_raw()).vendor }
}
/// Returns the PCI device ID.
pub fn device_id(&self) -> u16 {
// SAFETY: `self.as_raw` is a valid pointer to a `struct pci_dev`.
unsafe { (*self.as_raw()).device }
}
/// Returns the size of the given PCI bar resource.
pub fn resource_len(&self, bar: u32) -> Result<bindings::resource_size_t> {
if !Bar::index_is_valid(bar) {
return Err(EINVAL);
}
// SAFETY:
// - `bar` is a valid bar number, as guaranteed by the above call to `Bar::index_is_valid`,
// - by its type invariant `self.as_raw` is always a valid pointer to a `struct pci_dev`.
Ok(unsafe { bindings::pci_resource_len(self.as_raw(), bar.try_into()?) })
}
}
impl Device<device::Bound> {
/// Mapps an entire PCI-BAR after performing a region-request on it. I/O operation bound checks
/// can be performed on compile time for offsets (plus the requested type size) < SIZE.
pub fn iomap_region_sized<'a, const SIZE: usize>(
&'a self,
bar: u32,
name: &'a CStr,
) -> impl PinInit<Devres<Bar<SIZE>>, Error> + 'a {
Devres::new(self.as_ref(), Bar::<SIZE>::new(self, bar, name))
}
/// Mapps an entire PCI-BAR after performing a region-request on it.
pub fn iomap_region<'a>(
&'a self,
bar: u32,
name: &'a CStr,
) -> impl PinInit<Devres<Bar>, Error> + 'a {
self.iomap_region_sized::<0>(bar, name)
}
}
impl Device<device::Core> {
/// Enable memory resources for this device.
pub fn enable_device_mem(&self) -> Result {
// SAFETY: `self.as_raw` is guaranteed to be a pointer to a valid `struct pci_dev`.
to_result(unsafe { bindings::pci_enable_device_mem(self.as_raw()) })
}
/// Enable bus-mastering for this device.
pub fn set_master(&self) {
// SAFETY: `self.as_raw` is guaranteed to be a pointer to a valid `struct pci_dev`.
unsafe { bindings::pci_set_master(self.as_raw()) };
}
}
// SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
// argument.
kernel::impl_device_context_deref!(unsafe { Device });
kernel::impl_device_context_into_aref!(Device);
impl crate::dma::Device for Device<device::Core> {}
// SAFETY: Instances of `Device` are always reference-counted.
unsafe impl crate::types::AlwaysRefCounted for Device {
fn inc_ref(&self) {
// SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
unsafe { bindings::pci_dev_get(self.as_raw()) };
}
unsafe fn dec_ref(obj: NonNull<Self>) {
// SAFETY: The safety requirements guarantee that the refcount is non-zero.
unsafe { bindings::pci_dev_put(obj.cast().as_ptr()) }
}
}
impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
fn as_ref(&self) -> &device::Device<Ctx> {
// SAFETY: By the type invariant of `Self`, `self.as_raw()` is a pointer to a valid
// `struct pci_dev`.
let dev = unsafe { addr_of_mut!((*self.as_raw()).dev) };
// SAFETY: `dev` points to a valid `struct device`.
unsafe { device::Device::from_raw(dev) }
}
}
impl<Ctx: device::DeviceContext> TryFrom<&device::Device<Ctx>> for &Device<Ctx> {
type Error = kernel::error::Error;
fn try_from(dev: &device::Device<Ctx>) -> Result<Self, Self::Error> {
// SAFETY: By the type invariant of `Device`, `dev.as_raw()` is a valid pointer to a
// `struct device`.
if !unsafe { bindings::dev_is_pci(dev.as_raw()) } {
return Err(EINVAL);
}
// SAFETY: We've just verified that the bus type of `dev` equals `bindings::pci_bus_type`,
// hence `dev` must be embedded in a valid `struct pci_dev` as guaranteed by the
// corresponding C code.
let pdev = unsafe { container_of!(dev.as_raw(), bindings::pci_dev, dev) };
// SAFETY: `pdev` is a valid pointer to a `struct pci_dev`.
Ok(unsafe { &*pdev.cast() })
}
}
// SAFETY: A `Device` is always reference-counted and can be released from any thread.
unsafe impl Send for Device {}
// SAFETY: `Device` can be shared among threads because all methods of `Device`
// (i.e. `Device<Normal>) are thread safe.
unsafe impl Sync for Device {}