linux/rust/kernel/devres.rs
Danilo Krummrich 85aa5b16fe rust: devres: provide an accessor for the device
Provide an accessor for the Device a Devres instance has been created
with.

For instance, this is useful when registrations want to provide a
&Device<Bound> for a scope that is protected by Devres.

Suggested-by: Benno Lossin <lossin@kernel.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Benno Lossin <lossin@kernel.org>
Link: https://lore.kernel.org/r/20250713182737.64448-1-dakr@kernel.org
Signed-off-by: Danilo Krummrich <dakr@kernel.org>
2025-07-15 14:46:13 +02:00

360 lines
13 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! Devres abstraction
//!
//! [`Devres`] represents an abstraction for the kernel devres (device resource management)
//! implementation.
use crate::{
alloc::Flags,
bindings,
device::{Bound, Device},
error::{to_result, Error, Result},
ffi::c_void,
prelude::*,
revocable::{Revocable, RevocableGuard},
sync::{rcu, Completion},
types::{ARef, ForeignOwnable, Opaque, ScopeGuard},
};
use pin_init::Wrapper;
/// [`Devres`] inner data accessed from [`Devres::callback`].
#[pin_data]
struct Inner<T: Send> {
#[pin]
data: Revocable<T>,
/// Tracks whether [`Devres::callback`] has been completed.
#[pin]
devm: Completion,
/// Tracks whether revoking [`Self::data`] has been completed.
#[pin]
revoke: Completion,
}
/// This abstraction is meant to be used by subsystems to containerize [`Device`] bound resources to
/// manage their lifetime.
///
/// [`Device`] bound resources should be freed when either the resource goes out of scope or the
/// [`Device`] is unbound respectively, depending on what happens first. In any case, it is always
/// guaranteed that revoking the device resource is completed before the corresponding [`Device`]
/// is unbound.
///
/// To achieve that [`Devres`] registers a devres callback on creation, which is called once the
/// [`Device`] is unbound, revoking access to the encapsulated resource (see also [`Revocable`]).
///
/// After the [`Devres`] has been unbound it is not possible to access the encapsulated resource
/// anymore.
///
/// [`Devres`] users should make sure to simply free the corresponding backing resource in `T`'s
/// [`Drop`] implementation.
///
/// # Example
///
/// ```no_run
/// # use kernel::{bindings, device::{Bound, Device}, devres::Devres, io::{Io, IoRaw}};
/// # use core::ops::Deref;
///
/// // See also [`pci::Bar`] for a real example.
/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
///
/// impl<const SIZE: usize> IoMem<SIZE> {
/// /// # Safety
/// ///
/// /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
/// /// virtual address space.
/// unsafe fn new(paddr: usize) -> Result<Self>{
/// // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
/// // valid for `ioremap`.
/// let addr = unsafe { bindings::ioremap(paddr as _, SIZE as _) };
/// if addr.is_null() {
/// return Err(ENOMEM);
/// }
///
/// Ok(IoMem(IoRaw::new(addr as _, SIZE)?))
/// }
/// }
///
/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
/// fn drop(&mut self) {
/// // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
/// unsafe { bindings::iounmap(self.0.addr() as _); };
/// }
/// }
///
/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
/// type Target = Io<SIZE>;
///
/// fn deref(&self) -> &Self::Target {
/// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
/// unsafe { Io::from_raw(&self.0) }
/// }
/// }
/// # fn no_run(dev: &Device<Bound>) -> Result<(), Error> {
/// // SAFETY: Invalid usage for example purposes.
/// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
/// let devres = KBox::pin_init(Devres::new(dev, iomem), GFP_KERNEL)?;
///
/// let res = devres.try_access().ok_or(ENXIO)?;
/// res.write8(0x42, 0x0);
/// # Ok(())
/// # }
/// ```
///
/// # Invariants
///
/// [`Self::inner`] is guaranteed to be initialized and is always accessed read-only.
#[pin_data(PinnedDrop)]
pub struct Devres<T: Send> {
dev: ARef<Device>,
/// Pointer to [`Self::devres_callback`].
///
/// Has to be stored, since Rust does not guarantee to always return the same address for a
/// function. However, the C API uses the address as a key.
callback: unsafe extern "C" fn(*mut c_void),
/// Contains all the fields shared with [`Self::callback`].
// TODO: Replace with `UnsafePinned`, once available.
//
// Subsequently, the `drop_in_place()` in `Devres::drop` and the explicit `Send` and `Sync'
// impls can be removed.
#[pin]
inner: Opaque<Inner<T>>,
}
impl<T: Send> Devres<T> {
/// Creates a new [`Devres`] instance of the given `data`.
///
/// The `data` encapsulated within the returned `Devres` instance' `data` will be
/// (revoked)[`Revocable`] once the device is detached.
pub fn new<'a, E>(
dev: &'a Device<Bound>,
data: impl PinInit<T, E> + 'a,
) -> impl PinInit<Self, Error> + 'a
where
T: 'a,
Error: From<E>,
{
let callback = Self::devres_callback;
try_pin_init!(&this in Self {
dev: dev.into(),
callback,
// INVARIANT: `inner` is properly initialized.
inner <- {
// SAFETY: `this` is a valid pointer to uninitialized memory.
let inner = unsafe { &raw mut (*this.as_ptr()).inner };
// SAFETY:
// - `dev.as_raw()` is a pointer to a valid bound device.
// - `inner` is guaranteed to be a valid for the duration of the lifetime of `Self`.
// - `devm_add_action()` is guaranteed not to call `callback` until `this` has been
// properly initialized, because we require `dev` (i.e. the *bound* device) to
// live at least as long as the returned `impl PinInit<Self, Error>`.
to_result(unsafe {
bindings::devm_add_action(dev.as_raw(), Some(callback), inner.cast())
})?;
Opaque::pin_init(try_pin_init!(Inner {
devm <- Completion::new(),
revoke <- Completion::new(),
data <- Revocable::new(data),
}))
},
})
}
fn inner(&self) -> &Inner<T> {
// SAFETY: By the type invairants of `Self`, `inner` is properly initialized and always
// accessed read-only.
unsafe { &*self.inner.get() }
}
fn data(&self) -> &Revocable<T> {
&self.inner().data
}
#[allow(clippy::missing_safety_doc)]
unsafe extern "C" fn devres_callback(ptr: *mut kernel::ffi::c_void) {
// SAFETY: In `Self::new` we've passed a valid pointer to `Inner` to `devm_add_action()`,
// hence `ptr` must be a valid pointer to `Inner`.
let inner = unsafe { &*ptr.cast::<Inner<T>>() };
// Ensure that `inner` can't be used anymore after we signal completion of this callback.
let inner = ScopeGuard::new_with_data(inner, |inner| inner.devm.complete_all());
if !inner.data.revoke() {
// If `revoke()` returns false, it means that `Devres::drop` already started revoking
// `data` for us. Hence we have to wait until `Devres::drop` signals that it
// completed revoking `data`.
inner.revoke.wait_for_completion();
}
}
fn remove_action(&self) -> bool {
// SAFETY:
// - `self.dev` is a valid `Device`,
// - the `action` and `data` pointers are the exact same ones as given to
// `devm_add_action()` previously,
(unsafe {
bindings::devm_remove_action_nowarn(
self.dev.as_raw(),
Some(self.callback),
core::ptr::from_ref(self.inner()).cast_mut().cast(),
)
} == 0)
}
/// Return a reference of the [`Device`] this [`Devres`] instance has been created with.
pub fn device(&self) -> &Device {
&self.dev
}
/// Obtain `&'a T`, bypassing the [`Revocable`].
///
/// This method allows to directly obtain a `&'a T`, bypassing the [`Revocable`], by presenting
/// a `&'a Device<Bound>` of the same [`Device`] this [`Devres`] instance has been created with.
///
/// # Errors
///
/// An error is returned if `dev` does not match the same [`Device`] this [`Devres`] instance
/// has been created with.
///
/// # Example
///
/// ```no_run
/// # #![cfg(CONFIG_PCI)]
/// # use kernel::{device::Core, devres::Devres, pci};
///
/// fn from_core(dev: &pci::Device<Core>, devres: Devres<pci::Bar<0x4>>) -> Result {
/// let bar = devres.access(dev.as_ref())?;
///
/// let _ = bar.read32(0x0);
///
/// // might_sleep()
///
/// bar.write32(0x42, 0x0);
///
/// Ok(())
/// }
/// ```
pub fn access<'a>(&'a self, dev: &'a Device<Bound>) -> Result<&'a T> {
if self.dev.as_raw() != dev.as_raw() {
return Err(EINVAL);
}
// SAFETY: `dev` being the same device as the device this `Devres` has been created for
// proves that `self.data` hasn't been revoked and is guaranteed to not be revoked as long
// as `dev` lives; `dev` lives at least as long as `self`.
Ok(unsafe { self.data().access() })
}
/// [`Devres`] accessor for [`Revocable::try_access`].
pub fn try_access(&self) -> Option<RevocableGuard<'_, T>> {
self.data().try_access()
}
/// [`Devres`] accessor for [`Revocable::try_access_with`].
pub fn try_access_with<R, F: FnOnce(&T) -> R>(&self, f: F) -> Option<R> {
self.data().try_access_with(f)
}
/// [`Devres`] accessor for [`Revocable::try_access_with_guard`].
pub fn try_access_with_guard<'a>(&'a self, guard: &'a rcu::Guard) -> Option<&'a T> {
self.data().try_access_with_guard(guard)
}
}
// SAFETY: `Devres` can be send to any task, if `T: Send`.
unsafe impl<T: Send> Send for Devres<T> {}
// SAFETY: `Devres` can be shared with any task, if `T: Sync`.
unsafe impl<T: Send + Sync> Sync for Devres<T> {}
#[pinned_drop]
impl<T: Send> PinnedDrop for Devres<T> {
fn drop(self: Pin<&mut Self>) {
// SAFETY: When `drop` runs, it is guaranteed that nobody is accessing the revocable data
// anymore, hence it is safe not to wait for the grace period to finish.
if unsafe { self.data().revoke_nosync() } {
// We revoked `self.data` before the devres action did, hence try to remove it.
if !self.remove_action() {
// We could not remove the devres action, which means that it now runs concurrently,
// hence signal that `self.data` has been revoked by us successfully.
self.inner().revoke.complete_all();
// Wait for `Self::devres_callback` to be done using this object.
self.inner().devm.wait_for_completion();
}
} else {
// `Self::devres_callback` revokes `self.data` for us, hence wait for it to be done
// using this object.
self.inner().devm.wait_for_completion();
}
// INVARIANT: At this point it is guaranteed that `inner` can't be accessed any more.
//
// SAFETY: `inner` is valid for dropping.
unsafe { core::ptr::drop_in_place(self.inner.get()) };
}
}
/// Consume `data` and [`Drop::drop`] `data` once `dev` is unbound.
fn register_foreign<P>(dev: &Device<Bound>, data: P) -> Result
where
P: ForeignOwnable + Send + 'static,
{
let ptr = data.into_foreign();
#[allow(clippy::missing_safety_doc)]
unsafe extern "C" fn callback<P: ForeignOwnable>(ptr: *mut kernel::ffi::c_void) {
// SAFETY: `ptr` is the pointer to the `ForeignOwnable` leaked above and hence valid.
drop(unsafe { P::from_foreign(ptr.cast()) });
}
// SAFETY:
// - `dev.as_raw()` is a pointer to a valid and bound device.
// - `ptr` is a valid pointer the `ForeignOwnable` devres takes ownership of.
to_result(unsafe {
// `devm_add_action_or_reset()` also calls `callback` on failure, such that the
// `ForeignOwnable` is released eventually.
bindings::devm_add_action_or_reset(dev.as_raw(), Some(callback::<P>), ptr.cast())
})
}
/// Encapsulate `data` in a [`KBox`] and [`Drop::drop`] `data` once `dev` is unbound.
///
/// # Examples
///
/// ```no_run
/// use kernel::{device::{Bound, Device}, devres};
///
/// /// Registration of e.g. a class device, IRQ, etc.
/// struct Registration;
///
/// impl Registration {
/// fn new() -> Self {
/// // register
///
/// Self
/// }
/// }
///
/// impl Drop for Registration {
/// fn drop(&mut self) {
/// // unregister
/// }
/// }
///
/// fn from_bound_context(dev: &Device<Bound>) -> Result {
/// devres::register(dev, Registration::new(), GFP_KERNEL)
/// }
/// ```
pub fn register<T, E>(dev: &Device<Bound>, data: impl PinInit<T, E>, flags: Flags) -> Result
where
T: Send + 'static,
Error: From<E>,
{
let data = KBox::pin_init(data, flags)?;
register_foreign(dev, data)
}