mirror of
https://github.com/nodejs/node.git
synced 2025-08-15 13:48:44 +02:00

This script should help identify the best N when creating/updating benchmarks Signed-off-by: RafaelGSS <rafael.nunu@hotmail.com> PR-URL: https://github.com/nodejs/node/pull/59186 Reviewed-By: Vinícius Lourenço Claro Cardoso <contact@viniciusl.com.br> Reviewed-By: James M Snell <jasnell@gmail.com>
292 lines
9.7 KiB
JavaScript
292 lines
9.7 KiB
JavaScript
'use strict';
|
|
|
|
const path = require('node:path');
|
|
const { fork } = require('node:child_process');
|
|
const fs = require('node:fs');
|
|
const { styleText } = require('node:util');
|
|
|
|
const DEFAULT_RUNS = 30; // Number of runs for each n value
|
|
const CV_THRESHOLD = 0.05; // 5% coefficient of variation threshold
|
|
const MAX_N_INCREASE = 6; // Maximum number of times to increase n (10**6)
|
|
const INCREASE_FACTOR = 10; // Factor by which to increase n
|
|
|
|
const args = process.argv.slice(2);
|
|
if (args.length === 0) {
|
|
console.log(`
|
|
Usage: node calibrate-n.js [options] <benchmark_path>
|
|
|
|
Options:
|
|
--runs=N Number of runs for each n value (default: ${DEFAULT_RUNS})
|
|
--cv-threshold=N Target coefficient of variation threshold (default: ${CV_THRESHOLD})
|
|
--max-increases=N Maximum number of n increases to try (default: ${MAX_N_INCREASE})
|
|
--start-n=N Initial n value to start with (default: autodetect)
|
|
--increase=N Factor by which to increase n (default: ${INCREASE_FACTOR})
|
|
|
|
Example:
|
|
node calibrate-n.js buffers/buffer-compare.js
|
|
node calibrate-n.js --runs=10 --cv-threshold=0.02 buffers/buffer-compare.js
|
|
`);
|
|
process.exit(1);
|
|
}
|
|
|
|
// Extract options
|
|
let benchmarkPath;
|
|
let runs = DEFAULT_RUNS;
|
|
let cvThreshold = CV_THRESHOLD;
|
|
let maxIncreases = MAX_N_INCREASE;
|
|
let startN = 10;
|
|
let increaseFactor = INCREASE_FACTOR;
|
|
|
|
for (const arg of args) {
|
|
if (arg.startsWith('--runs=')) {
|
|
runs = parseInt(arg.substring(7), 10);
|
|
} else if (arg.startsWith('--cv-threshold=')) {
|
|
cvThreshold = parseFloat(arg.substring(14));
|
|
} else if (arg.startsWith('--max-increases=')) {
|
|
maxIncreases = parseInt(arg.substring(15), 10);
|
|
if (isNaN(maxIncreases)) {
|
|
console.error(`Error: Invalid value for --max-increases. Using default: ${MAX_N_INCREASE}`);
|
|
maxIncreases = MAX_N_INCREASE;
|
|
}
|
|
} else if (arg.startsWith('--start-n=')) {
|
|
startN = parseInt(arg.substring(10), 10);
|
|
if (isNaN(startN)) {
|
|
console.error(`Error: Invalid value for --start-n. Using default: 10`);
|
|
startN = 10;
|
|
}
|
|
} else if (arg.startsWith('--increase=')) {
|
|
increaseFactor = parseInt(arg.substring(11), 10);
|
|
if (isNaN(increaseFactor)) {
|
|
console.error(`Error: Invalid value for --increase. Using default: ${INCREASE_FACTOR}`);
|
|
increaseFactor = INCREASE_FACTOR;
|
|
}
|
|
} else {
|
|
benchmarkPath = arg;
|
|
}
|
|
}
|
|
|
|
if (!benchmarkPath) {
|
|
console.error('Error: No benchmark path specified');
|
|
process.exit(1);
|
|
}
|
|
|
|
const fullBenchmarkPath = path.resolve(benchmarkPath);
|
|
if (!fs.existsSync(fullBenchmarkPath)) {
|
|
console.error(`Error: Benchmark file not found: ${fullBenchmarkPath}`);
|
|
process.exit(1);
|
|
}
|
|
|
|
function calculateStats(values) {
|
|
const mean = values.reduce((sum, val) => sum + val, 0) / values.length;
|
|
|
|
const squaredDiffs = values.map((val) => {
|
|
const diff = val - mean;
|
|
const squared = diff ** 2;
|
|
return squared;
|
|
});
|
|
|
|
const variance = squaredDiffs.reduce((sum, val) => sum + val, 0) / values.length;
|
|
const stdDev = Math.sqrt(variance);
|
|
const cv = stdDev / mean;
|
|
|
|
return { mean, stdDev, cv, variance };
|
|
}
|
|
|
|
function runBenchmark(n) {
|
|
return new Promise((resolve, reject) => {
|
|
const child = fork(
|
|
fullBenchmarkPath,
|
|
[`n=${n}`],
|
|
{ stdio: ['inherit', 'pipe', 'inherit', 'ipc'] },
|
|
);
|
|
|
|
const results = [];
|
|
child.on('message', (data) => {
|
|
if (data.type === 'report' && data.rate && data.conf) {
|
|
results.push({
|
|
rate: data.rate,
|
|
conf: data.conf,
|
|
});
|
|
}
|
|
});
|
|
|
|
child.on('close', (code) => {
|
|
if (code !== 0) {
|
|
reject(new Error(`Benchmark exited with code ${code}`));
|
|
} else {
|
|
resolve(results);
|
|
}
|
|
});
|
|
});
|
|
}
|
|
|
|
async function main(n = startN) {
|
|
let increaseCount = 0;
|
|
let bestN = n;
|
|
let bestCV = Infinity;
|
|
let bestGroupStats = null;
|
|
|
|
console.log(`
|
|
--------------------------------------------------------
|
|
Benchmark: ${benchmarkPath}
|
|
--------------------------------------------------------
|
|
What we are trying to find: The optimal number of iterations (n)
|
|
that produces consistent benchmark results without wasting time.
|
|
|
|
How it works:
|
|
1. Run the benchmark multiple times with a specific n value
|
|
2. Group results by configuration
|
|
3. If overall CV is above 5% or any configuration has CV above 10%, increase n and try again
|
|
|
|
Configuration:
|
|
- Starting n: ${n.toLocaleString()} iterations
|
|
- Runs per n value: ${runs}
|
|
- Target CV threshold: ${cvThreshold * 100}% (lower CV = more stable results)
|
|
- Max increases: ${maxIncreases}
|
|
- Increase factor: ${increaseFactor}x`);
|
|
|
|
while (increaseCount < maxIncreases) {
|
|
console.log(`\nTesting with n=${n}:`);
|
|
|
|
const resultsData = [];
|
|
for (let i = 0; i < runs; i++) {
|
|
const results = await runBenchmark(n);
|
|
// Each run might return multiple results (one per configuration)
|
|
if (Array.isArray(results) && results.length > 0) {
|
|
resultsData.push(...results);
|
|
} else if (results) {
|
|
resultsData.push(results);
|
|
}
|
|
process.stdout.write('.');
|
|
}
|
|
process.stdout.write('\n');
|
|
|
|
const groupedResults = {};
|
|
resultsData.forEach((result) => {
|
|
if (!result || !result.conf) return;
|
|
|
|
const confKey = JSON.stringify(result.conf);
|
|
groupedResults[confKey] ||= {
|
|
conf: result.conf,
|
|
rates: [],
|
|
};
|
|
|
|
groupedResults[confKey].rates.push(result.rate);
|
|
});
|
|
|
|
const groupStats = [];
|
|
for (const [confKey, group] of Object.entries(groupedResults)) {
|
|
console.log(`\nConfiguration: ${JSON.stringify(group.conf)}`);
|
|
|
|
const stats = calculateStats(group.rates);
|
|
console.log(` CV: ${(stats.cv * 100).toFixed(2)}% (lower values mean more stable results)`);
|
|
|
|
const isStable = stats.cv <= cvThreshold;
|
|
console.log(` Stability: ${isStable ?
|
|
styleText(['bold', 'green'], '✓ Stable') :
|
|
styleText(['bold', 'red'], '✗ Unstable')}`);
|
|
|
|
groupStats.push({
|
|
confKey,
|
|
stats,
|
|
isStable,
|
|
});
|
|
}
|
|
|
|
if (groupStats.length > 0) {
|
|
// Check if any configuration has CV > 10% (too unstable)
|
|
const tooUnstableConfigs = groupStats.filter((g) => g.stats.cv > 0.10);
|
|
|
|
const avgCV = groupStats.reduce((sum, g) => sum + g.stats.cv, 0) / groupStats.length;
|
|
console.log(`\nOverall average CV: ${(avgCV * 100).toFixed(2)}%`);
|
|
|
|
const isOverallStable = avgCV < CV_THRESHOLD;
|
|
const hasVeryUnstableConfigs = tooUnstableConfigs.length > 0;
|
|
|
|
// Check if overall CV is below CV_THRESHOLD and no configuration has CV > 10%
|
|
if (isOverallStable && !hasVeryUnstableConfigs) {
|
|
console.log(styleText(['bold', 'green'], ` ✓ Overall CV is below 5% and no configuration has CV above 10%`));
|
|
} else {
|
|
if (!isOverallStable) {
|
|
console.log(styleText(['bold', 'red'], ` ✗ Overall CV (${(avgCV * 100).toFixed(2)}%) is above 5%`));
|
|
}
|
|
if (hasVeryUnstableConfigs) {
|
|
console.log(styleText(['bold', 'red'], ` ✗ ${tooUnstableConfigs.length} configuration(s) have CV above 10%`));
|
|
}
|
|
}
|
|
|
|
if (avgCV < bestCV || !bestGroupStats) {
|
|
bestN = n;
|
|
bestCV = avgCV;
|
|
|
|
bestGroupStats = [];
|
|
for (const group of Object.values(groupedResults)) {
|
|
if (group.rates.length >= 3) {
|
|
const stats = calculateStats(group.rates);
|
|
bestGroupStats.push({
|
|
conf: group.conf,
|
|
stats: stats,
|
|
isStable: stats.cv <= 0.10,
|
|
});
|
|
}
|
|
}
|
|
console.log(` → New best n: ${n} with average CV: ${(avgCV * 100).toFixed(2)}%`);
|
|
} else {
|
|
console.log(` → Current best n remains: ${bestN} with average CV: ${(bestCV * 100).toFixed(2)}%`);
|
|
}
|
|
}
|
|
|
|
// Check if we've reached acceptable stability based on new criteria
|
|
// 1. Overall CV should be below CV_THRESHOLD
|
|
// 2. No configuration should have a CV greater than 10%
|
|
const avgCV = groupStats.length > 0 ?
|
|
groupStats.reduce((sum, g) => sum + g.stats.cv, 0) / groupStats.length : Infinity;
|
|
const hasUnstableConfig = groupStats.some((g) => g.stats.cv > 0.10);
|
|
const isOverallStable = avgCV < CV_THRESHOLD;
|
|
|
|
if (isOverallStable && !hasUnstableConfig) {
|
|
console.log(`\n✓ Found optimal n=${n} (Overall CV=${(avgCV * 100).toFixed(2)}% < 5% and no configuration has CV > 10%)`);
|
|
console.log('\nFinal CV for each configuration:');
|
|
groupStats.forEach((g) => {
|
|
console.log(` ${JSON.stringify(groupedResults[g.confKey].conf)}: ${(g.stats.cv * 100).toFixed(2)}%`);
|
|
});
|
|
|
|
return n;
|
|
}
|
|
|
|
increaseCount++;
|
|
n *= increaseFactor;
|
|
}
|
|
|
|
if (increaseCount >= maxIncreases) {
|
|
const finalAvgCV = bestGroupStats && bestGroupStats.length > 0 ?
|
|
bestGroupStats.reduce((sum, g) => sum + g.stats.cv, 0) / bestGroupStats.length : Infinity;
|
|
|
|
console.log(`Maximum number of increases (${maxIncreases}) reached without achieving target stability`);
|
|
console.log(`Best n found: ${bestN} with average CV=${(finalAvgCV * 100).toFixed(2)}%`);
|
|
console.log(`\nCV by configuration at best n:`);
|
|
|
|
if (bestGroupStats) {
|
|
bestGroupStats.forEach((g) => {
|
|
if (g.conf) {
|
|
console.log(` ${JSON.stringify(g.conf)}: ${(g.stats.cv * 100).toFixed(2)}%`);
|
|
if (g.stats.cv > cvThreshold) {
|
|
console.log(` ⚠️ This configuration is above the target threshold of ${cvThreshold * 100}%`);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
console.log(`
|
|
Recommendation: You might want to try increasing --max-increases to
|
|
continue testing with larger n values, or adjust --cv-threshold to
|
|
accept the current best result, or investigate if specific configurations
|
|
are contributing to instability.`);
|
|
return bestN;
|
|
}
|
|
|
|
main().catch((err) => {
|
|
console.error('Error:', err);
|
|
process.exit(1);
|
|
});
|