node/deps/nbytes/nbytes.h
James M Snell d335487e3f src, deps: add nbytes library
Projects that seek to implement Node.js compatible APIs end up
needed to reproduce various bits of functionality internally in
order to faithfully replicate the Node.js behaviors. This is
particularly true for things like byte manipulation, base64 and
hex encoding, and other low-level operations. This change
proposes moving much of this low-level byte manipulation code
out of nodejs/src and into a new `nbytes` library. Initially this
new library will exist in the `deps` directory but the intent is
to spin out a new separate repository to be its home in the future.
Doing so will allow other projects to use the nbytes library with
exactly the same implementation as Node.js.

This commit moves only the byte swapping and legacy base64 handling
code. Additional commits will move additional byte manipulation
logic into the library.

PR-URL: https://github.com/nodejs/node/pull/53507
Reviewed-By: Yagiz Nizipli <yagiz.nizipli@sentry.io>
Reviewed-By: Robert Nagy <ronagy@icloud.com>
Reviewed-By: Chengzhong Wu <legendecas@gmail.com>
2024-06-21 07:38:37 -07:00

870 lines
30 KiB
C++

#pragma once
#include <algorithm>
#include <string>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <cmath>
namespace nbytes {
#if NBYTES_DEVELOPMENT_CHECKS
#define NBYTES_STR(x) #x
#define NBYTES_REQUIRE(EXPR) \
{ \
if (!(EXPR) { abort(); }) }
#define NBYTES_FAIL(MESSAGE) \
do { \
std::cerr << "FAIL: " << (MESSAGE) << std::endl; \
abort(); \
} while (0);
#define NBYTES_ASSERT_EQUAL(LHS, RHS, MESSAGE) \
do { \
if (LHS != RHS) { \
std::cerr << "Mismatch: '" << LHS << "' - '" << RHS << "'" << std::endl; \
NBYTES_FAIL(MESSAGE); \
} \
} while (0);
#define NBYTES_ASSERT_TRUE(COND) \
do { \
if (!(COND)) { \
std::cerr << "Assert at line " << __LINE__ << " of file " << __FILE__ \
<< std::endl; \
NBYTES_FAIL(NBYTES_STR(COND)); \
} \
} while (0);
#else
#define NBYTES_FAIL(MESSAGE)
#define NBYTES_ASSERT_EQUAL(LHS, RHS, MESSAGE)
#define NBYTES_ASSERT_TRUE(COND)
#endif
[[noreturn]] inline void unreachable() {
#ifdef __GNUC__
__builtin_unreachable();
#elif defined(_MSC_VER)
__assume(false);
#else
#endif
}
// The nbytes (short for "node bytes") is a set of utility helpers for
// working with bytes that are extracted from Node.js' internals. The
// motivation for extracting these into a separate library is to make it
// easier for other projects to implement functionality that is compatible
// with Node.js' implementation of various byte manipulation functions.
// Round up a to the next highest multiple of b.
template <typename T>
constexpr T RoundUp(T a, T b) {
return a % b != 0 ? a + b - (a % b) : a;
}
// Align ptr to an `alignment`-bytes boundary.
template <typename T, typename U>
constexpr T* AlignUp(T* ptr, U alignment) {
return reinterpret_cast<T*>(
RoundUp(reinterpret_cast<uintptr_t>(ptr), alignment));
}
template <typename T, typename U>
inline T AlignDown(T value, U alignment) {
return reinterpret_cast<T>(
(reinterpret_cast<uintptr_t>(value) & ~(alignment - 1)));
}
template <typename T>
inline T MultiplyWithOverflowCheck(T a, T b) {
auto ret = a * b;
if (a != 0) {
NBYTES_ASSERT_TRUE(b == ret / a);
}
return ret;
}
void ForceAsciiSlow(const char* src, char* dst, size_t len);
void ForceAscii(const char* src, char* dst, size_t len);
// ============================================================================
// Byte Swapping
// Swaps bytes in place. nbytes is the number of bytes to swap and must be a
// multiple of the word size (checked by function).
bool SwapBytes16(void* data, size_t nbytes);
bool SwapBytes32(void* data, size_t nbytes);
bool SwapBytes64(void* data, size_t nbytes);
// ============================================================================
// Base64 (legacy)
#ifdef _MSC_VER
#pragma warning(push)
// MSVC C4003: not enough actual parameters for macro 'identifier'
#pragma warning(disable : 4003)
#endif
extern const int8_t unbase64_table[256];
template <typename TypeName>
bool Base64DecodeGroupSlow(char* const dst, const size_t dstlen,
const TypeName* const src, const size_t srclen,
size_t* const i, size_t* const k) {
uint8_t hi;
uint8_t lo;
#define V(expr) \
for (;;) { \
const uint8_t c = static_cast<uint8_t>(src[*i]); \
lo = unbase64_table[c]; \
*i += 1; \
if (lo < 64) break; /* Legal character. */ \
if (c == '=' || *i >= srclen) return false; /* Stop decoding. */ \
} \
expr; \
if (*i >= srclen) return false; \
if (*k >= dstlen) return false; \
hi = lo;
V(/* Nothing. */);
V(dst[(*k)++] = ((hi & 0x3F) << 2) | ((lo & 0x30) >> 4));
V(dst[(*k)++] = ((hi & 0x0F) << 4) | ((lo & 0x3C) >> 2));
V(dst[(*k)++] = ((hi & 0x03) << 6) | ((lo & 0x3F) >> 0));
#undef V
return true; // Continue decoding.
}
enum class Base64Mode {
NORMAL,
URL
};
inline constexpr size_t Base64EncodedSize(
size_t size,
Base64Mode mode = Base64Mode::NORMAL) {
return mode == Base64Mode::NORMAL ? ((size + 2) / 3 * 4)
: static_cast<size_t>(std::ceil(
static_cast<double>(size * 4) / 3));
}
// Doesn't check for padding at the end. Can be 1-2 bytes over.
inline constexpr size_t Base64DecodedSizeFast(size_t size) {
// 1-byte input cannot be decoded
return size > 1 ? (size / 4) * 3 + (size % 4 + 1) / 2 : 0;
}
inline uint32_t ReadUint32BE(const unsigned char* p) {
return static_cast<uint32_t>(p[0] << 24U) |
static_cast<uint32_t>(p[1] << 16U) |
static_cast<uint32_t>(p[2] << 8U) |
static_cast<uint32_t>(p[3]);
}
template <typename TypeName>
size_t Base64DecodedSize(const TypeName* src, size_t size) {
// 1-byte input cannot be decoded
if (size < 2)
return 0;
if (src[size - 1] == '=') {
size--;
if (src[size - 1] == '=')
size--;
}
return Base64DecodedSizeFast(size);
}
template <typename TypeName>
size_t Base64DecodeFast(char* const dst, const size_t dstlen,
const TypeName* const src, const size_t srclen,
const size_t decoded_size) {
const size_t available = dstlen < decoded_size ? dstlen : decoded_size;
const size_t max_k = available / 3 * 3;
size_t max_i = srclen / 4 * 4;
size_t i = 0;
size_t k = 0;
while (i < max_i && k < max_k) {
const unsigned char txt[] = {
static_cast<unsigned char>(unbase64_table[static_cast<uint8_t>(src[i + 0])]),
static_cast<unsigned char>(unbase64_table[static_cast<uint8_t>(src[i + 1])]),
static_cast<unsigned char>(unbase64_table[static_cast<uint8_t>(src[i + 2])]),
static_cast<unsigned char>(unbase64_table[static_cast<uint8_t>(src[i + 3])]),
};
const uint32_t v = ReadUint32BE(txt);
// If MSB is set, input contains whitespace or is not valid base64.
if (v & 0x80808080) {
if (!Base64DecodeGroupSlow(dst, dstlen, src, srclen, &i, &k))
return k;
max_i = i + (srclen - i) / 4 * 4; // Align max_i again.
} else {
dst[k + 0] = ((v >> 22) & 0xFC) | ((v >> 20) & 0x03);
dst[k + 1] = ((v >> 12) & 0xF0) | ((v >> 10) & 0x0F);
dst[k + 2] = ((v >> 2) & 0xC0) | ((v >> 0) & 0x3F);
i += 4;
k += 3;
}
}
if (i < srclen && k < dstlen) {
Base64DecodeGroupSlow(dst, dstlen, src, srclen, &i, &k);
}
return k;
}
template <typename TypeName>
size_t Base64Decode(char* const dst, const size_t dstlen,
const TypeName* const src, const size_t srclen) {
const size_t decoded_size = Base64DecodedSize(src, srclen);
return Base64DecodeFast(dst, dstlen, src, srclen, decoded_size);
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
// ============================================================================
// Hex (legacy)
extern const int8_t unhex_table[256];
template <typename TypeName>
static size_t HexDecode(char* buf,
size_t len,
const TypeName* src,
const size_t srcLen) {
size_t i;
for (i = 0; i < len && i * 2 + 1 < srcLen; ++i) {
unsigned a = unhex_table[static_cast<uint8_t>(src[i * 2 + 0])];
unsigned b = unhex_table[static_cast<uint8_t>(src[i * 2 + 1])];
if (!~a || !~b)
return i;
buf[i] = (a << 4) | b;
}
return i;
}
size_t HexEncode(
const char* src,
size_t slen,
char* dst,
size_t dlen);
std::string HexEncode(const char* src, size_t slen);
// ============================================================================
// StringSearch
namespace stringsearch {
template <typename T>
class Vector {
public:
Vector(T* data, size_t length, bool isForward)
: start_(data), length_(length), is_forward_(isForward) {
CHECK(length > 0 && data != nullptr);
}
// Returns the start of the memory range.
// For vector v this is NOT necessarily &v[0], see forward().
const T* start() const { return start_; }
// Returns the length of the vector, in characters.
size_t length() const { return length_; }
// Returns true if the Vector is front-to-back, false if back-to-front.
// In the latter case, v[0] corresponds to the *end* of the memory range.
bool forward() const { return is_forward_; }
// Access individual vector elements - checks bounds in debug mode.
T& operator[](size_t index) const {
NBYTES_ASSERT_TRUE(index < length_);
return start_[is_forward_ ? index : (length_ - index - 1)];
}
private:
T* start_;
size_t length_;
bool is_forward_;
};
//---------------------------------------------------------------------
// String Search object.
//---------------------------------------------------------------------
// Class holding constants and methods that apply to all string search variants,
// independently of subject and pattern char size.
class StringSearchBase {
protected:
// Cap on the maximal shift in the Boyer-Moore implementation. By setting a
// limit, we can fix the size of tables. For a needle longer than this limit,
// search will not be optimal, since we only build tables for a suffix
// of the string, but it is a safe approximation.
static const int kBMMaxShift = 250;
// Reduce alphabet to this size.
// One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size
// proportional to the input alphabet. We reduce the alphabet size by
// equating input characters modulo a smaller alphabet size. This gives
// a potentially less efficient searching, but is a safe approximation.
// For needles using only characters in the same Unicode 256-code point page,
// there is no search speed degradation.
static const int kLatin1AlphabetSize = 256;
static const int kUC16AlphabetSize = 256;
// Bad-char shift table stored in the state. It's length is the alphabet size.
// For patterns below this length, the skip length of Boyer-Moore is too short
// to compensate for the algorithmic overhead compared to simple brute force.
static const int kBMMinPatternLength = 8;
// Store for the BoyerMoore(Horspool) bad char shift table.
int bad_char_shift_table_[kUC16AlphabetSize];
// Store for the BoyerMoore good suffix shift table.
int good_suffix_shift_table_[kBMMaxShift + 1];
// Table used temporarily while building the BoyerMoore good suffix
// shift table.
int suffix_table_[kBMMaxShift + 1];
};
template <typename Char>
class StringSearch : private StringSearchBase {
public:
typedef stringsearch::Vector<const Char> Vector;
explicit StringSearch(Vector pattern)
: pattern_(pattern), start_(0) {
if (pattern.length() >= kBMMaxShift) {
start_ = pattern.length() - kBMMaxShift;
}
size_t pattern_length = pattern_.length();
NBYTES_ASSERT_TRUE(pattern_length > 0);
if (pattern_length < kBMMinPatternLength) {
if (pattern_length == 1) {
strategy_ = SearchStrategy::kSingleChar;
return;
}
strategy_ = SearchStrategy::kLinear;
return;
}
strategy_ = SearchStrategy::kInitial;
}
size_t Search(Vector subject, size_t index) {
switch (strategy_) {
case kBoyerMooreHorspool:
return BoyerMooreHorspoolSearch(subject, index);
case kBoyerMoore:
return BoyerMooreSearch(subject, index);
case kInitial:
return InitialSearch(subject, index);
case kLinear:
return LinearSearch(subject, index);
case kSingleChar:
return SingleCharSearch(subject, index);
}
unreachable();
}
static inline int AlphabetSize() {
if (sizeof(Char) == 1) {
// Latin1 needle.
return kLatin1AlphabetSize;
} else {
// UC16 needle.
return kUC16AlphabetSize;
}
static_assert(sizeof(Char) == sizeof(uint8_t) ||
sizeof(Char) == sizeof(uint16_t),
"sizeof(Char) == sizeof(uint16_t) || sizeof(uint8_t)");
}
private:
typedef size_t (StringSearch::*SearchFunction)(Vector, size_t);
size_t SingleCharSearch(Vector subject, size_t start_index);
size_t LinearSearch(Vector subject, size_t start_index);
size_t InitialSearch(Vector subject, size_t start_index);
size_t BoyerMooreHorspoolSearch(Vector subject, size_t start_index);
size_t BoyerMooreSearch(Vector subject, size_t start_index);
void PopulateBoyerMooreHorspoolTable();
void PopulateBoyerMooreTable();
static inline int CharOccurrence(int* bad_char_occurrence,
Char char_code) {
if (sizeof(Char) == 1) {
return bad_char_occurrence[static_cast<int>(char_code)];
}
// Both pattern and subject are UC16. Reduce character to equivalence class.
int equiv_class = char_code % kUC16AlphabetSize;
return bad_char_occurrence[equiv_class];
}
enum SearchStrategy {
kBoyerMooreHorspool,
kBoyerMoore,
kInitial,
kLinear,
kSingleChar,
};
// The pattern to search for.
Vector pattern_;
SearchStrategy strategy_;
// Cache value of Max(0, pattern_length() - kBMMaxShift)
size_t start_;
};
inline uint8_t GetHighestValueByte(uint16_t character) {
return std::max(static_cast<uint8_t>(character & 0xFF),
static_cast<uint8_t>(character >> 8));
}
inline uint8_t GetHighestValueByte(uint8_t character) { return character; }
// Searches for a byte value in a memory buffer, back to front.
// Uses memrchr(3) on systems which support it, for speed.
// Falls back to a vanilla for loop on non-GNU systems such as Windows.
inline const void* MemrchrFill(const void* haystack, uint8_t needle,
size_t haystack_len) {
#ifdef _GNU_SOURCE
return memrchr(haystack, needle, haystack_len);
#else
const uint8_t* haystack8 = static_cast<const uint8_t*>(haystack);
for (size_t i = haystack_len - 1; i != static_cast<size_t>(-1); i--) {
if (haystack8[i] == needle) {
return haystack8 + i;
}
}
return nullptr;
#endif
}
// Finds the first occurrence of *two-byte* character pattern[0] in the string
// `subject`. Does not check that the whole pattern matches.
template <typename Char>
inline size_t FindFirstCharacter(Vector<const Char> pattern,
Vector<const Char> subject, size_t index) {
const Char pattern_first_char = pattern[0];
const size_t max_n = (subject.length() - pattern.length() + 1);
// For speed, search for the more `rare` of the two bytes in pattern[0]
// using memchr / memrchr (which are much faster than a simple for loop).
const uint8_t search_byte = GetHighestValueByte(pattern_first_char);
size_t pos = index;
do {
const size_t bytes_to_search = (max_n - pos) * sizeof(Char);
const void* void_pos;
if (subject.forward()) {
// Assert that bytes_to_search won't overflow
NBYTES_ASSERT_TRUE(pos <= max_n);
NBYTES_ASSERT_TRUE(max_n - pos <= SIZE_MAX / sizeof(Char));
void_pos = memchr(subject.start() + pos, search_byte, bytes_to_search);
} else {
NBYTES_ASSERT_TRUE(pos <= subject.length());
NBYTES_ASSERT_TRUE(subject.length() - pos <= SIZE_MAX / sizeof(Char));
void_pos = MemrchrFill(subject.start() + pattern.length() - 1,
search_byte,
bytes_to_search);
}
const Char* char_pos = static_cast<const Char*>(void_pos);
if (char_pos == nullptr)
return subject.length();
// Then, for each match, verify that the full two bytes match pattern[0].
char_pos = AlignDown(char_pos, sizeof(Char));
size_t raw_pos = static_cast<size_t>(char_pos - subject.start());
pos = subject.forward() ? raw_pos : (subject.length() - raw_pos - 1);
if (subject[pos] == pattern_first_char) {
// Match found, hooray.
return pos;
}
// Search byte matched, but the other byte of pattern[0] didn't. Keep going.
} while (++pos < max_n);
return subject.length();
}
// Finds the first occurrence of the byte pattern[0] in string `subject`.
// Does not verify that the whole pattern matches.
template <>
inline size_t FindFirstCharacter(Vector<const uint8_t> pattern,
Vector<const uint8_t> subject,
size_t index) {
const uint8_t pattern_first_char = pattern[0];
const size_t subj_len = subject.length();
const size_t max_n = (subject.length() - pattern.length() + 1);
const void* pos;
if (subject.forward()) {
pos = memchr(subject.start() + index, pattern_first_char, max_n - index);
} else {
pos = MemrchrFill(subject.start() + pattern.length() - 1,
pattern_first_char,
max_n - index);
}
const uint8_t* char_pos = static_cast<const uint8_t*>(pos);
if (char_pos == nullptr) {
return subj_len;
}
size_t raw_pos = static_cast<size_t>(char_pos - subject.start());
return subject.forward() ? raw_pos : (subj_len - raw_pos - 1);
}
//---------------------------------------------------------------------
// Single Character Pattern Search Strategy
//---------------------------------------------------------------------
template <typename Char>
size_t StringSearch<Char>::SingleCharSearch(
Vector subject,
size_t index) {
NBYTES_ASSERT_TRUE(1 == pattern_.length());
return FindFirstCharacter(pattern_, subject, index);
}
//---------------------------------------------------------------------
// Linear Search Strategy
//---------------------------------------------------------------------
// Simple linear search for short patterns. Never bails out.
template <typename Char>
size_t StringSearch<Char>::LinearSearch(
Vector subject,
size_t index) {
NBYTES_ASSERT_TRUE(pattern_.length() > 1);
const size_t n = subject.length() - pattern_.length();
for (size_t i = index; i <= n; i++) {
i = FindFirstCharacter(pattern_, subject, i);
if (i == subject.length())
return subject.length();
NBYTES_ASSERT_TRUE(i <= n);
bool matches = true;
for (size_t j = 1; j < pattern_.length(); j++) {
if (pattern_[j] != subject[i + j]) {
matches = false;
break;
}
}
if (matches) {
return i;
}
}
return subject.length();
}
//---------------------------------------------------------------------
// Boyer-Moore string search
//---------------------------------------------------------------------
template <typename Char>
size_t StringSearch<Char>::BoyerMooreSearch(
Vector subject,
size_t start_index) {
const size_t subject_length = subject.length();
const size_t pattern_length = pattern_.length();
// Only preprocess at most kBMMaxShift last characters of pattern.
size_t start = start_;
int* bad_char_occurrence = bad_char_shift_table_;
int* good_suffix_shift = good_suffix_shift_table_ - start_;
Char last_char = pattern_[pattern_length - 1];
size_t index = start_index;
// Continue search from i.
while (index <= subject_length - pattern_length) {
size_t j = pattern_length - 1;
int c;
while (last_char != (c = subject[index + j])) {
int shift = j - CharOccurrence(bad_char_occurrence, c);
index += shift;
if (index > subject_length - pattern_length) {
return subject.length();
}
}
while (pattern_[j] == (c = subject[index + j])) {
if (j == 0) {
return index;
}
j--;
}
if (j < start) {
// we have matched more than our tables allow us to be smart about.
// Fall back on BMH shift.
index += pattern_length - 1 -
CharOccurrence(bad_char_occurrence, last_char);
} else {
int gs_shift = good_suffix_shift[j + 1];
int bc_occ = CharOccurrence(bad_char_occurrence, c);
int shift = j - bc_occ;
if (gs_shift > shift) {
shift = gs_shift;
}
index += shift;
}
}
return subject.length();
}
template <typename Char>
void StringSearch<Char>::PopulateBoyerMooreTable() {
const size_t pattern_length = pattern_.length();
// Only look at the last kBMMaxShift characters of pattern (from start_
// to pattern_length).
const size_t start = start_;
const size_t length = pattern_length - start;
// Biased tables so that we can use pattern indices as table indices,
// even if we only cover the part of the pattern from offset start.
int* shift_table = good_suffix_shift_table_ - start_;
int* suffix_table = suffix_table_ - start_;
// Initialize table.
for (size_t i = start; i < pattern_length; i++) {
shift_table[i] = length;
}
shift_table[pattern_length] = 1;
suffix_table[pattern_length] = pattern_length + 1;
if (pattern_length <= start) {
return;
}
// Find suffixes.
Char last_char = pattern_[pattern_length - 1];
size_t suffix = pattern_length + 1;
{
size_t i = pattern_length;
while (i > start) {
Char c = pattern_[i - 1];
while (suffix <= pattern_length && c != pattern_[suffix - 1]) {
if (static_cast<size_t>(shift_table[suffix]) == length) {
shift_table[suffix] = suffix - i;
}
suffix = suffix_table[suffix];
}
suffix_table[--i] = --suffix;
if (suffix == pattern_length) {
// No suffix to extend, so we check against last_char only.
while ((i > start) && (pattern_[i - 1] != last_char)) {
if (static_cast<size_t>(shift_table[pattern_length]) == length) {
shift_table[pattern_length] = pattern_length - i;
}
suffix_table[--i] = pattern_length;
}
if (i > start) {
suffix_table[--i] = --suffix;
}
}
}
}
// Build shift table using suffixes.
if (suffix < pattern_length) {
for (size_t i = start; i <= pattern_length; i++) {
if (static_cast<size_t>(shift_table[i]) == length) {
shift_table[i] = suffix - start;
}
if (i == suffix) {
suffix = suffix_table[suffix];
}
}
}
}
//---------------------------------------------------------------------
// Boyer-Moore-Horspool string search.
//---------------------------------------------------------------------
template <typename Char>
size_t StringSearch<Char>::BoyerMooreHorspoolSearch(
Vector subject,
size_t start_index) {
const size_t subject_length = subject.length();
const size_t pattern_length = pattern_.length();
int* char_occurrences = bad_char_shift_table_;
int64_t badness = -static_cast<int64_t>(pattern_length);
// How bad we are doing without a good-suffix table.
Char last_char = pattern_[pattern_length - 1];
int last_char_shift =
pattern_length - 1 -
CharOccurrence(char_occurrences, last_char);
// Perform search
size_t index = start_index; // No matches found prior to this index.
while (index <= subject_length - pattern_length) {
size_t j = pattern_length - 1;
int subject_char;
while (last_char != (subject_char = subject[index + j])) {
int bc_occ = CharOccurrence(char_occurrences, subject_char);
int shift = j - bc_occ;
index += shift;
badness += 1 - shift; // at most zero, so badness cannot increase.
if (index > subject_length - pattern_length) {
return subject_length;
}
}
j--;
while (pattern_[j] == (subject[index + j])) {
if (j == 0) {
return index;
}
j--;
}
index += last_char_shift;
// Badness increases by the number of characters we have
// checked, and decreases by the number of characters we
// can skip by shifting. It's a measure of how we are doing
// compared to reading each character exactly once.
badness += (pattern_length - j) - last_char_shift;
if (badness > 0) {
PopulateBoyerMooreTable();
strategy_ = SearchStrategy::kBoyerMoore;
return BoyerMooreSearch(subject, index);
}
}
return subject.length();
}
template <typename Char>
void StringSearch<Char>::PopulateBoyerMooreHorspoolTable() {
const size_t pattern_length = pattern_.length();
int* bad_char_occurrence = bad_char_shift_table_;
// Only preprocess at most kBMMaxShift last characters of pattern.
const size_t start = start_;
// Run forwards to populate bad_char_table, so that *last* instance
// of character equivalence class is the one registered.
// Notice: Doesn't include the last character.
const size_t table_size = AlphabetSize();
if (start == 0) {
// All patterns less than kBMMaxShift in length.
memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence));
} else {
for (size_t i = 0; i < table_size; i++) {
bad_char_occurrence[i] = start - 1;
}
}
for (size_t i = start; i < pattern_length - 1; i++) {
Char c = pattern_[i];
int bucket = (sizeof(Char) == 1) ? c : c % AlphabetSize();
bad_char_occurrence[bucket] = i;
}
}
//---------------------------------------------------------------------
// Linear string search with bailout to BMH.
//---------------------------------------------------------------------
// Simple linear search for short patterns, which bails out if the string
// isn't found very early in the subject. Upgrades to BoyerMooreHorspool.
template <typename Char>
size_t StringSearch<Char>::InitialSearch(
Vector subject,
size_t index) {
const size_t pattern_length = pattern_.length();
// Badness is a count of how much work we have done. When we have
// done enough work we decide it's probably worth switching to a better
// algorithm.
int64_t badness = -10 - (pattern_length << 2);
// We know our pattern is at least 2 characters, we cache the first so
// the common case of the first character not matching is faster.
for (size_t i = index, n = subject.length() - pattern_length; i <= n; i++) {
badness++;
if (badness <= 0) {
i = FindFirstCharacter(pattern_, subject, i);
if (i == subject.length())
return subject.length();
NBYTES_ASSERT_TRUE(i <= n);
size_t j = 1;
do {
if (pattern_[j] != subject[i + j]) {
break;
}
j++;
} while (j < pattern_length);
if (j == pattern_length) {
return i;
}
badness += j;
} else {
PopulateBoyerMooreHorspoolTable();
strategy_ = SearchStrategy::kBoyerMooreHorspool;
return BoyerMooreHorspoolSearch(subject, i);
}
}
return subject.length();
}
// Perform a single stand-alone search.
// If searching multiple times for the same pattern, a search
// object should be constructed once and the Search function then called
// for each search.
template <typename Char>
size_t SearchString(Vector<const Char> subject,
Vector<const Char> pattern,
size_t start_index) {
StringSearch<Char> search(pattern);
return search.Search(subject, start_index);
}
} // namespace stringsearch
template <typename Char>
size_t SearchString(const Char* haystack,
size_t haystack_length,
const Char* needle,
size_t needle_length,
size_t start_index,
bool is_forward) {
if (haystack_length < needle_length) return haystack_length;
// To do a reverse search (lastIndexOf instead of indexOf) without redundant
// code, create two vectors that are reversed views into the input strings.
// For example, v_needle[0] would return the *last* character of the needle.
// So we're searching for the first instance of rev(needle) in rev(haystack)
stringsearch::Vector<const Char> v_needle(needle, needle_length, is_forward);
stringsearch::Vector<const Char> v_haystack(
haystack, haystack_length, is_forward);
size_t diff = haystack_length - needle_length;
size_t relative_start_index;
if (is_forward) {
relative_start_index = start_index;
} else if (diff < start_index) {
relative_start_index = 0;
} else {
relative_start_index = diff - start_index;
}
size_t pos = stringsearch::SearchString(
v_haystack, v_needle, relative_start_index);
if (pos == haystack_length) {
// not found
return pos;
}
return is_forward ? pos : (haystack_length - needle_length - pos);
}
template <size_t N>
size_t SearchString(const char* haystack, size_t haystack_length,
const char (&needle)[N]) {
return SearchString(
reinterpret_cast<const uint8_t*>(haystack), haystack_length,
reinterpret_cast<const uint8_t*>(needle), N - 1, 0, true);
}
// ============================================================================
// Version metadata
#define NBYTES_VERSION "0.0.1"
enum {
NBYTES_VERSION_MAJOR = 0,
NBYTES_VERSION_MINOR = 0,
NBYTES_VERSION_REVISION = 1,
};
} // namespace nbytes