node/deps/v8/src/regexp/riscv/regexp-macro-assembler-riscv.cc
Levi Zim 223853264b
deps: V8: cherry-pick 13192d6e10fa
Original commit message:

    [riscv][tagged-ptr] Convert more Objects to Tagged<>

    Port commit 064b9a7903b793734b6c03a86ee53a2dc85f0f80

    Bug: v8:12710

    Change-Id: If076ca5cd9e9d175c20fc3611e03d39c0260404d
    Reviewed-on: 4837830
    Reviewed-by: Ji Qiu <qiuji@iscas.ac.cn>
    Commit-Queue: Ji Qiu <qiuji@iscas.ac.cn>
    Auto-Submit: Yahan Lu <yahan@iscas.ac.cn>
    Cr-Commit-Position: refs/heads/main@{#89780}

Refs: 13192d6e10
PR-URL: https://github.com/nodejs/node/pull/50552
Reviewed-By: Richard Lau <rlau@redhat.com>
Reviewed-By: Michaël Zasso <targos@protonmail.com>
Reviewed-By: Debadree Chatterjee <debadree333@gmail.com>
Reviewed-By: Jiawen Geng <technicalcute@gmail.com>
2023-11-06 15:19:55 +00:00

1380 lines
53 KiB
C++

// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/regexp/riscv/regexp-macro-assembler-riscv.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler.h"
#include "src/logging/log.h"
#include "src/objects/objects-inl.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/regexp/regexp-stack.h"
#include "src/snapshot/embedded/embedded-data-inl.h"
#include "src/strings/unicode.h"
namespace v8 {
namespace internal {
/* clang-format off
* This assembler uses the following register assignment convention
* - s1 : Pointer to current InstructionStream object including heap object tag.
* - s2 : Current position in input, as negative offset from end of string.
* Please notice that this is the byte offset, not the character offset!
* - s5 : Currently loaded character. Must be loaded using
* LoadCurrentCharacter before using any of the dispatch methods.
* - s6 : Points to tip of backtrack stack
* - s8 : End of input (points to byte after last character in input).
* - fp : Frame pointer. Used to access arguments, local variables and
* RegExp registers.
* - sp : Points to tip of C stack.
*
* The remaining registers are free for computations.
* Each call to a public method should retain this convention.
*
* The stack will have the following structure:
*
* kStackFrameHeader
* --- sp when called ---
* - fp[72] ra Return from RegExp code (ra). kReturnAddress
* - fp[64] old-fp Old fp, callee saved(s9).
* - fp[0..63] s1..s11 Callee-saved registers fp..s11.
* --- frame pointer ----
* - fp[-8] frame marker
* - fp[-16] Isolate* isolate (address of the current isolate) kIsolate
* - fp[-24] direct_call (1 = direct call from JS, 0 = from runtime) kDirectCall
* - fp[-32] output_size (may fit multiple sets of matches) kNumOutputRegisters
* - fp[-40] int* output (int[num_saved_registers_], for output). kRegisterOutput
* - fp[-48] end of input (address of end of string). kInputEnd
* - fp[-56] start of input (address of first character in string). kInputStart
* - fp[-64] start index (character index of start). kStartIndex
* - fp[-72] void* input_string (location of a handle containing the string). kInputString
* - fp[-80] success counter (only for global regexps to count matches). kSuccessfulCaptures
* - fp[-88] Offset of location before start of input (effectively character kStringStartMinusOne
* position -1). Used to initialize capture registers to a
* non-position.
* --------- The following output registers are 32-bit values. ---------
* - fp[-96] register 0 (Only positions must be stored in the first kRegisterZero
* - register 1 num_saved_registers_ registers)
* - ...
* - register num_registers-1
* --- sp ---
*
* The first num_saved_registers_ registers are initialized to point to
* "character -1" in the string (i.e., char_size() bytes before the first
* character of the string). The remaining registers start out as garbage.
*
* The data up to the return address must be placed there by the calling
* code and the remaining arguments are passed in registers, e.g. by calling the
* code entry as cast to a function with the signature:
* int (*match)(String input_string,
* int start_index,
* Address start,
* Address end,
* int* output,
* int output_size,
* bool direct_call = false,
* Isolate* isolate,
* Address regexp);
* The call is performed by NativeRegExpMacroAssembler::Execute()
* (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
*
* clang-format on
*/
#define __ ACCESS_MASM(masm_)
RegExpMacroAssemblerRISCV::RegExpMacroAssemblerRISCV(Isolate* isolate,
Zone* zone, Mode mode,
int registers_to_save)
: NativeRegExpMacroAssembler(isolate, zone),
masm_(std::make_unique<MacroAssembler>(
isolate, CodeObjectRequired::kYes,
NewAssemblerBuffer(kInitialBufferSize))),
no_root_array_scope_(masm_.get()),
mode_(mode),
num_registers_(registers_to_save),
num_saved_registers_(registers_to_save),
entry_label_(),
start_label_(),
success_label_(),
backtrack_label_(),
exit_label_(),
internal_failure_label_() {
DCHECK_EQ(0, registers_to_save % 2);
__ jmp(&entry_label_); // We'll write the entry code later.
// If the code gets too big or corrupted, an internal exception will be
// raised, and we will exit right away.
__ bind(&internal_failure_label_);
__ li(a0, Operand(FAILURE));
__ Ret();
__ bind(&start_label_); // And then continue from here.
}
RegExpMacroAssemblerRISCV::~RegExpMacroAssemblerRISCV() {
// Unuse labels in case we throw away the assembler without calling GetCode.
entry_label_.Unuse();
start_label_.Unuse();
success_label_.Unuse();
backtrack_label_.Unuse();
exit_label_.Unuse();
check_preempt_label_.Unuse();
stack_overflow_label_.Unuse();
internal_failure_label_.Unuse();
fallback_label_.Unuse();
}
int RegExpMacroAssemblerRISCV::stack_limit_slack() {
return RegExpStack::kStackLimitSlack;
}
void RegExpMacroAssemblerRISCV::AdvanceCurrentPosition(int by) {
if (by != 0) {
__ AddWord(current_input_offset(), current_input_offset(),
Operand(by * char_size()));
}
}
void RegExpMacroAssemblerRISCV::AdvanceRegister(int reg, int by) {
DCHECK_LE(0, reg);
DCHECK_GT(num_registers_, reg);
if (by != 0) {
__ LoadWord(a0, register_location(reg));
__ AddWord(a0, a0, Operand(by));
__ StoreWord(a0, register_location(reg));
}
}
void RegExpMacroAssemblerRISCV::Backtrack() {
CheckPreemption();
if (has_backtrack_limit()) {
Label next;
__ LoadWord(a0, MemOperand(frame_pointer(), kBacktrackCountOffset));
__ AddWord(a0, a0, Operand(1));
__ StoreWord(a0, MemOperand(frame_pointer(), kBacktrackCountOffset));
__ BranchShort(&next, ne, a0, Operand(backtrack_limit()));
// Backtrack limit exceeded.
if (can_fallback()) {
__ jmp(&fallback_label_);
} else {
// Can't fallback, so we treat it as a failed match.
Fail();
}
__ bind(&next);
}
// Pop Code offset from backtrack stack, add Code and jump to location.
Pop(a0);
__ AddWord(a0, a0, code_pointer());
__ Jump(a0);
}
void RegExpMacroAssemblerRISCV::Bind(Label* label) { __ bind(label); }
void RegExpMacroAssemblerRISCV::CheckCharacter(uint32_t c, Label* on_equal) {
BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
}
void RegExpMacroAssemblerRISCV::CheckCharacterGT(base::uc16 limit,
Label* on_greater) {
BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
}
void RegExpMacroAssemblerRISCV::CheckAtStart(int cp_offset,
Label* on_at_start) {
__ LoadWord(a1, MemOperand(frame_pointer(), kStringStartMinusOneOffset));
__ AddWord(a0, current_input_offset(),
Operand(-char_size() + cp_offset * char_size()));
BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
}
void RegExpMacroAssemblerRISCV::CheckNotAtStart(int cp_offset,
Label* on_not_at_start) {
__ LoadWord(a1, MemOperand(frame_pointer(), kStringStartMinusOneOffset));
__ AddWord(a0, current_input_offset(),
Operand(-char_size() + cp_offset * char_size()));
BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
}
void RegExpMacroAssemblerRISCV::CheckCharacterLT(base::uc16 limit,
Label* on_less) {
BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
}
void RegExpMacroAssemblerRISCV::CheckGreedyLoop(Label* on_equal) {
Label backtrack_non_equal;
__ Lw(a0, MemOperand(backtrack_stackpointer(), 0));
__ BranchShort(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
__ AddWord(backtrack_stackpointer(), backtrack_stackpointer(),
Operand(kIntSize));
__ bind(&backtrack_non_equal);
BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
}
void RegExpMacroAssemblerRISCV::CallIsCharacterInRangeArray(
const ZoneList<CharacterRange>* ranges) {
static const int kNumArguments = 3;
__ PrepareCallCFunction(kNumArguments, a0);
__ mv(a0, current_character());
__ li(a1, Operand(GetOrAddRangeArray(ranges)));
__ li(a2, Operand(ExternalReference::isolate_address(isolate())));
{
// We have a frame (set up in GetCode), but the assembler doesn't know.
FrameScope scope(masm_.get(), StackFrame::MANUAL);
CallCFunctionFromIrregexpCode(
ExternalReference::re_is_character_in_range_array(), kNumArguments);
}
__ li(code_pointer(), Operand(masm_->CodeObject()));
}
bool RegExpMacroAssemblerRISCV::CheckCharacterInRangeArray(
const ZoneList<CharacterRange>* ranges, Label* on_in_range) {
CallIsCharacterInRangeArray(ranges);
BranchOrBacktrack(on_in_range, ne, a0, Operand(zero_reg));
return true;
}
bool RegExpMacroAssemblerRISCV::CheckCharacterNotInRangeArray(
const ZoneList<CharacterRange>* ranges, Label* on_not_in_range) {
CallIsCharacterInRangeArray(ranges);
BranchOrBacktrack(on_not_in_range, eq, a0, Operand(zero_reg));
return true;
}
void RegExpMacroAssemblerRISCV::CheckNotBackReferenceIgnoreCase(
int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
Label fallthrough;
__ LoadWord(a0, register_location(start_reg)); // Index of start of capture.
__ LoadWord(a1,
register_location(start_reg + 1)); // Index of end of capture.
__ SubWord(a1, a1, a0); // Length of capture.
// At this point, the capture registers are either both set or both cleared.
// If the capture length is zero, then the capture is either empty or cleared.
// Fall through in both cases.
__ BranchShort(&fallthrough, eq, a1, Operand(zero_reg));
if (read_backward) {
__ LoadWord(t1, MemOperand(frame_pointer(), kStringStartMinusOneOffset));
__ AddWord(t1, t1, a1);
BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
} else {
__ AddWord(t1, a1, current_input_offset());
// Check that there are enough characters left in the input.
BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
}
if (mode_ == LATIN1) {
Label success;
Label fail;
Label loop_check;
// a0 - offset of start of capture.
// a1 - length of capture.
__ AddWord(a0, a0, Operand(end_of_input_address()));
__ AddWord(a2, end_of_input_address(), Operand(current_input_offset()));
if (read_backward) {
__ SubWord(a2, a2, Operand(a1));
}
__ AddWord(a1, a0, Operand(a1));
// a0 - Address of start of capture.
// a1 - Address of end of capture.
// a2 - Address of current input position.
Label loop;
__ bind(&loop);
__ Lbu(a3, MemOperand(a0, 0));
__ addi(a0, a0, char_size());
__ Lbu(a4, MemOperand(a2, 0));
__ addi(a2, a2, char_size());
__ BranchShort(&loop_check, eq, a4, Operand(a3));
// Mismatch, try case-insensitive match (converting letters to lower-case).
__ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case.
__ Or(a4, a4, Operand(0x20)); // Also convert input character.
__ BranchShort(&fail, ne, a4, Operand(a3));
__ SubWord(a3, a3, Operand('a'));
__ BranchShort(&loop_check, Uless_equal, a3, Operand('z' - 'a'));
// Latin-1: Check for values in range [224,254] but not 247.
__ SubWord(a3, a3, Operand(224 - 'a'));
// Weren't Latin-1 letters.
__ BranchShort(&fail, Ugreater, a3, Operand(254 - 224));
// Check for 247.
__ BranchShort(&fail, eq, a3, Operand(247 - 224));
__ bind(&loop_check);
__ Branch(&loop, lt, a0, Operand(a1));
__ jmp(&success);
__ bind(&fail);
GoTo(on_no_match);
__ bind(&success);
// Compute new value of character position after the matched part.
__ SubWord(current_input_offset(), a2, end_of_input_address());
if (read_backward) {
__ LoadWord(t1,
register_location(start_reg)); // Index of start of capture.
__ LoadWord(
a2, register_location(start_reg + 1)); // Index of end of capture.
__ AddWord(current_input_offset(), current_input_offset(), Operand(t1));
__ SubWord(current_input_offset(), current_input_offset(), Operand(a2));
}
} else {
DCHECK(mode_ == UC16);
int argument_count = 4;
__ PrepareCallCFunction(argument_count, a2);
// a0 - offset of start of capture.
// a1 - length of capture.
// Put arguments into arguments registers.
// Parameters are
// a0: Address byte_offset1 - Address captured substring's start.
// a1: Address byte_offset2 - Address of current character position.
// a2: size_t byte_length - length of capture in bytes(!).
// a3: Isolate* isolate.
// Address of start of capture.
__ AddWord(a0, a0, Operand(end_of_input_address()));
// Length of capture.
__ mv(a2, a1);
// Save length in callee-save register for use on return.
__ mv(s3, a1);
// Address of current input position.
__ AddWord(a1, current_input_offset(), Operand(end_of_input_address()));
if (read_backward) {
__ SubWord(a1, a1, Operand(s3));
}
// Isolate.
__ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
{
AllowExternalCallThatCantCauseGC scope(masm_.get());
ExternalReference function =
unicode
? ExternalReference::re_case_insensitive_compare_unicode()
: ExternalReference::re_case_insensitive_compare_non_unicode();
CallCFunctionFromIrregexpCode(function, argument_count);
}
// Check if function returned non-zero for success or zero for failure.
BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
// On success, increment position by length of capture.
if (read_backward) {
__ SubWord(current_input_offset(), current_input_offset(), Operand(s3));
} else {
__ AddWord(current_input_offset(), current_input_offset(), Operand(s3));
}
}
__ bind(&fallthrough);
}
void RegExpMacroAssemblerRISCV::CheckNotBackReference(int start_reg,
bool read_backward,
Label* on_no_match) {
Label fallthrough;
// Find length of back-referenced capture.
__ LoadWord(a0, register_location(start_reg));
__ LoadWord(a1, register_location(start_reg + 1));
__ SubWord(a1, a1, a0); // Length to check.
// At this point, the capture registers are either both set or both cleared.
// If the capture length is zero, then the capture is either empty or cleared.
// Fall through in both cases.
__ BranchShort(&fallthrough, eq, a1, Operand(zero_reg));
if (read_backward) {
__ LoadWord(t1, MemOperand(frame_pointer(), kStringStartMinusOneOffset));
__ AddWord(t1, t1, a1);
BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
} else {
__ AddWord(t1, a1, current_input_offset());
// Check that there are enough characters left in the input.
BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
}
// Compute pointers to match string and capture string.
__ AddWord(a0, a0, Operand(end_of_input_address()));
__ AddWord(a2, end_of_input_address(), Operand(current_input_offset()));
if (read_backward) {
__ SubWord(a2, a2, Operand(a1));
}
__ AddWord(a1, a1, Operand(a0));
Label loop;
__ bind(&loop);
if (mode_ == LATIN1) {
__ Lbu(a3, MemOperand(a0, 0));
__ addi(a0, a0, char_size());
__ Lbu(a4, MemOperand(a2, 0));
__ addi(a2, a2, char_size());
} else {
DCHECK(mode_ == UC16);
__ Lhu(a3, MemOperand(a0, 0));
__ addi(a0, a0, char_size());
__ Lhu(a4, MemOperand(a2, 0));
__ addi(a2, a2, char_size());
}
BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
__ Branch(&loop, lt, a0, Operand(a1));
// Move current character position to position after match.
__ SubWord(current_input_offset(), a2, end_of_input_address());
if (read_backward) {
__ LoadWord(t1,
register_location(start_reg)); // Index of start of capture.
__ LoadWord(a2,
register_location(start_reg + 1)); // Index of end of capture.
__ AddWord(current_input_offset(), current_input_offset(), Operand(t1));
__ SubWord(current_input_offset(), current_input_offset(), Operand(a2));
}
__ bind(&fallthrough);
}
void RegExpMacroAssemblerRISCV::CheckNotCharacter(uint32_t c,
Label* on_not_equal) {
BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
}
void RegExpMacroAssemblerRISCV::CheckCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_equal) {
__ And(a0, current_character(), Operand(mask));
Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
BranchOrBacktrack(on_equal, eq, a0, rhs);
}
void RegExpMacroAssemblerRISCV::CheckNotCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_not_equal) {
__ And(a0, current_character(), Operand(mask));
Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
BranchOrBacktrack(on_not_equal, ne, a0, rhs);
}
void RegExpMacroAssemblerRISCV::CheckNotCharacterAfterMinusAnd(
base::uc16 c, base::uc16 minus, base::uc16 mask, Label* on_not_equal) {
DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
__ SubWord(a0, current_character(), Operand(minus));
__ And(a0, a0, Operand(mask));
BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
}
void RegExpMacroAssemblerRISCV::CheckCharacterInRange(base::uc16 from,
base::uc16 to,
Label* on_in_range) {
__ SubWord(a0, current_character(), Operand(from));
// Unsigned lower-or-same condition.
BranchOrBacktrack(on_in_range, Uless_equal, a0, Operand(to - from));
}
void RegExpMacroAssemblerRISCV::CheckCharacterNotInRange(
base::uc16 from, base::uc16 to, Label* on_not_in_range) {
__ SubWord(a0, current_character(), Operand(from));
// Unsigned higher condition.
BranchOrBacktrack(on_not_in_range, Ugreater, a0, Operand(to - from));
}
void RegExpMacroAssemblerRISCV::CheckBitInTable(Handle<ByteArray> table,
Label* on_bit_set) {
__ li(a0, Operand(table));
if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
__ And(a1, current_character(), Operand(kTableSize - 1));
__ AddWord(a0, a0, a1);
} else {
__ AddWord(a0, a0, current_character());
}
__ Lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
}
bool RegExpMacroAssemblerRISCV::CheckSpecialClassRanges(
StandardCharacterSet type, Label* on_no_match) {
// Range checks (c in min..max) are generally implemented by an unsigned
// (c - min) <= (max - min) check.
switch (type) {
case StandardCharacterSet::kWhitespace:
// Match space-characters.
if (mode_ == LATIN1) {
// One byte space characters are '\t'..'\r', ' ' and \u00a0.
Label success;
__ BranchShort(&success, eq, current_character(), Operand(' '));
// Check range 0x09..0x0D.
__ SubWord(a0, current_character(), Operand('\t'));
__ BranchShort(&success, Uless_equal, a0, Operand('\r' - '\t'));
// \u00a0 (NBSP).
BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00A0 - '\t'));
__ bind(&success);
return true;
}
return false;
case StandardCharacterSet::kNotWhitespace:
// The emitted code for generic character classes is good enough.
return false;
case StandardCharacterSet::kDigit:
// Match Latin1 digits ('0'..'9').
__ SubWord(a0, current_character(), Operand('0'));
BranchOrBacktrack(on_no_match, Ugreater, a0, Operand('9' - '0'));
return true;
case StandardCharacterSet::kNotDigit:
// Match non Latin1-digits.
__ SubWord(a0, current_character(), Operand('0'));
BranchOrBacktrack(on_no_match, Uless_equal, a0, Operand('9' - '0'));
return true;
case StandardCharacterSet::kNotLineTerminator: {
// Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
__ Xor(a0, current_character(), Operand(0x01));
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
__ SubWord(a0, a0, Operand(0x0B));
BranchOrBacktrack(on_no_match, Uless_equal, a0, Operand(0x0C - 0x0B));
if (mode_ == UC16) {
// Compare original value to 0x2028 and 0x2029, using the already
// computed (current_char ^ 0x01 - 0x0B). I.e., check for
// 0x201D (0x2028 - 0x0B) or 0x201E.
__ SubWord(a0, a0, Operand(0x2028 - 0x0B));
BranchOrBacktrack(on_no_match, Uless_equal, a0, Operand(1));
}
return true;
}
case StandardCharacterSet::kLineTerminator: {
// Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
__ Xor(a0, current_character(), Operand(0x01));
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
__ SubWord(a0, a0, Operand(0x0B));
if (mode_ == LATIN1) {
BranchOrBacktrack(on_no_match, Ugreater, a0, Operand(0x0C - 0x0B));
} else {
Label done;
BranchOrBacktrack(&done, Uless_equal, a0, Operand(0x0C - 0x0B));
// Compare original value to 0x2028 and 0x2029, using the already
// computed (current_char ^ 0x01 - 0x0B). I.e., check for
// 0x201D (0x2028 - 0x0B) or 0x201E.
__ SubWord(a0, a0, Operand(0x2028 - 0x0B));
BranchOrBacktrack(on_no_match, Ugreater, a0, Operand(1));
__ bind(&done);
}
return true;
}
case StandardCharacterSet::kWord: {
if (mode_ != LATIN1) {
// Table is 256 entries, so all Latin1 characters can be tested.
BranchOrBacktrack(on_no_match, Ugreater, current_character(),
Operand('z'));
}
ExternalReference map = ExternalReference::re_word_character_map();
__ li(a0, Operand(map));
__ AddWord(a0, a0, current_character());
__ Lbu(a0, MemOperand(a0, 0));
BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
return true;
}
case StandardCharacterSet::kNotWord: {
Label done;
if (mode_ != LATIN1) {
// Table is 256 entries, so all Latin1 characters can be tested.
__ BranchShort(&done, Ugreater, current_character(), Operand('z'));
}
ExternalReference map = ExternalReference::re_word_character_map();
__ li(a0, Operand(map));
__ AddWord(a0, a0, current_character());
__ Lbu(a0, MemOperand(a0, 0));
BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
if (mode_ != LATIN1) {
__ bind(&done);
}
return true;
}
case StandardCharacterSet::kEverything:
// Match any character.
return true;
// No custom implementation (yet): s(UC16), S(UC16).
default:
return false;
}
}
void RegExpMacroAssemblerRISCV::Fail() {
__ li(a0, Operand(FAILURE));
__ jmp(&exit_label_);
}
void RegExpMacroAssemblerRISCV::LoadRegExpStackPointerFromMemory(Register dst) {
ExternalReference ref =
ExternalReference::address_of_regexp_stack_stack_pointer(isolate());
__ li(dst, Operand(ref));
__ LoadWord(dst, MemOperand(dst));
}
void RegExpMacroAssemblerRISCV::StoreRegExpStackPointerToMemory(
Register src, Register scratch) {
ExternalReference ref =
ExternalReference::address_of_regexp_stack_stack_pointer(isolate());
__ li(scratch, Operand(ref));
__ StoreWord(src, MemOperand(scratch));
}
void RegExpMacroAssemblerRISCV::PushRegExpBasePointer(Register stack_pointer,
Register scratch) {
ExternalReference ref =
ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
__ li(scratch, Operand(ref));
__ LoadWord(scratch, MemOperand(scratch));
__ SubWord(scratch, stack_pointer, scratch);
__ StoreWord(scratch,
MemOperand(frame_pointer(), kRegExpStackBasePointerOffset));
}
void RegExpMacroAssemblerRISCV::PopRegExpBasePointer(Register stack_pointer_out,
Register scratch) {
ExternalReference ref =
ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
__ LoadWord(stack_pointer_out,
MemOperand(frame_pointer(), kRegExpStackBasePointerOffset));
__ li(scratch, Operand(ref));
__ LoadWord(scratch, MemOperand(scratch));
__ AddWord(stack_pointer_out, stack_pointer_out, scratch);
StoreRegExpStackPointerToMemory(stack_pointer_out, scratch);
}
Handle<HeapObject> RegExpMacroAssemblerRISCV::GetCode(Handle<String> source) {
Label return_a0;
if (masm_->has_exception()) {
// If the code gets corrupted due to long regular expressions and lack of
// space on trampolines, an internal exception flag is set. If this case
// is detected, we will jump into exit sequence right away.
__ bind_to(&entry_label_, internal_failure_label_.pos());
} else {
// Finalize code - write the entry point code now we know how many
// registers we need.
// Entry code:
__ bind(&entry_label_);
// Tell the system that we have a stack frame. Because the type is MANUAL,
// no is generated.
FrameScope scope(masm_.get(), StackFrame::MANUAL);
// Actually emit code to start a new stack frame.
// Push arguments
// Save callee-save registers.
// Start new stack frame.
// Store link register in existing stack-cell.
// Order here should correspond to order of offset constants in header file.
// TODO(plind): we save fp..s11, but ONLY use s3 here - use the regs
// or dont save.
RegList registers_to_retain = {fp, s1, s2, s3, s4, s5,
s6, s7, s8, s9, s10, s11};
DCHECK(registers_to_retain.Count() == kNumCalleeRegsToRetain);
// The remaining arguments are passed in registers, e.g.by calling the code
// entry as cast to a function with the signature:
//
// *int(*match)(String input_string, // a0
// int start_offset, // a1
// uint8_t* input_start, // a2
// uint8_t* input_end, // a3
// int* output, // a4
// int output_size, // a5
// int call_origin, // a6
// Isolate* isolate, // a7
// Address regexp); // on the stack
RegList argument_registers = {a0, a1, a2, a3, a4, a5, a6, a7};
// According to MultiPush implementation, registers will be pushed in the
// order of ra, fp, then s8, ..., s1, and finally a7,...a0
__ MultiPush(RegList{ra} | registers_to_retain);
// Set frame pointer in space for it if this is not a direct call
// from generated code.
__ AddWord(frame_pointer(), sp, Operand(0));
static_assert(kFrameTypeOffset == -kSystemPointerSize);
__ li(kScratchReg, Operand(StackFrame::TypeToMarker(StackFrame::IRREGEXP)));
__ push(kScratchReg);
__ MultiPush(argument_registers);
static_assert(kSuccessfulCapturesOffset ==
kInputStringOffset - kSystemPointerSize);
__ mv(a0, zero_reg);
__ push(a0); // Make room for success counter and initialize it to 0.
static_assert(kStringStartMinusOneOffset ==
kSuccessfulCapturesOffset - kSystemPointerSize);
__ push(a0); // Make room for "string start - 1" constant.
static_assert(kBacktrackCountOffset ==
kStringStartMinusOneOffset - kSystemPointerSize);
__ push(a0); // The backtrack counter
static_assert(kRegExpStackBasePointerOffset ==
kBacktrackCountOffset - kSystemPointerSize);
__ push(a0); // The regexp stack base ptr.
// Initialize backtrack stack pointer. It must not be clobbered from here
// on. Note the backtrack_stackpointer is callee-saved.
static_assert(backtrack_stackpointer() == s8);
LoadRegExpStackPointerFromMemory(backtrack_stackpointer());
// Store the regexp base pointer - we'll later restore it / write it to
// memory when returning from this irregexp code object.
PushRegExpBasePointer(backtrack_stackpointer(), a1);
{
// Check if we have space on the stack for registers.
Label stack_limit_hit, stack_ok;
ExternalReference stack_limit =
ExternalReference::address_of_jslimit(masm_->isolate());
__ li(a0, Operand(stack_limit));
__ LoadWord(a0, MemOperand(a0));
__ SubWord(a0, sp, a0);
// Handle it if the stack pointer is already below the stack limit.
__ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
// Check if there is room for the variable number of registers above
// the stack limit.
__ Branch(&stack_ok, uge, a0,
Operand(num_registers_ * kSystemPointerSize));
// Exit with OutOfMemory exception. There is not enough space on the stack
// for our working registers.
__ li(a0, Operand(EXCEPTION));
__ jmp(&return_a0);
__ bind(&stack_limit_hit);
CallCheckStackGuardState(a0);
// If returned value is non-zero, we exit with the returned value as
// result.
__ Branch(&return_a0, ne, a0, Operand(zero_reg));
__ bind(&stack_ok);
}
// Allocate space on stack for registers.
__ SubWord(sp, sp, Operand(num_registers_ * kSystemPointerSize));
// Load string end.
__ LoadWord(end_of_input_address(),
MemOperand(frame_pointer(), kInputEndOffset));
// Load input start.
__ LoadWord(a0, MemOperand(frame_pointer(), kInputStartOffset));
// Find negative length (offset of start relative to end).
__ SubWord(current_input_offset(), a0, end_of_input_address());
// Set a0 to address of char before start of the input string
// (effectively string position -1).
__ LoadWord(a1, MemOperand(frame_pointer(), kStartIndexOffset));
__ SubWord(a0, current_input_offset(), Operand(char_size()));
__ slli(t1, a1, (mode_ == UC16) ? 1 : 0);
__ SubWord(a0, a0, t1);
// Store this value in a local variable, for use when clearing
// position registers.
__ StoreWord(a0, MemOperand(frame_pointer(), kStringStartMinusOneOffset));
// Initialize code pointer register
__ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
Label load_char_start_regexp;
{
Label start_regexp;
// Load newline if index is at start, previous character otherwise.
__ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
__ li(current_character(), Operand('\n'));
__ jmp(&start_regexp);
// Global regexp restarts matching here.
__ bind(&load_char_start_regexp);
// Load previous char as initial value of current character register.
LoadCurrentCharacterUnchecked(-1, 1);
__ bind(&start_regexp);
}
// Initialize on-stack registers.
if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
// Fill saved registers with initial value = start offset - 1.
if (num_saved_registers_ > 8) {
// Address of register 0.
__ AddWord(a1, frame_pointer(), Operand(kRegisterZeroOffset));
__ li(a2, Operand(num_saved_registers_));
Label init_loop;
__ bind(&init_loop);
__ StoreWord(a0, MemOperand(a1));
__ AddWord(a1, a1, Operand(-kSystemPointerSize));
__ SubWord(a2, a2, Operand(1));
__ Branch(&init_loop, ne, a2, Operand(zero_reg));
} else {
for (int i = 0; i < num_saved_registers_; i++) {
__ StoreWord(a0, register_location(i));
}
}
}
__ jmp(&start_label_);
// Exit code:
if (success_label_.is_linked()) {
// Save captures when successful.
__ bind(&success_label_);
if (num_saved_registers_ > 0) {
// Copy captures to output.
__ LoadWord(a1, MemOperand(frame_pointer(), kInputStartOffset));
__ LoadWord(a0, MemOperand(frame_pointer(), kRegisterOutputOffset));
__ LoadWord(a2, MemOperand(frame_pointer(), kStartIndexOffset));
__ SubWord(a1, end_of_input_address(), a1);
// a1 is length of input in bytes.
if (mode_ == UC16) {
__ srli(a1, a1, 1);
}
// a1 is length of input in characters.
__ AddWord(a1, a1, Operand(a2));
// a1 is length of string in characters.
DCHECK_EQ(0, num_saved_registers_ % 2);
// Always an even number of capture registers. This allows us to
// unroll the loop once to add an operation between a load of a
// register and the following use of that register.
for (int i = 0; i < num_saved_registers_; i += 2) {
__ LoadWord(a2, register_location(i));
__ LoadWord(a3, register_location(i + 1));
if (i == 0 && global_with_zero_length_check()) {
// Keep capture start in a4 for the zero-length check later.
__ mv(s3, a2);
}
if (mode_ == UC16) {
__ srai(a2, a2, 1);
__ AddWord(a2, a2, a1);
__ srai(a3, a3, 1);
__ AddWord(a3, a3, a1);
} else {
__ AddWord(a2, a1, Operand(a2));
__ AddWord(a3, a1, Operand(a3));
}
// V8 expects the output to be an int32_t array.
__ Sw(a2, MemOperand(a0));
__ AddWord(a0, a0, kIntSize);
__ Sw(a3, MemOperand(a0));
__ AddWord(a0, a0, kIntSize);
}
}
if (global()) {
// Restart matching if the regular expression is flagged as global.
__ LoadWord(a0, MemOperand(frame_pointer(), kSuccessfulCapturesOffset));
__ LoadWord(a1, MemOperand(frame_pointer(), kNumOutputRegistersOffset));
__ LoadWord(a2, MemOperand(frame_pointer(), kRegisterOutputOffset));
// Increment success counter.
__ AddWord(a0, a0, 1);
__ StoreWord(a0,
MemOperand(frame_pointer(), kSuccessfulCapturesOffset));
// Capture results have been stored, so the number of remaining global
// output registers is reduced by the number of stored captures.
__ SubWord(a1, a1, num_saved_registers_);
// Check whether we have enough room for another set of capture results.
__ Branch(&return_a0, lt, a1, Operand(num_saved_registers_));
__ StoreWord(a1,
MemOperand(frame_pointer(), kNumOutputRegistersOffset));
// Advance the location for output.
__ AddWord(a2, a2, num_saved_registers_ * kIntSize);
__ StoreWord(a2, MemOperand(frame_pointer(), kRegisterOutputOffset));
// Restore the original regexp stack pointer value (effectively, pop the
// stored base pointer).
PopRegExpBasePointer(backtrack_stackpointer(), a2);
Label reload_string_start_minus_one;
if (global_with_zero_length_check()) {
// Special case for zero-length matches.
// s3: capture start index
// Not a zero-length match, restart.
__ Branch(&reload_string_start_minus_one, ne, current_input_offset(),
Operand(s3));
// Offset from the end is zero if we already reached the end.
__ Branch(&exit_label_, eq, current_input_offset(),
Operand(zero_reg));
// Advance current position after a zero-length match.
Label advance;
__ bind(&advance);
__ AddWord(current_input_offset(), current_input_offset(),
Operand((mode_ == UC16) ? 2 : 1));
if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
}
__ bind(&reload_string_start_minus_one);
// Prepare a0 to initialize registers with its value in the next run.
// Must be immediately before the jump to avoid clobbering.
__ LoadWord(a0,
MemOperand(frame_pointer(), kStringStartMinusOneOffset));
__ Branch(&load_char_start_regexp);
} else {
__ li(a0, Operand(SUCCESS));
}
}
// Exit and return a0.
__ bind(&exit_label_);
if (global()) {
__ LoadWord(a0, MemOperand(frame_pointer(), kSuccessfulCapturesOffset));
}
__ bind(&return_a0);
// Restore the original regexp stack pointer value (effectively, pop the
// stored base pointer).
PopRegExpBasePointer(backtrack_stackpointer(), a1);
// Skip sp past regexp registers and local variables..
__ mv(sp, frame_pointer());
// Restore registers fp..s11 and return (restoring ra to pc).
__ MultiPop(registers_to_retain | ra);
__ Ret();
// Backtrack code (branch target for conditional backtracks).
if (backtrack_label_.is_linked()) {
__ bind(&backtrack_label_);
Backtrack();
}
Label exit_with_exception;
// Preempt-code.
if (check_preempt_label_.is_linked()) {
SafeCallTarget(&check_preempt_label_);
StoreRegExpStackPointerToMemory(backtrack_stackpointer(), a1);
// Put regexp engine registers on stack.
CallCheckStackGuardState(a0);
// If returning non-zero, we should end execution with the given
// result as return value.
__ Branch(&return_a0, ne, a0, Operand(zero_reg));
LoadRegExpStackPointerFromMemory(backtrack_stackpointer());
// String might have moved: Reload end of string from frame.
__ LoadWord(end_of_input_address(),
MemOperand(frame_pointer(), kInputEndOffset));
SafeReturn();
}
// Backtrack stack overflow code.
if (stack_overflow_label_.is_linked()) {
SafeCallTarget(&stack_overflow_label_);
// Call GrowStack(isolate).
StoreRegExpStackPointerToMemory(backtrack_stackpointer(), a1);
static constexpr int kNumArguments = 1;
__ PrepareCallCFunction(kNumArguments, 0, a0);
__ li(a0, ExternalReference::isolate_address(isolate()));
ExternalReference grow_stack = ExternalReference::re_grow_stack();
CallCFunctionFromIrregexpCode(grow_stack, kNumArguments);
// If nullptr is returned, we have failed to grow the stack, and must exit
// with a stack-overflow exception.
__ BranchShort(&exit_with_exception, eq, a0, Operand(zero_reg));
// Otherwise use return value as new stack pointer.
__ mv(backtrack_stackpointer(), a0);
// Restore saved registers and continue.
SafeReturn();
}
if (exit_with_exception.is_linked()) {
// If any of the code above needed to exit with an exception.
__ bind(&exit_with_exception);
// Exit with Result EXCEPTION(-1) to signal thrown exception.
__ li(a0, Operand(EXCEPTION));
__ jmp(&return_a0);
}
if (fallback_label_.is_linked()) {
__ bind(&fallback_label_);
__ li(a0, Operand(FALLBACK_TO_EXPERIMENTAL));
__ jmp(&return_a0);
}
}
CodeDesc code_desc;
masm_->GetCode(isolate(), &code_desc);
Handle<Code> code =
Factory::CodeBuilder(isolate(), code_desc, CodeKind::REGEXP)
.set_self_reference(masm_->CodeObject())
.Build();
LOG(masm_->isolate(),
RegExpCodeCreateEvent(Handle<AbstractCode>::cast(code), source));
return Handle<HeapObject>::cast(code);
}
void RegExpMacroAssemblerRISCV::GoTo(Label* to) {
if (to == nullptr) {
Backtrack();
return;
}
__ jmp(to);
return;
}
void RegExpMacroAssemblerRISCV::IfRegisterGE(int reg, int comparand,
Label* if_ge) {
__ LoadWord(a0, register_location(reg));
BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
}
void RegExpMacroAssemblerRISCV::IfRegisterLT(int reg, int comparand,
Label* if_lt) {
__ LoadWord(a0, register_location(reg));
BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
}
void RegExpMacroAssemblerRISCV::IfRegisterEqPos(int reg, Label* if_eq) {
__ LoadWord(a0, register_location(reg));
BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
}
RegExpMacroAssembler::IrregexpImplementation
RegExpMacroAssemblerRISCV::Implementation() {
return kRISCVImplementation;
}
void RegExpMacroAssemblerRISCV::PopCurrentPosition() {
Pop(current_input_offset());
}
void RegExpMacroAssemblerRISCV::PopRegister(int register_index) {
Pop(a0);
__ StoreWord(a0, register_location(register_index));
}
void RegExpMacroAssemblerRISCV::PushBacktrack(Label* label) {
if (label->is_bound()) {
int target = label->pos();
__ li(a0,
Operand(target + InstructionStream::kHeaderSize - kHeapObjectTag));
} else {
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_.get());
Label after_constant;
__ BranchShort(&after_constant);
int offset = masm_->pc_offset();
int cp_offset = offset + InstructionStream::kHeaderSize - kHeapObjectTag;
__ emit(0);
masm_->label_at_put(label, offset);
__ bind(&after_constant);
if (is_int16(cp_offset)) {
__ Load32U(a0, MemOperand(code_pointer(), cp_offset));
} else {
__ AddWord(a0, code_pointer(), cp_offset);
__ Load32U(a0, MemOperand(a0, 0));
}
}
Push(a0);
CheckStackLimit();
}
void RegExpMacroAssemblerRISCV::PushCurrentPosition() {
Push(current_input_offset());
}
void RegExpMacroAssemblerRISCV::PushRegister(int register_index,
StackCheckFlag check_stack_limit) {
__ LoadWord(a0, register_location(register_index));
Push(a0);
if (check_stack_limit) CheckStackLimit();
}
void RegExpMacroAssemblerRISCV::ReadCurrentPositionFromRegister(int reg) {
__ LoadWord(current_input_offset(), register_location(reg));
}
void RegExpMacroAssemblerRISCV::WriteStackPointerToRegister(int reg) {
ExternalReference ref =
ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
__ li(a0, ref);
__ LoadWord(a0, MemOperand(a0));
__ SubWord(a0, backtrack_stackpointer(), a0);
__ Sw(a0, register_location(reg));
}
void RegExpMacroAssemblerRISCV::ReadStackPointerFromRegister(int reg) {
ExternalReference ref =
ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
__ li(a1, ref);
__ LoadWord(a1, MemOperand(a1));
__ Lw(backtrack_stackpointer(), register_location(reg));
__ AddWord(backtrack_stackpointer(), backtrack_stackpointer(), a1);
}
void RegExpMacroAssemblerRISCV::SetCurrentPositionFromEnd(int by) {
Label after_position;
__ BranchShort(&after_position, ge, current_input_offset(),
Operand(-by * char_size()));
__ li(current_input_offset(), -by * char_size());
// On RegExp code entry (where this operation is used), the character before
// the current position is expected to be already loaded.
// We have advanced the position, so it's safe to read backwards.
LoadCurrentCharacterUnchecked(-1, 1);
__ bind(&after_position);
}
void RegExpMacroAssemblerRISCV::SetRegister(int register_index, int to) {
DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
__ li(a0, Operand(to));
__ StoreWord(a0, register_location(register_index));
}
bool RegExpMacroAssemblerRISCV::Succeed() {
__ jmp(&success_label_);
return global();
}
void RegExpMacroAssemblerRISCV::WriteCurrentPositionToRegister(int reg,
int cp_offset) {
if (cp_offset == 0) {
__ StoreWord(current_input_offset(), register_location(reg));
} else {
__ AddWord(a0, current_input_offset(), Operand(cp_offset * char_size()));
__ StoreWord(a0, register_location(reg));
}
}
void RegExpMacroAssemblerRISCV::ClearRegisters(int reg_from, int reg_to) {
DCHECK(reg_from <= reg_to);
__ LoadWord(a0, MemOperand(frame_pointer(), kStringStartMinusOneOffset));
for (int reg = reg_from; reg <= reg_to; reg++) {
__ StoreWord(a0, register_location(reg));
}
}
#ifdef RISCV_HAS_NO_UNALIGNED
bool RegExpMacroAssemblerRISCV::CanReadUnaligned() const { return false; }
#endif
// Private methods:
void RegExpMacroAssemblerRISCV::CallCheckStackGuardState(Register scratch) {
DCHECK(!isolate()->IsGeneratingEmbeddedBuiltins());
DCHECK(!masm_->options().isolate_independent_code);
int stack_alignment = base::OS::ActivationFrameAlignment();
// Align the stack pointer and save the original sp value on the stack.
__ mv(scratch, sp);
__ SubWord(sp, sp, Operand(kSystemPointerSize));
DCHECK(base::bits::IsPowerOfTwo(stack_alignment));
__ And(sp, sp, Operand(-stack_alignment));
__ StoreWord(scratch, MemOperand(sp));
__ mv(a2, frame_pointer());
// InstructionStream of self.
__ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
// We need to make room for the return address on the stack.
DCHECK(IsAligned(stack_alignment, kSystemPointerSize));
__ SubWord(sp, sp, Operand(stack_alignment));
// The stack pointer now points to cell where the return address will be
// written. Arguments are in registers, meaning we treat the return address as
// argument 5. Since DirectCEntry will handle allocating space for the C
// argument slots, we don't need to care about that here. This is how the
// stack will look (sp meaning the value of sp at this moment):
// [sp + 3] - empty slot if needed for alignment.
// [sp + 2] - saved sp.
// [sp + 1] - second word reserved for return value.
// [sp + 0] - first word reserved for return value.
// a0 will point to the return address, placed by DirectCEntry.
__ mv(a0, sp);
ExternalReference stack_guard_check =
ExternalReference::re_check_stack_guard_state();
__ li(t6, Operand(stack_guard_check));
EmbeddedData d = EmbeddedData::FromBlob();
CHECK(Builtins::IsIsolateIndependent(Builtin::kDirectCEntry));
Address entry = d.InstructionStartOf(Builtin::kDirectCEntry);
__ li(kScratchReg, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
__ Call(kScratchReg);
// DirectCEntry allocated space for the C argument slots so we have to
// drop them with the return address from the stack with loading saved sp.
// At this point stack must look:
// [sp + 7] - empty slot if needed for alignment.
// [sp + 6] - saved sp.
// [sp + 5] - second word reserved for return value.
// [sp + 4] - first word reserved for return value.
// [sp + 3] - C argument slot.
// [sp + 2] - C argument slot.
// [sp + 1] - C argument slot.
// [sp + 0] - C argument slot.
__ LoadWord(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
__ li(code_pointer(), Operand(masm_->CodeObject()));
}
// Helper function for reading a value out of a stack frame.
template <typename T>
static T& frame_entry(Address re_frame, int frame_offset) {
return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
}
template <typename T>
static T* frame_entry_address(Address re_frame, int frame_offset) {
return reinterpret_cast<T*>(re_frame + frame_offset);
}
int64_t RegExpMacroAssemblerRISCV::CheckStackGuardState(Address* return_address,
Address raw_code,
Address re_frame) {
Tagged<InstructionStream> re_code = InstructionStream::cast(Object(raw_code));
return NativeRegExpMacroAssembler::CheckStackGuardState(
frame_entry<Isolate*>(re_frame, kIsolateOffset),
static_cast<int>(frame_entry<int64_t>(re_frame, kStartIndexOffset)),
static_cast<RegExp::CallOrigin>(
frame_entry<int64_t>(re_frame, kDirectCallOffset)),
return_address, re_code,
frame_entry_address<Address>(re_frame, kInputStringOffset),
frame_entry_address<const uint8_t*>(re_frame, kInputStartOffset),
frame_entry_address<const uint8_t*>(re_frame, kInputEndOffset));
}
MemOperand RegExpMacroAssemblerRISCV::register_location(int register_index) {
DCHECK(register_index < (1 << 30));
if (num_registers_ <= register_index) {
num_registers_ = register_index + 1;
}
return MemOperand(frame_pointer(),
kRegisterZeroOffset - register_index * kSystemPointerSize);
}
void RegExpMacroAssemblerRISCV::CheckPosition(int cp_offset,
Label* on_outside_input) {
if (cp_offset >= 0) {
BranchOrBacktrack(on_outside_input, ge, current_input_offset(),
Operand(-cp_offset * char_size()));
} else {
__ LoadWord(a1, MemOperand(frame_pointer(), kStringStartMinusOneOffset));
__ AddWord(a0, current_input_offset(), Operand(cp_offset * char_size()));
BranchOrBacktrack(on_outside_input, le, a0, Operand(a1));
}
}
void RegExpMacroAssemblerRISCV::BranchOrBacktrack(Label* to,
Condition condition,
Register rs,
const Operand& rt) {
if (condition == al) { // Unconditional.
if (to == nullptr) {
Backtrack();
return;
}
__ jmp(to);
return;
}
if (to == nullptr) {
__ Branch(&backtrack_label_, condition, rs, rt);
return;
}
__ Branch(to, condition, rs, rt);
}
void RegExpMacroAssemblerRISCV::SafeCall(Label* to, Condition cond, Register rs,
const Operand& rt) {
__ BranchAndLink(to, cond, rs, rt);
}
void RegExpMacroAssemblerRISCV::SafeReturn() {
__ pop(ra);
__ AddWord(t1, ra, Operand(masm_->CodeObject()));
__ Jump(t1);
}
void RegExpMacroAssemblerRISCV::SafeCallTarget(Label* name) {
__ bind(name);
__ SubWord(ra, ra, Operand(masm_->CodeObject()));
__ push(ra);
}
void RegExpMacroAssemblerRISCV::Push(Register source) {
DCHECK(source != backtrack_stackpointer());
__ AddWord(backtrack_stackpointer(), backtrack_stackpointer(),
Operand(-kIntSize));
__ Sw(source, MemOperand(backtrack_stackpointer()));
}
void RegExpMacroAssemblerRISCV::Pop(Register target) {
DCHECK(target != backtrack_stackpointer());
__ Lw(target, MemOperand(backtrack_stackpointer()));
__ AddWord(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
}
void RegExpMacroAssemblerRISCV::CheckPreemption() {
// Check for preemption.
ExternalReference stack_limit =
ExternalReference::address_of_jslimit(masm_->isolate());
__ li(a0, Operand(stack_limit));
__ LoadWord(a0, MemOperand(a0));
SafeCall(&check_preempt_label_, Uless_equal, sp, Operand(a0));
}
void RegExpMacroAssemblerRISCV::CheckStackLimit() {
ExternalReference stack_limit =
ExternalReference::address_of_regexp_stack_limit_address(
masm_->isolate());
__ li(a0, Operand(stack_limit));
__ LoadWord(a0, MemOperand(a0));
SafeCall(&stack_overflow_label_, Uless_equal, backtrack_stackpointer(),
Operand(a0));
}
void RegExpMacroAssemblerRISCV::LoadCurrentCharacterUnchecked(int cp_offset,
int characters) {
Register offset = current_input_offset();
if (cp_offset != 0) {
// kScratchReg2 is not being used to store the capture start index at this
// point.
__ AddWord(kScratchReg2, current_input_offset(),
Operand(cp_offset * char_size()));
offset = kScratchReg2;
}
// If unaligned load/stores are not supported then this function must only
// be used to load a single character at a time.
if (!CanReadUnaligned()) {
DCHECK_EQ(1, characters);
}
if (mode_ == LATIN1) {
if (characters == 4) {
__ AddWord(kScratchReg, end_of_input_address(), offset);
__ Load32U(current_character(), MemOperand(kScratchReg));
} else if (characters == 2) {
__ AddWord(kScratchReg, end_of_input_address(), offset);
__ Lhu(current_character(), MemOperand(kScratchReg));
} else {
DCHECK_EQ(1, characters);
__ AddWord(kScratchReg, end_of_input_address(), offset);
__ Lbu(current_character(), MemOperand(kScratchReg));
}
} else {
DCHECK_EQ(UC16, mode_);
if (characters == 2) {
__ AddWord(kScratchReg, end_of_input_address(), offset);
__ Load32U(current_character(), MemOperand(kScratchReg));
} else {
DCHECK_EQ(1, characters);
__ AddWord(kScratchReg, end_of_input_address(), offset);
__ Lhu(current_character(), MemOperand(kScratchReg));
}
}
}
void RegExpMacroAssemblerRISCV::CallCFunctionFromIrregexpCode(
ExternalReference function, int num_arguments) {
// Irregexp code must not set fast_c_call_caller_fp and fast_c_call_caller_pc
// since
//
// 1. it may itself have been called using CallCFunction and nested calls are
// unsupported, and
// 2. it may itself have been called directly from C where the frame pointer
// might not be set (-fomit-frame-pointer), and thus frame iteration would
// fail.
//
// See also: crbug.com/v8/12670#c17.
__ CallCFunction(function, num_arguments,
MacroAssembler::SetIsolateDataSlots::kNo);
}
#undef __
} // namespace internal
} // namespace v8