node/src/node_contextify.cc
Joyee Cheung 9aa1afb527
src: use V8-owned CppHeap
As V8 is moving towards built-in CppHeap creation, change the
management so that the automatic CppHeap creation on Node.js's end
is also enforced at Isolate creation time.

1. If embedder uses NewIsolate(), either they use
  IsolateSettings::cpp_heap to specify a CppHeap that will be owned
  by V8, or if it's not configured, Node.js will create a CppHeap
  that will be owned by V8.
2. If the embedder uses SetIsolateUpForNode(),
  IsolateSettings::cpp_heap will be ignored (as V8 has deprecated
  attaching CppHeap post-isolate-creation). The embedders need to
  ensure that the v8::Isolate has a CppHeap attached while it's
  still used by Node.js, preferably using v8::CreateParams.

See https://issues.chromium.org/issues/42203693 for details. In
future version of V8, this CppHeap will be created by V8 if not
provided, and we can remove our own "if no CppHeap provided,
create one" code in NewIsolate().

PR-URL: https://github.com/nodejs/node/pull/58070
Reviewed-By: Antoine du Hamel <duhamelantoine1995@gmail.com>
Reviewed-By: Darshan Sen <raisinten@gmail.com>
Reviewed-By: Joyee Cheung <joyeec9h3@gmail.com>
Reviewed-By: Rafael Gonzaga <rafael.nunu@hotmail.com>
2025-05-02 15:10:38 +02:00

2062 lines
70 KiB
C++

// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "node_contextify.h"
#include "base_object-inl.h"
#include "cppgc/allocation.h"
#include "memory_tracker-inl.h"
#include "module_wrap.h"
#include "node_context_data.h"
#include "node_errors.h"
#include "node_external_reference.h"
#include "node_internals.h"
#include "node_process.h"
#include "node_sea.h"
#include "node_snapshot_builder.h"
#include "node_url.h"
#include "node_watchdog.h"
#include "util-inl.h"
namespace node {
namespace contextify {
using errors::TryCatchScope;
using v8::Array;
using v8::ArrayBufferView;
using v8::Boolean;
using v8::Context;
using v8::EscapableHandleScope;
using v8::Function;
using v8::FunctionCallbackInfo;
using v8::FunctionTemplate;
using v8::HandleScope;
using v8::IndexedPropertyHandlerConfiguration;
using v8::IndexFilter;
using v8::Int32;
using v8::Integer;
using v8::Intercepted;
using v8::Isolate;
using v8::JustVoid;
using v8::KeyCollectionMode;
using v8::Local;
using v8::LocalVector;
using v8::Maybe;
using v8::MaybeLocal;
using v8::MeasureMemoryExecution;
using v8::MeasureMemoryMode;
using v8::Message;
using v8::MicrotaskQueue;
using v8::MicrotasksPolicy;
using v8::Name;
using v8::NamedPropertyHandlerConfiguration;
using v8::Nothing;
using v8::Object;
using v8::ObjectTemplate;
using v8::PrimitiveArray;
using v8::Promise;
using v8::PropertyAttribute;
using v8::PropertyCallbackInfo;
using v8::PropertyDescriptor;
using v8::PropertyFilter;
using v8::PropertyHandlerFlags;
using v8::Script;
using v8::ScriptCompiler;
using v8::ScriptOrigin;
using v8::String;
using v8::Symbol;
using v8::Uint32;
using v8::UnboundScript;
using v8::Value;
// The vm module executes code in a sandboxed environment with a different
// global object than the rest of the code. This is achieved by applying
// every call that changes or queries a property on the global `this` in the
// sandboxed code, to the sandbox object.
//
// The implementation uses V8's interceptors for methods like `set`, `get`,
// `delete`, `defineProperty`, and for any query of the property attributes.
// Property handlers with interceptors are set on the object template for
// the sandboxed code. Handlers for both named properties and for indexed
// properties are used. Their functionality is almost identical, the indexed
// interceptors mostly just call the named interceptors.
//
// For every `get` of a global property in the sandboxed context, the
// interceptor callback checks the sandbox object for the property.
// If the property is defined on the sandbox, that result is returned to
// the original call instead of finishing the query on the global object.
//
// For every `set` of a global property, the interceptor callback defines or
// changes the property both on the sandbox and the global proxy.
namespace {
// Convert an int to a V8 Name (String or Symbol).
MaybeLocal<String> Uint32ToName(Local<Context> context, uint32_t index) {
return Uint32::New(context->GetIsolate(), index)->ToString(context);
}
} // anonymous namespace
ContextifyContext* ContextifyContext::New(Environment* env,
Local<Object> sandbox_obj,
ContextOptions* options) {
Local<ObjectTemplate> object_template;
HandleScope scope(env->isolate());
CHECK_IMPLIES(sandbox_obj.IsEmpty(), options->vanilla);
if (!sandbox_obj.IsEmpty()) {
// Do not use the template with interceptors for vanilla contexts.
object_template = env->contextify_global_template();
DCHECK(!object_template.IsEmpty());
}
const SnapshotData* snapshot_data = env->isolate_data()->snapshot_data();
MicrotaskQueue* queue =
options->own_microtask_queue
? options->own_microtask_queue.get()
: env->isolate()->GetCurrentContext()->GetMicrotaskQueue();
Local<Context> v8_context;
if (!(CreateV8Context(env->isolate(), object_template, snapshot_data, queue)
.ToLocal(&v8_context))) {
// Allocation failure, maximum call stack size reached, termination, etc.
return {};
}
return New(v8_context, env, sandbox_obj, options);
}
void ContextifyContext::Trace(cppgc::Visitor* visitor) const {
CppgcMixin::Trace(visitor);
visitor->Trace(context_);
}
ContextifyContext::ContextifyContext(Environment* env,
Local<Object> wrapper,
Local<Context> v8_context,
ContextOptions* options)
: microtask_queue_(options->own_microtask_queue
? options->own_microtask_queue.release()
: nullptr) {
CppgcMixin::Wrap(this, env, wrapper);
context_.Reset(env->isolate(), v8_context);
// This should only be done after the initial initializations of the context
// global object is finished.
DCHECK_NULL(v8_context->GetAlignedPointerFromEmbedderData(
ContextEmbedderIndex::kContextifyContext));
v8_context->SetAlignedPointerInEmbedderData(
ContextEmbedderIndex::kContextifyContext, this);
}
void ContextifyContext::InitializeGlobalTemplates(IsolateData* isolate_data) {
DCHECK(isolate_data->contextify_wrapper_template().IsEmpty());
Local<FunctionTemplate> global_func_template =
FunctionTemplate::New(isolate_data->isolate());
Local<ObjectTemplate> global_object_template =
global_func_template->InstanceTemplate();
NamedPropertyHandlerConfiguration config(
PropertyGetterCallback,
PropertySetterCallback,
PropertyQueryCallback,
PropertyDeleterCallback,
PropertyEnumeratorCallback,
PropertyDefinerCallback,
PropertyDescriptorCallback,
{},
PropertyHandlerFlags::kHasNoSideEffect);
IndexedPropertyHandlerConfiguration indexed_config(
IndexedPropertyGetterCallback,
IndexedPropertySetterCallback,
IndexedPropertyQueryCallback,
IndexedPropertyDeleterCallback,
IndexedPropertyEnumeratorCallback,
IndexedPropertyDefinerCallback,
IndexedPropertyDescriptorCallback,
{},
PropertyHandlerFlags::kHasNoSideEffect);
global_object_template->SetHandler(config);
global_object_template->SetHandler(indexed_config);
isolate_data->set_contextify_global_template(global_object_template);
Local<FunctionTemplate> wrapper_func_template =
BaseObject::MakeLazilyInitializedJSTemplate(isolate_data);
Local<ObjectTemplate> wrapper_object_template =
wrapper_func_template->InstanceTemplate();
isolate_data->set_contextify_wrapper_template(wrapper_object_template);
}
MaybeLocal<Context> ContextifyContext::CreateV8Context(
Isolate* isolate,
Local<ObjectTemplate> object_template,
const SnapshotData* snapshot_data,
MicrotaskQueue* queue) {
EscapableHandleScope scope(isolate);
Local<Context> ctx;
if (object_template.IsEmpty() || snapshot_data == nullptr) {
ctx = Context::New(
isolate,
nullptr, // extensions
object_template,
{}, // global object
v8::DeserializeInternalFieldsCallback(), // deserialization callback
queue);
if (ctx.IsEmpty() || InitializeBaseContextForSnapshot(ctx).IsNothing()) {
return MaybeLocal<Context>();
}
} else if (!Context::FromSnapshot(
isolate,
SnapshotData::kNodeVMContextIndex,
v8::DeserializeInternalFieldsCallback(), // deserialization
// callback
nullptr, // extensions
{}, // global object
queue)
.ToLocal(&ctx)) {
return MaybeLocal<Context>();
}
return scope.Escape(ctx);
}
ContextifyContext* ContextifyContext::New(Local<Context> v8_context,
Environment* env,
Local<Object> sandbox_obj,
ContextOptions* options) {
HandleScope scope(env->isolate());
CHECK_IMPLIES(sandbox_obj.IsEmpty(), options->vanilla);
// This only initializes part of the context. The primordials are
// only initialized when needed because even deserializing them slows
// things down significantly and they are only needed in rare occasions
// in the vm contexts.
if (InitializeContextRuntime(v8_context).IsNothing()) {
return {};
}
Local<Context> main_context = env->context();
Local<Object> new_context_global = v8_context->Global();
v8_context->SetSecurityToken(main_context->GetSecurityToken());
// We need to tie the lifetime of the sandbox object with the lifetime of
// newly created context. We do this by making them hold references to each
// other. The context can directly hold a reference to the sandbox as an
// embedder data field. The sandbox uses a private symbol to hold a reference
// to the ContextifyContext wrapper which in turn internally references
// the context from its constructor.
if (sandbox_obj.IsEmpty()) {
v8_context->SetEmbedderData(ContextEmbedderIndex::kSandboxObject,
v8::Undefined(env->isolate()));
} else {
v8_context->SetEmbedderData(ContextEmbedderIndex::kSandboxObject,
sandbox_obj);
}
// Delegate the code generation validation to
// node::ModifyCodeGenerationFromStrings.
v8_context->AllowCodeGenerationFromStrings(false);
v8_context->SetEmbedderData(
ContextEmbedderIndex::kAllowCodeGenerationFromStrings,
options->allow_code_gen_strings);
v8_context->SetEmbedderData(ContextEmbedderIndex::kAllowWasmCodeGeneration,
options->allow_code_gen_wasm);
Utf8Value name_val(env->isolate(), options->name);
ContextInfo info(*name_val);
if (!options->origin.IsEmpty()) {
Utf8Value origin_val(env->isolate(), options->origin);
info.origin = *origin_val;
}
ContextifyContext* result;
Local<Object> wrapper;
{
Context::Scope context_scope(v8_context);
if (!sandbox_obj.IsEmpty()) {
Local<String> ctor_name = sandbox_obj->GetConstructorName();
if (!ctor_name->Equals(v8_context, env->object_string())
.FromMaybe(false) &&
new_context_global
->DefineOwnProperty(
v8_context,
v8::Symbol::GetToStringTag(env->isolate()),
ctor_name,
static_cast<v8::PropertyAttribute>(v8::DontEnum))
.IsNothing()) {
return {};
}
}
// Assign host_defined_options_id to the global object so that in the
// callback of ImportModuleDynamically, we can get the
// host_defined_options_id from the v8::Context without accessing the
// wrapper object.
if (new_context_global
->SetPrivate(v8_context,
env->host_defined_option_symbol(),
options->host_defined_options_id)
.IsNothing()) {
return {};
}
env->AssignToContext(v8_context, nullptr, info);
if (!env->contextify_wrapper_template()
->NewInstance(v8_context)
.ToLocal(&wrapper)) {
return {};
}
DCHECK_NOT_NULL(env->isolate()->GetCppHeap());
result = cppgc::MakeGarbageCollected<ContextifyContext>(
env->isolate()->GetCppHeap()->GetAllocationHandle(),
env,
wrapper,
v8_context,
options);
}
Local<Object> wrapper_holder =
sandbox_obj.IsEmpty() ? new_context_global : sandbox_obj;
if (!wrapper_holder.IsEmpty() &&
wrapper_holder
->SetPrivate(
v8_context, env->contextify_context_private_symbol(), wrapper)
.IsNothing()) {
return {};
}
// Assign host_defined_options_id to the sandbox object or the global object
// (for vanilla contexts) so that module callbacks like
// importModuleDynamically can be registered once back to the JS land.
if (!sandbox_obj.IsEmpty() &&
sandbox_obj
->SetPrivate(v8_context,
env->host_defined_option_symbol(),
options->host_defined_options_id)
.IsNothing()) {
return {};
}
return result;
}
void ContextifyContext::CreatePerIsolateProperties(
IsolateData* isolate_data, Local<ObjectTemplate> target) {
Isolate* isolate = isolate_data->isolate();
SetMethod(isolate, target, "makeContext", MakeContext);
SetMethod(isolate, target, "compileFunction", CompileFunction);
}
void ContextifyContext::RegisterExternalReferences(
ExternalReferenceRegistry* registry) {
registry->Register(MakeContext);
registry->Register(CompileFunction);
registry->Register(PropertyQueryCallback);
registry->Register(PropertyGetterCallback);
registry->Register(PropertySetterCallback);
registry->Register(PropertyDescriptorCallback);
registry->Register(PropertyDeleterCallback);
registry->Register(PropertyEnumeratorCallback);
registry->Register(PropertyDefinerCallback);
registry->Register(IndexedPropertyQueryCallback);
registry->Register(IndexedPropertyGetterCallback);
registry->Register(IndexedPropertySetterCallback);
registry->Register(IndexedPropertyDescriptorCallback);
registry->Register(IndexedPropertyDeleterCallback);
registry->Register(IndexedPropertyDefinerCallback);
registry->Register(IndexedPropertyEnumeratorCallback);
}
// makeContext(sandbox, name, origin, strings, wasm);
void ContextifyContext::MakeContext(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
ContextOptions options;
CHECK_EQ(args.Length(), 7);
Local<Object> sandbox;
if (args[0]->IsObject()) {
sandbox = args[0].As<Object>();
// Don't allow contextifying a sandbox multiple times.
CHECK(!sandbox
->HasPrivate(env->context(),
env->contextify_context_private_symbol())
.FromJust());
} else {
CHECK(args[0]->IsSymbol());
options.vanilla = true;
}
CHECK(args[1]->IsString());
options.name = args[1].As<String>();
CHECK(args[2]->IsString() || args[2]->IsUndefined());
if (args[2]->IsString()) {
options.origin = args[2].As<String>();
}
CHECK(args[3]->IsBoolean());
options.allow_code_gen_strings = args[3].As<Boolean>();
CHECK(args[4]->IsBoolean());
options.allow_code_gen_wasm = args[4].As<Boolean>();
if (args[5]->IsBoolean() && args[5]->BooleanValue(env->isolate())) {
options.own_microtask_queue =
MicrotaskQueue::New(env->isolate(), MicrotasksPolicy::kExplicit);
}
CHECK(args[6]->IsSymbol());
options.host_defined_options_id = args[6].As<Symbol>();
TryCatchScope try_catch(env);
ContextifyContext* context_ptr =
ContextifyContext::New(env, sandbox, &options);
if (try_catch.HasCaught()) {
if (!try_catch.HasTerminated())
try_catch.ReThrow();
return;
}
if (sandbox.IsEmpty()) {
args.GetReturnValue().Set(context_ptr->context()->Global());
} else {
args.GetReturnValue().Set(sandbox);
}
}
// static
ContextifyContext* ContextifyContext::ContextFromContextifiedSandbox(
Environment* env, const Local<Object>& wrapper_holder) {
Local<Value> contextify;
if (wrapper_holder
->GetPrivate(env->context(), env->contextify_context_private_symbol())
.ToLocal(&contextify) &&
contextify->IsObject()) {
return Unwrap<ContextifyContext>(contextify.As<Object>());
}
return nullptr;
}
template <typename T>
ContextifyContext* ContextifyContext::Get(const PropertyCallbackInfo<T>& args) {
// TODO(joyeecheung): it should be fine to simply use
// args.GetIsolate()->GetCurrentContext() and take the pointer at
// ContextEmbedderIndex::kContextifyContext, as V8 is supposed to
// push the creation context before invoking these callbacks.
return Get(args.This());
}
ContextifyContext* ContextifyContext::Get(Local<Object> object) {
Local<Context> context;
if (!object->GetCreationContext().ToLocal(&context)) {
return nullptr;
}
if (!ContextEmbedderTag::IsNodeContext(context)) {
return nullptr;
}
return static_cast<ContextifyContext*>(
context->GetAlignedPointerFromEmbedderData(
ContextEmbedderIndex::kContextifyContext));
}
bool ContextifyContext::IsStillInitializing(const ContextifyContext* ctx) {
return ctx == nullptr || ctx->context_.IsEmpty();
}
// static
Intercepted ContextifyContext::PropertyQueryCallback(
Local<Name> property, const PropertyCallbackInfo<Integer>& args) {
ContextifyContext* ctx = ContextifyContext::Get(args);
// Still initializing
if (IsStillInitializing(ctx)) {
return Intercepted::kNo;
}
Local<Context> context = ctx->context();
Local<Object> sandbox = ctx->sandbox();
PropertyAttribute attr;
Maybe<bool> maybe_has = sandbox->HasRealNamedProperty(context, property);
if (maybe_has.IsNothing()) {
return Intercepted::kNo;
} else if (maybe_has.FromJust()) {
Maybe<PropertyAttribute> maybe_attr =
sandbox->GetRealNamedPropertyAttributes(context, property);
if (!maybe_attr.To(&attr)) {
return Intercepted::kNo;
}
args.GetReturnValue().Set(attr);
return Intercepted::kYes;
} else {
maybe_has = ctx->global_proxy()->HasRealNamedProperty(context, property);
if (maybe_has.IsNothing()) {
return Intercepted::kNo;
} else if (maybe_has.FromJust()) {
Maybe<PropertyAttribute> maybe_attr =
ctx->global_proxy()->GetRealNamedPropertyAttributes(context,
property);
if (!maybe_attr.To(&attr)) {
return Intercepted::kNo;
}
args.GetReturnValue().Set(attr);
return Intercepted::kYes;
}
}
return Intercepted::kNo;
}
// static
Intercepted ContextifyContext::PropertyGetterCallback(
Local<Name> property, const PropertyCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
ContextifyContext* ctx = ContextifyContext::Get(args);
// Still initializing
if (IsStillInitializing(ctx)) {
return Intercepted::kNo;
}
Local<Context> context = ctx->context();
Local<Object> sandbox = ctx->sandbox();
TryCatchScope try_catch(env);
MaybeLocal<Value> maybe_rv =
sandbox->GetRealNamedProperty(context, property);
if (maybe_rv.IsEmpty()) {
maybe_rv =
ctx->global_proxy()->GetRealNamedProperty(context, property);
}
Local<Value> rv;
if (maybe_rv.ToLocal(&rv)) {
if (try_catch.HasCaught() && !try_catch.HasTerminated()) {
try_catch.ReThrow();
}
if (rv == sandbox)
rv = ctx->global_proxy();
args.GetReturnValue().Set(rv);
return Intercepted::kYes;
}
return Intercepted::kNo;
}
// static
Intercepted ContextifyContext::PropertySetterCallback(
Local<Name> property,
Local<Value> value,
const PropertyCallbackInfo<void>& args) {
ContextifyContext* ctx = ContextifyContext::Get(args);
// Still initializing
if (IsStillInitializing(ctx)) {
return Intercepted::kNo;
}
Local<Context> context = ctx->context();
PropertyAttribute attributes = PropertyAttribute::None;
bool is_declared_on_global_proxy = ctx->global_proxy()
->GetRealNamedPropertyAttributes(context, property)
.To(&attributes);
bool read_only =
static_cast<int>(attributes) &
static_cast<int>(PropertyAttribute::ReadOnly);
bool is_declared_on_sandbox = ctx->sandbox()
->GetRealNamedPropertyAttributes(context, property)
.To(&attributes);
read_only = read_only ||
(static_cast<int>(attributes) &
static_cast<int>(PropertyAttribute::ReadOnly));
if (read_only) {
return Intercepted::kNo;
}
// true for x = 5
// false for this.x = 5
// false for Object.defineProperty(this, 'foo', ...)
// false for vmResult.x = 5 where vmResult = vm.runInContext();
bool is_contextual_store = ctx->global_proxy() != args.This();
// Indicator to not return before setting (undeclared) function declarations
// on the sandbox in strict mode, i.e. args.ShouldThrowOnError() = true.
// True for 'function f() {}', 'this.f = function() {}',
// 'var f = function()'.
// In effect only for 'function f() {}' because
// var f = function(), is_declared = true
// this.f = function() {}, is_contextual_store = false.
bool is_function = value->IsFunction();
bool is_declared = is_declared_on_global_proxy || is_declared_on_sandbox;
if (!is_declared && args.ShouldThrowOnError() && is_contextual_store &&
!is_function) {
return Intercepted::kNo;
}
if (!is_declared && property->IsSymbol()) {
return Intercepted::kNo;
}
if (ctx->sandbox()->Set(context, property, value).IsNothing()) {
return Intercepted::kNo;
}
Local<Value> desc;
if (is_declared_on_sandbox &&
ctx->sandbox()
->GetOwnPropertyDescriptor(context, property)
.ToLocal(&desc) &&
!desc->IsUndefined()) {
Environment* env = Environment::GetCurrent(context);
Local<Object> desc_obj = desc.As<Object>();
// We have to specify the return value for any contextual or get/set
// property
if (desc_obj->HasOwnProperty(context, env->get_string()).FromMaybe(false) ||
desc_obj->HasOwnProperty(context, env->set_string()).FromMaybe(false)) {
return Intercepted::kYes;
}
}
return Intercepted::kNo;
}
// static
Intercepted ContextifyContext::PropertyDescriptorCallback(
Local<Name> property, const PropertyCallbackInfo<Value>& args) {
ContextifyContext* ctx = ContextifyContext::Get(args);
// Still initializing
if (IsStillInitializing(ctx)) {
return Intercepted::kNo;
}
Local<Context> context = ctx->context();
Local<Object> sandbox = ctx->sandbox();
if (sandbox->HasOwnProperty(context, property).FromMaybe(false)) {
Local<Value> desc;
if (sandbox->GetOwnPropertyDescriptor(context, property).ToLocal(&desc)) {
args.GetReturnValue().Set(desc);
return Intercepted::kYes;
}
}
return Intercepted::kNo;
}
// static
Intercepted ContextifyContext::PropertyDefinerCallback(
Local<Name> property,
const PropertyDescriptor& desc,
const PropertyCallbackInfo<void>& args) {
ContextifyContext* ctx = ContextifyContext::Get(args);
// Still initializing
if (IsStillInitializing(ctx)) {
return Intercepted::kNo;
}
Local<Context> context = ctx->context();
Isolate* isolate = context->GetIsolate();
PropertyAttribute attributes = PropertyAttribute::None;
bool is_declared =
ctx->global_proxy()->GetRealNamedPropertyAttributes(context,
property)
.To(&attributes);
bool read_only =
static_cast<int>(attributes) &
static_cast<int>(PropertyAttribute::ReadOnly);
bool dont_delete = static_cast<int>(attributes) &
static_cast<int>(PropertyAttribute::DontDelete);
// If the property is set on the global as neither writable nor
// configurable, don't change it on the global or sandbox.
if (is_declared && read_only && dont_delete) {
return Intercepted::kNo;
}
Local<Object> sandbox = ctx->sandbox();
auto define_prop_on_sandbox =
[&] (PropertyDescriptor* desc_for_sandbox) {
if (desc.has_enumerable()) {
desc_for_sandbox->set_enumerable(desc.enumerable());
}
if (desc.has_configurable()) {
desc_for_sandbox->set_configurable(desc.configurable());
}
// Set the property on the sandbox.
USE(sandbox->DefineProperty(context, property, *desc_for_sandbox));
};
if (desc.has_get() || desc.has_set()) {
PropertyDescriptor desc_for_sandbox(
desc.has_get() ? desc.get() : Undefined(isolate).As<Value>(),
desc.has_set() ? desc.set() : Undefined(isolate).As<Value>());
define_prop_on_sandbox(&desc_for_sandbox);
// TODO(https://github.com/nodejs/node/issues/52634): this should return
// kYes to behave according to the expected semantics.
return Intercepted::kNo;
} else {
Local<Value> value =
desc.has_value() ? desc.value() : Undefined(isolate).As<Value>();
if (desc.has_writable()) {
PropertyDescriptor desc_for_sandbox(value, desc.writable());
define_prop_on_sandbox(&desc_for_sandbox);
} else {
PropertyDescriptor desc_for_sandbox(value);
define_prop_on_sandbox(&desc_for_sandbox);
}
// TODO(https://github.com/nodejs/node/issues/52634): this should return
// kYes to behave according to the expected semantics.
return Intercepted::kNo;
}
return Intercepted::kNo;
}
// static
Intercepted ContextifyContext::PropertyDeleterCallback(
Local<Name> property, const PropertyCallbackInfo<Boolean>& args) {
ContextifyContext* ctx = ContextifyContext::Get(args);
// Still initializing
if (IsStillInitializing(ctx)) {
return Intercepted::kNo;
}
Maybe<bool> success = ctx->sandbox()->Delete(ctx->context(), property);
if (success.FromMaybe(false)) {
return Intercepted::kNo;
}
// Delete failed on the sandbox, intercept and do not delete on
// the global object.
args.GetReturnValue().Set(false);
return Intercepted::kYes;
}
// static
void ContextifyContext::PropertyEnumeratorCallback(
const PropertyCallbackInfo<Array>& args) {
// Named enumerator will be invoked on Object.keys,
// Object.getOwnPropertyNames, Object.getOwnPropertySymbols,
// Object.getOwnPropertyDescriptors, for...in, etc. operations.
// Named enumerator should return all own non-indices property names,
// including string properties and symbol properties. V8 will filter the
// result array to match the expected symbol-only, enumerable-only with
// NamedPropertyQueryCallback.
ContextifyContext* ctx = ContextifyContext::Get(args);
// Still initializing
if (IsStillInitializing(ctx)) return;
Local<Array> properties;
// Only get own named properties, exclude indices.
if (!ctx->sandbox()
->GetPropertyNames(
ctx->context(),
KeyCollectionMode::kOwnOnly,
static_cast<PropertyFilter>(PropertyFilter::ALL_PROPERTIES),
IndexFilter::kSkipIndices)
.ToLocal(&properties))
return;
args.GetReturnValue().Set(properties);
}
// static
void ContextifyContext::IndexedPropertyEnumeratorCallback(
const PropertyCallbackInfo<Array>& args) {
// Indexed enumerator will be invoked on Object.keys,
// Object.getOwnPropertyNames, Object.getOwnPropertyDescriptors, for...in,
// etc. operations. Indexed enumerator should return all own non-indices index
// properties. V8 will filter the result array to match the expected
// enumerable-only with IndexedPropertyQueryCallback.
Isolate* isolate = args.GetIsolate();
HandleScope scope(isolate);
ContextifyContext* ctx = ContextifyContext::Get(args);
Local<Context> context = ctx->context();
// Still initializing
if (IsStillInitializing(ctx)) return;
Local<Array> properties;
// Only get own index properties.
if (!ctx->sandbox()
->GetPropertyNames(
context,
KeyCollectionMode::kOwnOnly,
static_cast<PropertyFilter>(PropertyFilter::SKIP_SYMBOLS),
IndexFilter::kIncludeIndices)
.ToLocal(&properties))
return;
std::vector<v8::Global<Value>> properties_vec;
if (FromV8Array(context, properties, &properties_vec).IsNothing()) {
return;
}
// Filter out non-number property names.
LocalVector<Value> indices(isolate);
for (uint32_t i = 0; i < properties->Length(); i++) {
Local<Value> prop = properties_vec[i].Get(isolate);
if (!prop->IsNumber()) {
continue;
}
indices.push_back(prop);
}
args.GetReturnValue().Set(
Array::New(args.GetIsolate(), indices.data(), indices.size()));
}
// static
Intercepted ContextifyContext::IndexedPropertyQueryCallback(
uint32_t index, const PropertyCallbackInfo<Integer>& args) {
ContextifyContext* ctx = ContextifyContext::Get(args);
// Still initializing
if (IsStillInitializing(ctx)) {
return Intercepted::kNo;
}
Local<String> name;
if (Uint32ToName(ctx->context(), index).ToLocal(&name)) {
return ContextifyContext::PropertyQueryCallback(name, args);
}
return Intercepted::kNo;
}
// static
Intercepted ContextifyContext::IndexedPropertyGetterCallback(
uint32_t index, const PropertyCallbackInfo<Value>& args) {
ContextifyContext* ctx = ContextifyContext::Get(args);
// Still initializing
if (IsStillInitializing(ctx)) {
return Intercepted::kNo;
}
Local<String> name;
if (Uint32ToName(ctx->context(), index).ToLocal(&name)) {
return ContextifyContext::PropertyGetterCallback(name, args);
}
return Intercepted::kNo;
}
Intercepted ContextifyContext::IndexedPropertySetterCallback(
uint32_t index,
Local<Value> value,
const PropertyCallbackInfo<void>& args) {
ContextifyContext* ctx = ContextifyContext::Get(args);
// Still initializing
if (IsStillInitializing(ctx)) {
return Intercepted::kNo;
}
Local<String> name;
if (Uint32ToName(ctx->context(), index).ToLocal(&name)) {
return ContextifyContext::PropertySetterCallback(name, value, args);
}
return Intercepted::kNo;
}
// static
Intercepted ContextifyContext::IndexedPropertyDescriptorCallback(
uint32_t index, const PropertyCallbackInfo<Value>& args) {
ContextifyContext* ctx = ContextifyContext::Get(args);
// Still initializing
if (IsStillInitializing(ctx)) {
return Intercepted::kNo;
}
Local<String> name;
if (Uint32ToName(ctx->context(), index).ToLocal(&name)) {
return ContextifyContext::PropertyDescriptorCallback(name, args);
}
return Intercepted::kNo;
}
Intercepted ContextifyContext::IndexedPropertyDefinerCallback(
uint32_t index,
const PropertyDescriptor& desc,
const PropertyCallbackInfo<void>& args) {
ContextifyContext* ctx = ContextifyContext::Get(args);
// Still initializing
if (IsStillInitializing(ctx)) {
return Intercepted::kNo;
}
Local<String> name;
if (Uint32ToName(ctx->context(), index).ToLocal(&name)) {
return ContextifyContext::PropertyDefinerCallback(name, desc, args);
}
return Intercepted::kNo;
}
// static
Intercepted ContextifyContext::IndexedPropertyDeleterCallback(
uint32_t index, const PropertyCallbackInfo<Boolean>& args) {
ContextifyContext* ctx = ContextifyContext::Get(args);
// Still initializing
if (IsStillInitializing(ctx)) {
return Intercepted::kNo;
}
Maybe<bool> success = ctx->sandbox()->Delete(ctx->context(), index);
if (success.FromMaybe(false)) {
return Intercepted::kNo;
}
// Delete failed on the sandbox, intercept and do not delete on
// the global object.
args.GetReturnValue().Set(false);
return Intercepted::kYes;
}
void ContextifyScript::CreatePerIsolateProperties(
IsolateData* isolate_data, Local<ObjectTemplate> target) {
Isolate* isolate = isolate_data->isolate();
Local<String> class_name = FIXED_ONE_BYTE_STRING(isolate, "ContextifyScript");
Local<FunctionTemplate> script_tmpl = NewFunctionTemplate(isolate, New);
script_tmpl->InstanceTemplate()->SetInternalFieldCount(
ContextifyScript::kInternalFieldCount);
script_tmpl->SetClassName(class_name);
SetProtoMethod(isolate, script_tmpl, "createCachedData", CreateCachedData);
SetProtoMethod(isolate, script_tmpl, "runInContext", RunInContext);
target->Set(isolate, "ContextifyScript", script_tmpl);
isolate_data->set_script_context_constructor_template(script_tmpl);
}
void ContextifyScript::RegisterExternalReferences(
ExternalReferenceRegistry* registry) {
registry->Register(New);
registry->Register(CreateCachedData);
registry->Register(RunInContext);
}
ContextifyScript* ContextifyScript::New(Environment* env,
Local<Object> object) {
DCHECK_NOT_NULL(env->isolate()->GetCppHeap());
return cppgc::MakeGarbageCollected<ContextifyScript>(
env->isolate()->GetCppHeap()->GetAllocationHandle(), env, object);
}
void ContextifyScript::New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
Local<Context> context = env->context();
CHECK(args.IsConstructCall());
const int argc = args.Length();
CHECK_GE(argc, 2);
CHECK(args[0]->IsString());
Local<String> code = args[0].As<String>();
CHECK(args[1]->IsString());
Local<String> filename = args[1].As<String>();
int line_offset = 0;
int column_offset = 0;
Local<ArrayBufferView> cached_data_buf;
bool produce_cached_data = false;
Local<Context> parsing_context = context;
Local<Symbol> id_symbol;
if (argc > 2) {
// new ContextifyScript(code, filename, lineOffset, columnOffset,
// cachedData, produceCachedData, parsingContext,
// hostDefinedOptionId)
CHECK_EQ(argc, 8);
CHECK(args[2]->IsNumber());
line_offset = args[2].As<Int32>()->Value();
CHECK(args[3]->IsNumber());
column_offset = args[3].As<Int32>()->Value();
if (!args[4]->IsUndefined()) {
CHECK(args[4]->IsArrayBufferView());
cached_data_buf = args[4].As<ArrayBufferView>();
}
CHECK(args[5]->IsBoolean());
produce_cached_data = args[5]->IsTrue();
if (!args[6]->IsUndefined()) {
CHECK(args[6]->IsObject());
ContextifyContext* sandbox =
ContextifyContext::ContextFromContextifiedSandbox(
env, args[6].As<Object>());
CHECK_NOT_NULL(sandbox);
parsing_context = sandbox->context();
}
CHECK(args[7]->IsSymbol());
id_symbol = args[7].As<Symbol>();
}
ContextifyScript* contextify_script = New(env, args.This());
if (*TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED(
TRACING_CATEGORY_NODE2(vm, script)) != 0) {
Utf8Value fn(isolate, filename);
TRACE_EVENT_BEGIN1(TRACING_CATEGORY_NODE2(vm, script),
"ContextifyScript::New",
"filename",
TRACE_STR_COPY(*fn));
}
ScriptCompiler::CachedData* cached_data = nullptr;
if (!cached_data_buf.IsEmpty()) {
uint8_t* data = static_cast<uint8_t*>(cached_data_buf->Buffer()->Data());
cached_data = new ScriptCompiler::CachedData(
data + cached_data_buf->ByteOffset(), cached_data_buf->ByteLength());
}
Local<PrimitiveArray> host_defined_options =
PrimitiveArray::New(isolate, loader::HostDefinedOptions::kLength);
host_defined_options->Set(
isolate, loader::HostDefinedOptions::kID, id_symbol);
ScriptOrigin origin(filename,
line_offset, // line offset
column_offset, // column offset
true, // is cross origin
-1, // script id
Local<Value>(), // source map URL
false, // is opaque (?)
false, // is WASM
false, // is ES Module
host_defined_options);
ScriptCompiler::Source source(code, origin, cached_data);
ScriptCompiler::CompileOptions compile_options =
ScriptCompiler::kNoCompileOptions;
if (source.GetCachedData() != nullptr)
compile_options = ScriptCompiler::kConsumeCodeCache;
TryCatchScope try_catch(env);
ShouldNotAbortOnUncaughtScope no_abort_scope(env);
Context::Scope scope(parsing_context);
MaybeLocal<UnboundScript> maybe_v8_script =
ScriptCompiler::CompileUnboundScript(isolate, &source, compile_options);
Local<UnboundScript> v8_script;
if (!maybe_v8_script.ToLocal(&v8_script)) {
errors::DecorateErrorStack(env, try_catch);
no_abort_scope.Close();
if (!try_catch.HasTerminated())
try_catch.ReThrow();
TRACE_EVENT_END0(TRACING_CATEGORY_NODE2(vm, script),
"ContextifyScript::New");
return;
}
contextify_script->set_unbound_script(v8_script);
std::unique_ptr<ScriptCompiler::CachedData> new_cached_data;
if (produce_cached_data) {
new_cached_data.reset(ScriptCompiler::CreateCodeCache(v8_script));
}
if (contextify_script->object()
->SetPrivate(context, env->host_defined_option_symbol(), id_symbol)
.IsNothing()) {
return;
}
if (StoreCodeCacheResult(env,
args.This(),
compile_options,
source,
produce_cached_data,
std::move(new_cached_data))
.IsNothing()) {
return;
}
if (args.This()
->Set(env->context(),
env->source_map_url_string(),
v8_script->GetSourceMappingURL())
.IsNothing())
return;
TRACE_EVENT_END0(TRACING_CATEGORY_NODE2(vm, script), "ContextifyScript::New");
}
Maybe<void> StoreCodeCacheResult(
Environment* env,
Local<Object> target,
ScriptCompiler::CompileOptions compile_options,
const v8::ScriptCompiler::Source& source,
bool produce_cached_data,
std::unique_ptr<ScriptCompiler::CachedData> new_cached_data) {
Local<Context> context;
if (!target->GetCreationContext().ToLocal(&context)) {
return Nothing<void>();
}
if (compile_options == ScriptCompiler::kConsumeCodeCache) {
if (target
->Set(
context,
env->cached_data_rejected_string(),
Boolean::New(env->isolate(), source.GetCachedData()->rejected))
.IsNothing()) {
return Nothing<void>();
}
}
if (produce_cached_data) {
bool cached_data_produced = new_cached_data != nullptr;
if (cached_data_produced) {
Local<Object> buf;
if (!Buffer::Copy(env,
reinterpret_cast<const char*>(new_cached_data->data),
new_cached_data->length)
.ToLocal(&buf) ||
target->Set(context, env->cached_data_string(), buf).IsNothing() ||
target
->Set(context,
env->cached_data_produced_string(),
Boolean::New(env->isolate(), cached_data_produced))
.IsNothing()) {
return Nothing<void>();
}
}
}
return JustVoid();
}
// TODO(RaisinTen): Reuse in ContextifyContext::CompileFunction().
MaybeLocal<Function> CompileFunction(Local<Context> context,
Local<String> filename,
Local<String> content,
LocalVector<String>* parameters) {
ScriptOrigin script_origin(filename, 0, 0, true);
ScriptCompiler::Source script_source(content, script_origin);
return ScriptCompiler::CompileFunction(context,
&script_source,
parameters->size(),
parameters->data(),
0,
nullptr);
}
bool ContextifyScript::InstanceOf(Environment* env,
const Local<Value>& value) {
return !value.IsEmpty() &&
env->script_context_constructor_template()->HasInstance(value);
}
void ContextifyScript::CreateCachedData(
const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
ContextifyScript* wrapped_script;
ASSIGN_OR_RETURN_UNWRAP_CPPGC(&wrapped_script, args.This());
std::unique_ptr<ScriptCompiler::CachedData> cached_data(
ScriptCompiler::CreateCodeCache(wrapped_script->unbound_script()));
auto maybeRet = ([&] {
if (!cached_data) {
return Buffer::New(env, 0);
}
return Buffer::Copy(env,
reinterpret_cast<const char*>(cached_data->data),
cached_data->length);
})();
Local<Object> ret;
if (maybeRet.ToLocal(&ret)) {
args.GetReturnValue().Set(ret);
}
}
void ContextifyScript::RunInContext(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
ContextifyScript* wrapped_script;
ASSIGN_OR_RETURN_UNWRAP_CPPGC(&wrapped_script, args.This());
CHECK_EQ(args.Length(), 5);
CHECK(args[0]->IsObject() || args[0]->IsNull());
Local<Context> context;
v8::MicrotaskQueue* microtask_queue = nullptr;
if (args[0]->IsObject()) {
Local<Object> sandbox = args[0].As<Object>();
// Get the context from the sandbox
ContextifyContext* contextify_context =
ContextifyContext::ContextFromContextifiedSandbox(env, sandbox);
CHECK_NOT_NULL(contextify_context);
CHECK_EQ(contextify_context->env(), env);
context = contextify_context->context();
if (context.IsEmpty()) return;
microtask_queue = contextify_context->microtask_queue();
} else {
context = env->context();
}
TRACE_EVENT0(TRACING_CATEGORY_NODE2(vm, script), "RunInContext");
CHECK(args[1]->IsNumber());
int64_t timeout;
if (!args[1]->IntegerValue(env->context()).To(&timeout)) {
return;
}
CHECK(args[2]->IsBoolean());
bool display_errors = args[2]->IsTrue();
CHECK(args[3]->IsBoolean());
bool break_on_sigint = args[3]->IsTrue();
CHECK(args[4]->IsBoolean());
bool break_on_first_line = args[4]->IsTrue();
// Do the eval within the context
EvalMachine(context,
env,
timeout,
display_errors,
break_on_sigint,
break_on_first_line,
microtask_queue,
args);
}
bool ContextifyScript::EvalMachine(Local<Context> context,
Environment* env,
const int64_t timeout,
const bool display_errors,
const bool break_on_sigint,
const bool break_on_first_line,
MicrotaskQueue* mtask_queue,
const FunctionCallbackInfo<Value>& args) {
Context::Scope context_scope(context);
if (!env->can_call_into_js())
return false;
if (!ContextifyScript::InstanceOf(env, args.This())) {
THROW_ERR_INVALID_THIS(
env,
"Script methods can only be called on script instances.");
return false;
}
TryCatchScope try_catch(env);
ContextifyScript* wrapped_script;
ASSIGN_OR_RETURN_UNWRAP_CPPGC(&wrapped_script, args.This(), false);
Local<Script> script =
wrapped_script->unbound_script()->BindToCurrentContext();
#if HAVE_INSPECTOR
if (break_on_first_line) {
if (!env->permission()->is_granted(env,
permission::PermissionScope::kInspector,
"PauseOnNextJavascriptStatement"))
[[unlikely]] {
node::permission::Permission::ThrowAccessDenied(
env,
permission::PermissionScope::kInspector,
"PauseOnNextJavascriptStatement");
if (display_errors) {
// We should decorate non-termination exceptions
errors::DecorateErrorStack(env, try_catch);
}
try_catch.ReThrow();
return false;
}
env->inspector_agent()->PauseOnNextJavascriptStatement("Break on start");
}
#endif
MaybeLocal<Value> result;
bool timed_out = false;
bool received_signal = false;
auto run = [&]() {
MaybeLocal<Value> result = script->Run(context);
if (!result.IsEmpty() && mtask_queue != nullptr)
mtask_queue->PerformCheckpoint(env->isolate());
return result;
};
if (break_on_sigint && timeout != -1) {
Watchdog wd(env->isolate(), timeout, &timed_out);
SigintWatchdog swd(env->isolate(), &received_signal);
result = run();
} else if (break_on_sigint) {
SigintWatchdog swd(env->isolate(), &received_signal);
result = run();
} else if (timeout != -1) {
Watchdog wd(env->isolate(), timeout, &timed_out);
result = run();
} else {
result = run();
}
// Convert the termination exception into a regular exception.
if (timed_out || received_signal) {
if (!env->is_main_thread() && env->is_stopping())
return false;
env->isolate()->CancelTerminateExecution();
// It is possible that execution was terminated by another timeout in
// which this timeout is nested, so check whether one of the watchdogs
// from this invocation is responsible for termination.
if (timed_out) {
node::THROW_ERR_SCRIPT_EXECUTION_TIMEOUT(env, timeout);
} else if (received_signal) {
node::THROW_ERR_SCRIPT_EXECUTION_INTERRUPTED(env);
}
}
if (try_catch.HasCaught()) {
if (!timed_out && !received_signal && display_errors) {
// We should decorate non-termination exceptions
errors::DecorateErrorStack(env, try_catch);
}
// If there was an exception thrown during script execution, re-throw it.
// If one of the above checks threw, re-throw the exception instead of
// letting try_catch catch it.
// If execution has been terminated, but not by one of the watchdogs from
// this invocation, this will re-throw a `null` value.
if (!try_catch.HasTerminated())
try_catch.ReThrow();
return false;
}
// We checked for res being empty previously so this is a bit redundant
// but still safer than using ToLocalChecked.
Local<Value> res;
if (!result.ToLocal(&res)) return false;
args.GetReturnValue().Set(res);
return true;
}
Local<UnboundScript> ContextifyScript::unbound_script() const {
return script_.Get(env()->isolate());
}
void ContextifyScript::set_unbound_script(Local<UnboundScript> script) {
script_.Reset(env()->isolate(), script);
}
void ContextifyScript::Trace(cppgc::Visitor* visitor) const {
CppgcMixin::Trace(visitor);
visitor->Trace(script_);
}
ContextifyScript::ContextifyScript(Environment* env, Local<Object> object) {
CppgcMixin::Wrap(this, env, object);
}
ContextifyScript::~ContextifyScript() {}
void ContextifyContext::CompileFunction(
const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
Local<Context> context = env->context();
// Argument 1: source code
CHECK(args[0]->IsString());
Local<String> code = args[0].As<String>();
// Argument 2: filename
CHECK(args[1]->IsString());
Local<String> filename = args[1].As<String>();
// Argument 3: line offset
CHECK(args[2]->IsNumber());
int line_offset = args[2].As<Int32>()->Value();
// Argument 4: column offset
CHECK(args[3]->IsNumber());
int column_offset = args[3].As<Int32>()->Value();
// Argument 5: cached data (optional)
Local<ArrayBufferView> cached_data_buf;
if (!args[4]->IsUndefined()) {
CHECK(args[4]->IsArrayBufferView());
cached_data_buf = args[4].As<ArrayBufferView>();
}
// Argument 6: produce cache data
CHECK(args[5]->IsBoolean());
bool produce_cached_data = args[5]->IsTrue();
// Argument 7: parsing context (optional)
Local<Context> parsing_context;
if (!args[6]->IsUndefined()) {
CHECK(args[6]->IsObject());
ContextifyContext* sandbox =
ContextifyContext::ContextFromContextifiedSandbox(
env, args[6].As<Object>());
CHECK_NOT_NULL(sandbox);
parsing_context = sandbox->context();
} else {
parsing_context = context;
}
// Argument 8: context extensions (optional)
Local<Array> context_extensions_buf;
if (!args[7]->IsUndefined()) {
CHECK(args[7]->IsArray());
context_extensions_buf = args[7].As<Array>();
}
// Argument 9: params for the function (optional)
Local<Array> params_buf;
if (!args[8]->IsUndefined()) {
CHECK(args[8]->IsArray());
params_buf = args[8].As<Array>();
}
// Argument 10: host-defined option symbol
CHECK(args[9]->IsSymbol());
Local<Symbol> id_symbol = args[9].As<Symbol>();
// Read cache from cached data buffer
ScriptCompiler::CachedData* cached_data = nullptr;
if (!cached_data_buf.IsEmpty()) {
uint8_t* data = static_cast<uint8_t*>(cached_data_buf->Buffer()->Data());
cached_data = new ScriptCompiler::CachedData(
data + cached_data_buf->ByteOffset(), cached_data_buf->ByteLength());
}
Local<PrimitiveArray> host_defined_options =
loader::ModuleWrap::GetHostDefinedOptions(isolate, id_symbol);
ScriptOrigin origin(filename,
line_offset, // line offset
column_offset, // column offset
true, // is cross origin
-1, // script id
Local<Value>(), // source map URL
false, // is opaque (?)
false, // is WASM
false, // is ES Module
host_defined_options);
ScriptCompiler::Source source(code, origin, cached_data);
ScriptCompiler::CompileOptions options;
if (source.GetCachedData() != nullptr) {
options = ScriptCompiler::kConsumeCodeCache;
} else {
options = ScriptCompiler::kNoCompileOptions;
}
Context::Scope scope(parsing_context);
// Read context extensions from buffer
LocalVector<Object> context_extensions(isolate);
if (!context_extensions_buf.IsEmpty()) {
for (uint32_t n = 0; n < context_extensions_buf->Length(); n++) {
Local<Value> val;
if (!context_extensions_buf->Get(context, n).ToLocal(&val)) return;
CHECK(val->IsObject());
context_extensions.push_back(val.As<Object>());
}
}
// Read params from params buffer
LocalVector<String> params(isolate);
if (!params_buf.IsEmpty()) {
for (uint32_t n = 0; n < params_buf->Length(); n++) {
Local<Value> val;
if (!params_buf->Get(context, n).ToLocal(&val)) return;
CHECK(val->IsString());
params.push_back(val.As<String>());
}
}
TryCatchScope try_catch(env);
Local<Object> result = CompileFunctionAndCacheResult(env,
parsing_context,
&source,
params,
context_extensions,
options,
produce_cached_data,
id_symbol,
try_catch);
if (try_catch.HasCaught() && !try_catch.HasTerminated()) {
try_catch.ReThrow();
return;
}
if (result.IsEmpty()) {
return;
}
args.GetReturnValue().Set(result);
}
static LocalVector<String> GetCJSParameters(IsolateData* data) {
LocalVector<String> result(data->isolate(),
{
data->exports_string(),
data->require_string(),
data->module_string(),
data->__filename_string(),
data->__dirname_string(),
});
return result;
}
Local<Object> ContextifyContext::CompileFunctionAndCacheResult(
Environment* env,
Local<Context> parsing_context,
ScriptCompiler::Source* source,
LocalVector<String> params,
LocalVector<Object> context_extensions,
ScriptCompiler::CompileOptions options,
bool produce_cached_data,
Local<Symbol> id_symbol,
const TryCatchScope& try_catch) {
MaybeLocal<Function> maybe_fn = ScriptCompiler::CompileFunction(
parsing_context,
source,
params.size(),
params.data(),
context_extensions.size(),
context_extensions.data(),
options,
v8::ScriptCompiler::NoCacheReason::kNoCacheNoReason);
Local<Function> fn;
if (!maybe_fn.ToLocal(&fn)) {
if (try_catch.HasCaught() && !try_catch.HasTerminated()) {
errors::DecorateErrorStack(env, try_catch);
return Object::New(env->isolate());
}
}
Local<Context> context = env->context();
if (fn->SetPrivate(context, env->host_defined_option_symbol(), id_symbol)
.IsNothing()) {
return Object::New(env->isolate());
}
Isolate* isolate = env->isolate();
Local<Object> result = Object::New(isolate);
if (result->Set(parsing_context, env->function_string(), fn).IsNothing())
return Object::New(env->isolate());
if (result
->Set(parsing_context,
env->source_map_url_string(),
fn->GetScriptOrigin().SourceMapUrl())
.IsNothing())
return Object::New(env->isolate());
std::unique_ptr<ScriptCompiler::CachedData> new_cached_data;
if (produce_cached_data) {
new_cached_data.reset(ScriptCompiler::CreateCodeCacheForFunction(fn));
}
if (StoreCodeCacheResult(env,
result,
options,
*source,
produce_cached_data,
std::move(new_cached_data))
.IsNothing()) {
return Object::New(env->isolate());
}
return result;
}
// When compiling as CommonJS source code that contains ESM syntax, the
// following error messages are returned:
// - `import` statements: "Cannot use import statement outside a module"
// - `export` statements: "Unexpected token 'export'"
// - `import.meta` references: "Cannot use 'import.meta' outside a module"
// Dynamic `import()` is permitted in CommonJS, so it does not error.
// While top-level `await` is not permitted in CommonJS, it returns the same
// error message as when `await` is used in a sync function, so we don't use it
// as a disambiguation.
static std::vector<std::string_view> esm_syntax_error_messages = {
"Cannot use import statement outside a module", // `import` statements
"Unexpected token 'export'", // `export` statements
"Cannot use 'import.meta' outside a module"}; // `import.meta` references
// Another class of error messages that we need to check for are syntax errors
// where the syntax throws when parsed as CommonJS but succeeds when parsed as
// ESM. So far, the cases we've found are:
// - CommonJS module variables (`module`, `exports`, `require`, `__filename`,
// `__dirname`): if the user writes code such as `const module =` in the top
// level of a CommonJS module, it will throw a syntax error; but the same
// code is valid in ESM.
// - Top-level `await`: if the user writes `await` at the top level of a
// CommonJS module, it will throw a syntax error; but the same code is valid
// in ESM.
static std::vector<std::string_view> throws_only_in_cjs_error_messages = {
"Identifier 'module' has already been declared",
"Identifier 'exports' has already been declared",
"Identifier 'require' has already been declared",
"Identifier '__filename' has already been declared",
"Identifier '__dirname' has already been declared",
"await is only valid in async functions and "
"the top level bodies of modules"};
// If cached_data is provided, it would be used for the compilation and
// the on-disk compilation cache from NODE_COMPILE_CACHE (if configured)
// would be ignored.
static MaybeLocal<Function> CompileFunctionForCJSLoader(
Environment* env,
Local<Context> context,
Local<String> code,
Local<String> filename,
bool* cache_rejected,
bool is_cjs_scope,
ScriptCompiler::CachedData* cached_data) {
Isolate* isolate = context->GetIsolate();
EscapableHandleScope scope(isolate);
Local<Symbol> symbol = env->vm_dynamic_import_default_internal();
Local<PrimitiveArray> hdo =
loader::ModuleWrap::GetHostDefinedOptions(isolate, symbol);
ScriptOrigin origin(filename,
0, // line offset
0, // column offset
true, // is cross origin
-1, // script id
Local<Value>(), // source map URL
false, // is opaque
false, // is WASM
false, // is ES Module
hdo);
CompileCacheEntry* cache_entry = nullptr;
if (cached_data == nullptr && env->use_compile_cache()) {
cache_entry = env->compile_cache_handler()->GetOrInsert(
code, filename, CachedCodeType::kCommonJS);
}
if (cache_entry != nullptr && cache_entry->cache != nullptr) {
// source will take ownership of cached_data.
cached_data = cache_entry->CopyCache();
}
ScriptCompiler::Source source(code, origin, cached_data);
ScriptCompiler::CompileOptions options;
if (cached_data == nullptr) {
options = ScriptCompiler::kNoCompileOptions;
} else {
options = ScriptCompiler::kConsumeCodeCache;
}
LocalVector<String> params(isolate);
if (is_cjs_scope) {
params = GetCJSParameters(env->isolate_data());
}
MaybeLocal<Function> maybe_fn = ScriptCompiler::CompileFunction(
context,
&source,
params.size(),
params.data(),
0, /* context extensions size */
nullptr, /* context extensions data */
// TODO(joyeecheung): allow optional eager compilation.
options);
Local<Function> fn;
if (!maybe_fn.ToLocal(&fn)) {
return scope.EscapeMaybe(MaybeLocal<Function>());
}
if (options == ScriptCompiler::kConsumeCodeCache) {
*cache_rejected = source.GetCachedData()->rejected;
}
if (cache_entry != nullptr) {
env->compile_cache_handler()->MaybeSave(cache_entry, fn, *cache_rejected);
}
return scope.Escape(fn);
}
static std::string GetRequireEsmWarning(Local<String> filename) {
Isolate* isolate = Isolate::GetCurrent();
Utf8Value filename_utf8(isolate, filename);
std::string warning_message =
"Failed to load the ES module: " + filename_utf8.ToString() +
". Make sure to set \"type\": \"module\" in the nearest package.json "
"file "
"or use the .mjs extension.";
return warning_message;
}
static bool warned_about_require_esm = false;
static bool ShouldRetryAsESM(Realm* realm,
Local<String> message,
Local<String> code,
Local<String> resource_name);
static void CompileFunctionForCJSLoader(
const FunctionCallbackInfo<Value>& args) {
CHECK(args[0]->IsString());
CHECK(args[1]->IsString());
CHECK(args[2]->IsBoolean());
CHECK(args[3]->IsBoolean());
Local<String> code = args[0].As<String>();
Local<String> filename = args[1].As<String>();
bool is_sea_main = args[2].As<Boolean>()->Value();
bool should_detect_module = args[3].As<Boolean>()->Value();
Isolate* isolate = args.GetIsolate();
Local<Context> context = isolate->GetCurrentContext();
Realm* realm = Realm::GetCurrent(context);
Environment* env = realm->env();
bool cache_rejected = false;
Local<Function> fn;
Local<Value> cjs_exception;
Local<Message> cjs_message;
ScriptCompiler::CachedData* cached_data = nullptr;
#ifndef DISABLE_SINGLE_EXECUTABLE_APPLICATION
if (is_sea_main) {
sea::SeaResource sea = sea::FindSingleExecutableResource();
// Use the "main" field in SEA config for the filename.
Local<Value> filename_from_sea;
if (!ToV8Value(context, sea.code_path).ToLocal(&filename_from_sea)) {
return;
}
filename = filename_from_sea.As<String>();
if (sea.use_code_cache()) {
std::string_view data = sea.code_cache.value();
cached_data = new ScriptCompiler::CachedData(
reinterpret_cast<const uint8_t*>(data.data()),
static_cast<int>(data.size()),
v8::ScriptCompiler::CachedData::BufferNotOwned);
}
}
#endif
{
ShouldNotAbortOnUncaughtScope no_abort_scope(realm->env());
TryCatchScope try_catch(env);
if (!CompileFunctionForCJSLoader(
env, context, code, filename, &cache_rejected, true, cached_data)
.ToLocal(&fn)) {
CHECK(try_catch.HasCaught());
CHECK(!try_catch.HasTerminated());
cjs_exception = try_catch.Exception();
cjs_message = try_catch.Message();
errors::DecorateErrorStack(env, cjs_exception, cjs_message);
}
}
bool can_parse_as_esm = false;
if (!cjs_exception.IsEmpty()) {
// Use the URL to match what would be used in the origin if it's going to
// be reparsed as ESM.
Utf8Value filename_utf8(isolate, filename);
std::string url = url::FromFilePath(filename_utf8.ToStringView());
Local<String> url_value;
if (!String::NewFromUtf8(isolate, url.c_str()).ToLocal(&url_value)) {
return;
}
can_parse_as_esm =
ShouldRetryAsESM(realm, cjs_message->Get(), code, url_value);
if (!can_parse_as_esm) {
// The syntax error is not related to ESM, throw the original error.
isolate->ThrowException(cjs_exception);
return;
}
if (!should_detect_module) {
bool should_throw = true;
if (!warned_about_require_esm) {
// This needs to call process.emit('warning') in JS which can throw if
// the user listener throws. In that case, don't try to throw the syntax
// error.
std::string warning_message = GetRequireEsmWarning(filename);
should_throw = ProcessEmitWarningSync(env, warning_message).IsJust();
}
if (should_throw) {
isolate->ThrowException(cjs_exception);
}
return;
}
}
Local<Value> undefined = v8::Undefined(isolate);
Local<Name> names[] = {
env->cached_data_rejected_string(),
env->source_map_url_string(),
env->function_string(),
FIXED_ONE_BYTE_STRING(isolate, "canParseAsESM"),
};
Local<Value> values[] = {
Boolean::New(isolate, cache_rejected),
fn.IsEmpty() ? undefined : fn->GetScriptOrigin().SourceMapUrl(),
fn.IsEmpty() ? undefined : fn.As<Value>(),
Boolean::New(isolate, can_parse_as_esm),
};
Local<Object> result = Object::New(
isolate, v8::Null(isolate), &names[0], &values[0], arraysize(names));
args.GetReturnValue().Set(result);
}
bool ShouldRetryAsESM(Realm* realm,
Local<String> message,
Local<String> code,
Local<String> resource_name) {
Isolate* isolate = realm->isolate();
Utf8Value message_value(isolate, message);
auto message_view = message_value.ToStringView();
// These indicates that the file contains syntaxes that are only valid in
// ESM. So it must be true.
for (const auto& error_message : esm_syntax_error_messages) {
if (message_view.find(error_message) != std::string_view::npos) {
return true;
}
}
// Check if the error message is allowed in ESM but not in CommonJS. If it
// is the case, let's check if file can be compiled as ESM.
bool maybe_valid_in_esm = false;
for (const auto& error_message : throws_only_in_cjs_error_messages) {
if (message_view.find(error_message) != std::string_view::npos) {
maybe_valid_in_esm = true;
break;
}
}
if (!maybe_valid_in_esm) {
return false;
}
bool cache_rejected = false;
TryCatchScope try_catch(realm->env());
ShouldNotAbortOnUncaughtScope no_abort_scope(realm->env());
Local<v8::Module> module;
Local<PrimitiveArray> hdo = loader::ModuleWrap::GetHostDefinedOptions(
isolate, realm->isolate_data()->source_text_module_default_hdo());
if (loader::ModuleWrap::CompileSourceTextModule(
realm, code, resource_name, 0, 0, hdo, std::nullopt, &cache_rejected)
.ToLocal(&module)) {
return true;
}
return false;
}
static void ShouldRetryAsESM(const FunctionCallbackInfo<Value>& args) {
Realm* realm = Realm::GetCurrent(args);
CHECK_EQ(args.Length(), 3); // message, code, resource_name
CHECK(args[0]->IsString());
Local<String> message = args[0].As<String>();
CHECK(args[1]->IsString());
Local<String> code = args[1].As<String>();
CHECK(args[2]->IsString());
Local<String> resource_name = args[2].As<String>();
args.GetReturnValue().Set(
ShouldRetryAsESM(realm, message, code, resource_name));
}
static void ContainsModuleSyntax(const FunctionCallbackInfo<Value>& args) {
Isolate* isolate = args.GetIsolate();
Local<Context> context = isolate->GetCurrentContext();
Realm* realm = Realm::GetCurrent(context);
Environment* env = realm->env();
CHECK_GE(args.Length(), 2);
// Argument 1: source code
CHECK(args[0]->IsString());
Local<String> code = args[0].As<String>();
// Argument 2: filename
CHECK(args[1]->IsString());
Local<String> filename = args[1].As<String>();
// Argument 3: resource name (URL for ES module).
Local<String> resource_name = filename;
if (args[2]->IsString()) {
resource_name = args[2].As<String>();
}
// Argument 4: flag to indicate if CJS variables should not be in scope
// (they should be for normal CommonJS modules, but not for the
// CommonJS eval scope).
bool cjs_var = !args[3]->IsString();
bool cache_rejected = false;
Local<String> message;
{
Local<Function> fn;
TryCatchScope try_catch(env);
ShouldNotAbortOnUncaughtScope no_abort_scope(env);
if (CompileFunctionForCJSLoader(
env, context, code, filename, &cache_rejected, cjs_var, nullptr)
.ToLocal(&fn)) {
args.GetReturnValue().Set(false);
return;
}
CHECK(try_catch.HasCaught());
message = try_catch.Message()->Get();
}
bool result = ShouldRetryAsESM(realm, message, code, resource_name);
args.GetReturnValue().Set(result);
}
static void StartSigintWatchdog(const FunctionCallbackInfo<Value>& args) {
int ret = SigintWatchdogHelper::GetInstance()->Start();
args.GetReturnValue().Set(ret == 0);
}
static void StopSigintWatchdog(const FunctionCallbackInfo<Value>& args) {
bool had_pending_signals = SigintWatchdogHelper::GetInstance()->Stop();
args.GetReturnValue().Set(had_pending_signals);
}
static void WatchdogHasPendingSigint(const FunctionCallbackInfo<Value>& args) {
bool ret = SigintWatchdogHelper::GetInstance()->HasPendingSignal();
args.GetReturnValue().Set(ret);
}
static void MeasureMemory(const FunctionCallbackInfo<Value>& args) {
CHECK(args[0]->IsInt32());
CHECK(args[1]->IsInt32());
int32_t mode = args[0].As<v8::Int32>()->Value();
int32_t execution = args[1].As<v8::Int32>()->Value();
Isolate* isolate = args.GetIsolate();
Local<Context> current_context = isolate->GetCurrentContext();
Local<Promise::Resolver> resolver;
if (!Promise::Resolver::New(current_context).ToLocal(&resolver)) return;
std::unique_ptr<v8::MeasureMemoryDelegate> delegate =
v8::MeasureMemoryDelegate::Default(
isolate,
current_context,
resolver,
static_cast<v8::MeasureMemoryMode>(mode));
isolate->MeasureMemory(std::move(delegate),
static_cast<v8::MeasureMemoryExecution>(execution));
Local<Promise> promise = resolver->GetPromise();
args.GetReturnValue().Set(promise);
}
void CreatePerIsolateProperties(IsolateData* isolate_data,
Local<ObjectTemplate> target) {
Isolate* isolate = isolate_data->isolate();
ContextifyContext::CreatePerIsolateProperties(isolate_data, target);
ContextifyScript::CreatePerIsolateProperties(isolate_data, target);
SetMethod(isolate, target, "startSigintWatchdog", StartSigintWatchdog);
SetMethod(isolate, target, "stopSigintWatchdog", StopSigintWatchdog);
// Used in tests.
SetMethodNoSideEffect(
isolate, target, "watchdogHasPendingSigint", WatchdogHasPendingSigint);
SetMethod(isolate, target, "measureMemory", MeasureMemory);
SetMethod(isolate,
target,
"compileFunctionForCJSLoader",
CompileFunctionForCJSLoader);
SetMethod(isolate, target, "containsModuleSyntax", ContainsModuleSyntax);
SetMethod(isolate, target, "shouldRetryAsESM", ShouldRetryAsESM);
}
static void CreatePerContextProperties(Local<Object> target,
Local<Value> unused,
Local<Context> context,
void* priv) {
Environment* env = Environment::GetCurrent(context);
Isolate* isolate = env->isolate();
Local<Object> constants = Object::New(env->isolate());
Local<Object> measure_memory = Object::New(env->isolate());
Local<Object> memory_execution = Object::New(env->isolate());
{
Local<Object> memory_mode = Object::New(env->isolate());
MeasureMemoryMode SUMMARY = MeasureMemoryMode::kSummary;
MeasureMemoryMode DETAILED = MeasureMemoryMode::kDetailed;
NODE_DEFINE_CONSTANT(memory_mode, SUMMARY);
NODE_DEFINE_CONSTANT(memory_mode, DETAILED);
READONLY_PROPERTY(measure_memory, "mode", memory_mode);
}
{
MeasureMemoryExecution DEFAULT = MeasureMemoryExecution::kDefault;
MeasureMemoryExecution EAGER = MeasureMemoryExecution::kEager;
NODE_DEFINE_CONSTANT(memory_execution, DEFAULT);
NODE_DEFINE_CONSTANT(memory_execution, EAGER);
READONLY_PROPERTY(measure_memory, "execution", memory_execution);
}
READONLY_PROPERTY(constants, "measureMemory", measure_memory);
target->Set(context, env->constants_string(), constants).Check();
}
void RegisterExternalReferences(ExternalReferenceRegistry* registry) {
ContextifyContext::RegisterExternalReferences(registry);
ContextifyScript::RegisterExternalReferences(registry);
registry->Register(CompileFunctionForCJSLoader);
registry->Register(StartSigintWatchdog);
registry->Register(StopSigintWatchdog);
registry->Register(WatchdogHasPendingSigint);
registry->Register(MeasureMemory);
registry->Register(ContainsModuleSyntax);
registry->Register(ShouldRetryAsESM);
}
} // namespace contextify
} // namespace node
NODE_BINDING_CONTEXT_AWARE_INTERNAL(
contextify, node::contextify::CreatePerContextProperties)
NODE_BINDING_PER_ISOLATE_INIT(contextify,
node::contextify::CreatePerIsolateProperties)
NODE_BINDING_EXTERNAL_REFERENCE(contextify,
node::contextify::RegisterExternalReferences)