node/deps/base64/base64/lib/arch/avx/enc_loop_asm.c
Node.js GitHub Bot f45bb801b6 deps: update base64 to 0.5.1
PR-URL: https://github.com/nodejs/node/pull/50629
Fixes: https://github.com/nodejs/node/issues/50561
Fixes: https://github.com/nodejs/node/pull/45091
Reviewed-By: Luigi Pinca <luigipinca@gmail.com>
Reviewed-By: Mohammed Keyvanzadeh <mohammadkeyvanzade94@gmail.com>
Reviewed-By: Yagiz Nizipli <yagiz@nizipli.com>
Reviewed-By: Richard Lau <rlau@redhat.com>
2023-11-11 07:25:13 +01:00

264 lines
9.1 KiB
C

// Apologies in advance for combining the preprocessor with inline assembly,
// two notoriously gnarly parts of C, but it was necessary to avoid a lot of
// code repetition. The preprocessor is used to template large sections of
// inline assembly that differ only in the registers used. If the code was
// written out by hand, it would become very large and hard to audit.
// Generate a block of inline assembly that loads register R0 from memory. The
// offset at which the register is loaded is set by the given round.
#define LOAD(R0, ROUND) \
"vlddqu ("#ROUND" * 12)(%[src]), %["R0"] \n\t"
// Generate a block of inline assembly that deinterleaves and shuffles register
// R0 using preloaded constants. Outputs in R0 and R1.
#define SHUF(R0, R1, R2) \
"vpshufb %[lut0], %["R0"], %["R1"] \n\t" \
"vpand %["R1"], %[msk0], %["R2"] \n\t" \
"vpand %["R1"], %[msk2], %["R1"] \n\t" \
"vpmulhuw %["R2"], %[msk1], %["R2"] \n\t" \
"vpmullw %["R1"], %[msk3], %["R1"] \n\t" \
"vpor %["R1"], %["R2"], %["R1"] \n\t"
// Generate a block of inline assembly that takes R0 and R1 and translates
// their contents to the base64 alphabet, using preloaded constants.
#define TRAN(R0, R1, R2) \
"vpsubusb %[n51], %["R1"], %["R0"] \n\t" \
"vpcmpgtb %[n25], %["R1"], %["R2"] \n\t" \
"vpsubb %["R2"], %["R0"], %["R0"] \n\t" \
"vpshufb %["R0"], %[lut1], %["R2"] \n\t" \
"vpaddb %["R1"], %["R2"], %["R0"] \n\t"
// Generate a block of inline assembly that stores the given register R0 at an
// offset set by the given round.
#define STOR(R0, ROUND) \
"vmovdqu %["R0"], ("#ROUND" * 16)(%[dst]) \n\t"
// Generate a block of inline assembly that generates a single self-contained
// encoder round: fetch the data, process it, and store the result. Then update
// the source and destination pointers.
#define ROUND() \
LOAD("a", 0) \
SHUF("a", "b", "c") \
TRAN("a", "b", "c") \
STOR("a", 0) \
"add $12, %[src] \n\t" \
"add $16, %[dst] \n\t"
// Define a macro that initiates a three-way interleaved encoding round by
// preloading registers a, b and c from memory.
// The register graph shows which registers are in use during each step, and
// is a visual aid for choosing registers for that step. Symbol index:
//
// + indicates that a register is loaded by that step.
// | indicates that a register is in use and must not be touched.
// - indicates that a register is decommissioned by that step.
// x indicates that a register is used as a temporary by that step.
// V indicates that a register is an input or output to the macro.
//
#define ROUND_3_INIT() /* a b c d e f */ \
LOAD("a", 0) /* + */ \
SHUF("a", "d", "e") /* | + x */ \
LOAD("b", 1) /* | + | */ \
TRAN("a", "d", "e") /* | | - x */ \
LOAD("c", 2) /* V V V */
// Define a macro that translates, shuffles and stores the input registers A, B
// and C, and preloads registers D, E and F for the next round.
// This macro can be arbitrarily daisy-chained by feeding output registers D, E
// and F back into the next round as input registers A, B and C. The macro
// carefully interleaves memory operations with data operations for optimal
// pipelined performance.
#define ROUND_3(ROUND, A,B,C,D,E,F) /* A B C D E F */ \
LOAD(D, (ROUND + 3)) /* V V V + */ \
SHUF(B, E, F) /* | | | | + x */ \
STOR(A, (ROUND + 0)) /* - | | | | */ \
TRAN(B, E, F) /* | | | - x */ \
LOAD(E, (ROUND + 4)) /* | | | + */ \
SHUF(C, A, F) /* + | | | | x */ \
STOR(B, (ROUND + 1)) /* | - | | | */ \
TRAN(C, A, F) /* - | | | x */ \
LOAD(F, (ROUND + 5)) /* | | | + */ \
SHUF(D, A, B) /* + x | | | | */ \
STOR(C, (ROUND + 2)) /* | - | | | */ \
TRAN(D, A, B) /* - x V V V */
// Define a macro that terminates a ROUND_3 macro by taking pre-loaded
// registers D, E and F, and translating, shuffling and storing them.
#define ROUND_3_END(ROUND, A,B,C,D,E,F) /* A B C D E F */ \
SHUF(E, A, B) /* + x V V V */ \
STOR(D, (ROUND + 3)) /* | - | | */ \
TRAN(E, A, B) /* - x | | */ \
SHUF(F, C, D) /* + x | | */ \
STOR(E, (ROUND + 4)) /* | - | */ \
TRAN(F, C, D) /* - x | */ \
STOR(F, (ROUND + 5)) /* - */
// Define a type A round. Inputs are a, b, and c, outputs are d, e, and f.
#define ROUND_3_A(ROUND) \
ROUND_3(ROUND, "a", "b", "c", "d", "e", "f")
// Define a type B round. Inputs and outputs are swapped with regard to type A.
#define ROUND_3_B(ROUND) \
ROUND_3(ROUND, "d", "e", "f", "a", "b", "c")
// Terminating macro for a type A round.
#define ROUND_3_A_LAST(ROUND) \
ROUND_3_A(ROUND) \
ROUND_3_END(ROUND, "a", "b", "c", "d", "e", "f")
// Terminating macro for a type B round.
#define ROUND_3_B_LAST(ROUND) \
ROUND_3_B(ROUND) \
ROUND_3_END(ROUND, "d", "e", "f", "a", "b", "c")
// Suppress clang's warning that the literal string in the asm statement is
// overlong (longer than the ISO-mandated minimum size of 4095 bytes for C99
// compilers). It may be true, but the goal here is not C99 portability.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Woverlength-strings"
static inline void
enc_loop_avx (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
// For a clearer explanation of the algorithm used by this function,
// please refer to the plain (not inline assembly) implementation. This
// function follows the same basic logic.
if (*slen < 16) {
return;
}
// Process blocks of 12 bytes at a time. Input is read in blocks of 16
// bytes, so "reserve" four bytes from the input buffer to ensure that
// we never read beyond the end of the input buffer.
size_t rounds = (*slen - 4) / 12;
*slen -= rounds * 12; // 12 bytes consumed per round
*olen += rounds * 16; // 16 bytes produced per round
// Number of times to go through the 36x loop.
size_t loops = rounds / 36;
// Number of rounds remaining after the 36x loop.
rounds %= 36;
// Lookup tables.
const __m128i lut0 = _mm_set_epi8(
10, 11, 9, 10, 7, 8, 6, 7, 4, 5, 3, 4, 1, 2, 0, 1);
const __m128i lut1 = _mm_setr_epi8(
65, 71, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -19, -16, 0, 0);
// Temporary registers.
__m128i a, b, c, d, e, f;
__asm__ volatile (
// If there are 36 rounds or more, enter a 36x unrolled loop of
// interleaved encoding rounds. The rounds interleave memory
// operations (load/store) with data operations (table lookups,
// etc) to maximize pipeline throughput.
" test %[loops], %[loops] \n\t"
" jz 18f \n\t"
" jmp 36f \n\t"
" \n\t"
".balign 64 \n\t"
"36: " ROUND_3_INIT()
" " ROUND_3_A( 0)
" " ROUND_3_B( 3)
" " ROUND_3_A( 6)
" " ROUND_3_B( 9)
" " ROUND_3_A(12)
" " ROUND_3_B(15)
" " ROUND_3_A(18)
" " ROUND_3_B(21)
" " ROUND_3_A(24)
" " ROUND_3_B(27)
" " ROUND_3_A_LAST(30)
" add $(12 * 36), %[src] \n\t"
" add $(16 * 36), %[dst] \n\t"
" dec %[loops] \n\t"
" jnz 36b \n\t"
// Enter an 18x unrolled loop for rounds of 18 or more.
"18: cmp $18, %[rounds] \n\t"
" jl 9f \n\t"
" " ROUND_3_INIT()
" " ROUND_3_A(0)
" " ROUND_3_B(3)
" " ROUND_3_A(6)
" " ROUND_3_B(9)
" " ROUND_3_A_LAST(12)
" sub $18, %[rounds] \n\t"
" add $(12 * 18), %[src] \n\t"
" add $(16 * 18), %[dst] \n\t"
// Enter a 9x unrolled loop for rounds of 9 or more.
"9: cmp $9, %[rounds] \n\t"
" jl 6f \n\t"
" " ROUND_3_INIT()
" " ROUND_3_A(0)
" " ROUND_3_B_LAST(3)
" sub $9, %[rounds] \n\t"
" add $(12 * 9), %[src] \n\t"
" add $(16 * 9), %[dst] \n\t"
// Enter a 6x unrolled loop for rounds of 6 or more.
"6: cmp $6, %[rounds] \n\t"
" jl 55f \n\t"
" " ROUND_3_INIT()
" " ROUND_3_A_LAST(0)
" sub $6, %[rounds] \n\t"
" add $(12 * 6), %[src] \n\t"
" add $(16 * 6), %[dst] \n\t"
// Dispatch the remaining rounds 0..5.
"55: cmp $3, %[rounds] \n\t"
" jg 45f \n\t"
" je 3f \n\t"
" cmp $1, %[rounds] \n\t"
" jg 2f \n\t"
" je 1f \n\t"
" jmp 0f \n\t"
"45: cmp $4, %[rounds] \n\t"
" je 4f \n\t"
// Block of non-interlaced encoding rounds, which can each
// individually be jumped to. Rounds fall through to the next.
"5: " ROUND()
"4: " ROUND()
"3: " ROUND()
"2: " ROUND()
"1: " ROUND()
"0: \n\t"
// Outputs (modified).
: [rounds] "+r" (rounds),
[loops] "+r" (loops),
[src] "+r" (*s),
[dst] "+r" (*o),
[a] "=&x" (a),
[b] "=&x" (b),
[c] "=&x" (c),
[d] "=&x" (d),
[e] "=&x" (e),
[f] "=&x" (f)
// Inputs (not modified).
: [lut0] "x" (lut0),
[lut1] "x" (lut1),
[msk0] "x" (_mm_set1_epi32(0x0FC0FC00)),
[msk1] "x" (_mm_set1_epi32(0x04000040)),
[msk2] "x" (_mm_set1_epi32(0x003F03F0)),
[msk3] "x" (_mm_set1_epi32(0x01000010)),
[n51] "x" (_mm_set1_epi8(51)),
[n25] "x" (_mm_set1_epi8(25))
// Clobbers.
: "cc", "memory"
);
}
#pragma GCC diagnostic pop