mirror of
https://github.com/php/php-src.git
synced 2025-08-18 15:08:55 +02:00
Bundle relevant parts of sqlite 2.8.0.
# sqlite has a completely non-restrictive license
This commit is contained in:
parent
826583dc91
commit
05d5a35c9b
36 changed files with 38179 additions and 0 deletions
832
ext/sqlite/libsqlite/src/insert.c
Normal file
832
ext/sqlite/libsqlite/src/insert.c
Normal file
|
@ -0,0 +1,832 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains C code routines that are called by the parser
|
||||
** to handle INSERT statements in SQLite.
|
||||
**
|
||||
** $Id$
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This routine is call to handle SQL of the following forms:
|
||||
**
|
||||
** insert into TABLE (IDLIST) values(EXPRLIST)
|
||||
** insert into TABLE (IDLIST) select
|
||||
**
|
||||
** The IDLIST following the table name is always optional. If omitted,
|
||||
** then a list of all columns for the table is substituted. The IDLIST
|
||||
** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
|
||||
**
|
||||
** The pList parameter holds EXPRLIST in the first form of the INSERT
|
||||
** statement above, and pSelect is NULL. For the second form, pList is
|
||||
** NULL and pSelect is a pointer to the select statement used to generate
|
||||
** data for the insert.
|
||||
**
|
||||
** The code generated follows one of three templates. For a simple
|
||||
** select with data coming from a VALUES clause, the code executes
|
||||
** once straight down through. The template looks like this:
|
||||
**
|
||||
** open write cursor to <table> and its indices
|
||||
** puts VALUES clause expressions onto the stack
|
||||
** write the resulting record into <table>
|
||||
** cleanup
|
||||
**
|
||||
** If the statement is of the form
|
||||
**
|
||||
** INSERT INTO <table> SELECT ...
|
||||
**
|
||||
** And the SELECT clause does not read from <table> at any time, then
|
||||
** the generated code follows this template:
|
||||
**
|
||||
** goto B
|
||||
** A: setup for the SELECT
|
||||
** loop over the tables in the SELECT
|
||||
** gosub C
|
||||
** end loop
|
||||
** cleanup after the SELECT
|
||||
** goto D
|
||||
** B: open write cursor to <table> and its indices
|
||||
** goto A
|
||||
** C: insert the select result into <table>
|
||||
** return
|
||||
** D: cleanup
|
||||
**
|
||||
** The third template is used if the insert statement takes its
|
||||
** values from a SELECT but the data is being inserted into a table
|
||||
** that is also read as part of the SELECT. In the third form,
|
||||
** we have to use a intermediate table to store the results of
|
||||
** the select. The template is like this:
|
||||
**
|
||||
** goto B
|
||||
** A: setup for the SELECT
|
||||
** loop over the tables in the SELECT
|
||||
** gosub C
|
||||
** end loop
|
||||
** cleanup after the SELECT
|
||||
** goto D
|
||||
** C: insert the select result into the intermediate table
|
||||
** return
|
||||
** B: open a cursor to an intermediate table
|
||||
** goto A
|
||||
** D: open write cursor to <table> and its indices
|
||||
** loop over the intermediate table
|
||||
** transfer values form intermediate table into <table>
|
||||
** end the loop
|
||||
** cleanup
|
||||
*/
|
||||
void sqliteInsert(
|
||||
Parse *pParse, /* Parser context */
|
||||
Token *pTableName, /* Name of table into which we are inserting */
|
||||
ExprList *pList, /* List of values to be inserted */
|
||||
Select *pSelect, /* A SELECT statement to use as the data source */
|
||||
IdList *pColumn, /* Column names corresponding to IDLIST. */
|
||||
int onError /* How to handle constraint errors */
|
||||
){
|
||||
Table *pTab; /* The table to insert into */
|
||||
char *zTab = 0; /* Name of the table into which we are inserting */
|
||||
int i, j, idx; /* Loop counters */
|
||||
Vdbe *v; /* Generate code into this virtual machine */
|
||||
Index *pIdx; /* For looping over indices of the table */
|
||||
int nColumn; /* Number of columns in the data */
|
||||
int base; /* First available cursor */
|
||||
int iCont, iBreak; /* Beginning and end of the loop over srcTab */
|
||||
sqlite *db; /* The main database structure */
|
||||
int openOp; /* Opcode used to open cursors */
|
||||
int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
|
||||
int endOfLoop; /* Label for the end of the insertion loop */
|
||||
int useTempTable; /* Store SELECT results in intermediate table */
|
||||
int srcTab; /* Data comes from this temporary cursor if >=0 */
|
||||
int iSelectLoop; /* Address of code that implements the SELECT */
|
||||
int iCleanup; /* Address of the cleanup code */
|
||||
int iInsertBlock; /* Address of the subroutine used to insert data */
|
||||
int iCntMem; /* Memory cell used for the row counter */
|
||||
|
||||
int row_triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
|
||||
int newIdx = -1;
|
||||
|
||||
if( pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
|
||||
db = pParse->db;
|
||||
|
||||
/* Locate the table into which we will be inserting new information.
|
||||
*/
|
||||
zTab = sqliteTableNameFromToken(pTableName);
|
||||
if( zTab==0 ) goto insert_cleanup;
|
||||
pTab = sqliteFindTable(pParse->db, zTab);
|
||||
if( pTab==0 ){
|
||||
sqliteSetString(&pParse->zErrMsg, "no such table: ", zTab, 0);
|
||||
pParse->nErr++;
|
||||
goto insert_cleanup;
|
||||
}
|
||||
if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0) ){
|
||||
goto insert_cleanup;
|
||||
}
|
||||
|
||||
/* Ensure that:
|
||||
* (a) the table is not read-only,
|
||||
* (b) that if it is a view then ON INSERT triggers exist
|
||||
*/
|
||||
row_triggers_exist =
|
||||
sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT,
|
||||
TK_BEFORE, TK_ROW, 0) ||
|
||||
sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT, TK_AFTER, TK_ROW, 0);
|
||||
if( pTab->readOnly || (pTab->pSelect && !row_triggers_exist) ){
|
||||
sqliteSetString(&pParse->zErrMsg,
|
||||
pTab->pSelect ? "view " : "table ",
|
||||
zTab,
|
||||
" may not be modified", 0);
|
||||
pParse->nErr++;
|
||||
goto insert_cleanup;
|
||||
}
|
||||
sqliteFree(zTab);
|
||||
zTab = 0;
|
||||
|
||||
if( pTab==0 ) goto insert_cleanup;
|
||||
|
||||
/* If pTab is really a view, make sure it has been initialized.
|
||||
*/
|
||||
if( pTab->pSelect ){
|
||||
if( sqliteViewGetColumnNames(pParse, pTab) ){
|
||||
goto insert_cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
/* Allocate a VDBE
|
||||
*/
|
||||
v = sqliteGetVdbe(pParse);
|
||||
if( v==0 ) goto insert_cleanup;
|
||||
sqliteBeginWriteOperation(pParse, pSelect || row_triggers_exist,
|
||||
!row_triggers_exist && pTab->isTemp);
|
||||
|
||||
/* if there are row triggers, allocate a temp table for new.* references. */
|
||||
if( row_triggers_exist ){
|
||||
newIdx = pParse->nTab++;
|
||||
}
|
||||
|
||||
/* Figure out how many columns of data are supplied. If the data
|
||||
** is coming from a SELECT statement, then this step also generates
|
||||
** all the code to implement the SELECT statement and invoke a subroutine
|
||||
** to process each row of the result. (Template 2.) If the SELECT
|
||||
** statement uses the the table that is being inserted into, then the
|
||||
** subroutine is also coded here. That subroutine stores the SELECT
|
||||
** results in a temporary table. (Template 3.)
|
||||
*/
|
||||
if( pSelect ){
|
||||
/* Data is coming from a SELECT. Generate code to implement that SELECT
|
||||
*/
|
||||
int rc, iInitCode;
|
||||
int opCode;
|
||||
iInitCode = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
|
||||
iSelectLoop = sqliteVdbeCurrentAddr(v);
|
||||
iInsertBlock = sqliteVdbeMakeLabel(v);
|
||||
rc = sqliteSelect(pParse, pSelect, SRT_Subroutine, iInsertBlock, 0,0,0);
|
||||
if( rc || pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
|
||||
iCleanup = sqliteVdbeMakeLabel(v);
|
||||
sqliteVdbeAddOp(v, OP_Goto, 0, iCleanup);
|
||||
assert( pSelect->pEList );
|
||||
nColumn = pSelect->pEList->nExpr;
|
||||
|
||||
/* Set useTempTable to TRUE if the result of the SELECT statement
|
||||
** should be written into a temporary table. Set to FALSE if each
|
||||
** row of the SELECT can be written directly into the result table.
|
||||
*/
|
||||
opCode = pTab->isTemp ? OP_OpenTemp : OP_Open;
|
||||
useTempTable = row_triggers_exist || sqliteVdbeFindOp(v,opCode,pTab->tnum);
|
||||
|
||||
if( useTempTable ){
|
||||
/* Generate the subroutine that SELECT calls to process each row of
|
||||
** the result. Store the result in a temporary table
|
||||
*/
|
||||
srcTab = pParse->nTab++;
|
||||
sqliteVdbeResolveLabel(v, iInsertBlock);
|
||||
sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
|
||||
sqliteVdbeAddOp(v, OP_NewRecno, srcTab, 0);
|
||||
sqliteVdbeAddOp(v, OP_Pull, 1, 0);
|
||||
sqliteVdbeAddOp(v, OP_PutIntKey, srcTab, 0);
|
||||
sqliteVdbeAddOp(v, OP_Return, 0, 0);
|
||||
|
||||
/* The following code runs first because the GOTO at the very top
|
||||
** of the program jumps to it. Create the temporary table, then jump
|
||||
** back up and execute the SELECT code above.
|
||||
*/
|
||||
sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
|
||||
sqliteVdbeAddOp(v, OP_OpenTemp, srcTab, 0);
|
||||
sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
|
||||
sqliteVdbeResolveLabel(v, iCleanup);
|
||||
}else{
|
||||
sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
|
||||
}
|
||||
}else{
|
||||
/* This is the case if the data for the INSERT is coming from a VALUES
|
||||
** clause
|
||||
*/
|
||||
SrcList dummy;
|
||||
assert( pList!=0 );
|
||||
srcTab = -1;
|
||||
useTempTable = 0;
|
||||
assert( pList );
|
||||
nColumn = pList->nExpr;
|
||||
dummy.nSrc = 0;
|
||||
for(i=0; i<nColumn; i++){
|
||||
if( sqliteExprResolveIds(pParse, 0, &dummy, 0, pList->a[i].pExpr) ){
|
||||
goto insert_cleanup;
|
||||
}
|
||||
if( sqliteExprCheck(pParse, pList->a[i].pExpr, 0, 0) ){
|
||||
goto insert_cleanup;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Make sure the number of columns in the source data matches the number
|
||||
** of columns to be inserted into the table.
|
||||
*/
|
||||
if( pColumn==0 && nColumn!=pTab->nCol ){
|
||||
char zNum1[30];
|
||||
char zNum2[30];
|
||||
sprintf(zNum1,"%d", nColumn);
|
||||
sprintf(zNum2,"%d", pTab->nCol);
|
||||
sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName,
|
||||
" has ", zNum2, " columns but ",
|
||||
zNum1, " values were supplied", 0);
|
||||
pParse->nErr++;
|
||||
goto insert_cleanup;
|
||||
}
|
||||
if( pColumn!=0 && nColumn!=pColumn->nId ){
|
||||
char zNum1[30];
|
||||
char zNum2[30];
|
||||
sprintf(zNum1,"%d", nColumn);
|
||||
sprintf(zNum2,"%d", pColumn->nId);
|
||||
sqliteSetString(&pParse->zErrMsg, zNum1, " values for ",
|
||||
zNum2, " columns", 0);
|
||||
pParse->nErr++;
|
||||
goto insert_cleanup;
|
||||
}
|
||||
|
||||
/* If the INSERT statement included an IDLIST term, then make sure
|
||||
** all elements of the IDLIST really are columns of the table and
|
||||
** remember the column indices.
|
||||
**
|
||||
** If the table has an INTEGER PRIMARY KEY column and that column
|
||||
** is named in the IDLIST, then record in the keyColumn variable
|
||||
** the index into IDLIST of the primary key column. keyColumn is
|
||||
** the index of the primary key as it appears in IDLIST, not as
|
||||
** is appears in the original table. (The index of the primary
|
||||
** key in the original table is pTab->iPKey.)
|
||||
*/
|
||||
if( pColumn ){
|
||||
for(i=0; i<pColumn->nId; i++){
|
||||
pColumn->a[i].idx = -1;
|
||||
}
|
||||
for(i=0; i<pColumn->nId; i++){
|
||||
for(j=0; j<pTab->nCol; j++){
|
||||
if( sqliteStrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
|
||||
pColumn->a[i].idx = j;
|
||||
if( j==pTab->iPKey ){
|
||||
keyColumn = i;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( j>=pTab->nCol ){
|
||||
sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName,
|
||||
" has no column named ", pColumn->a[i].zName, 0);
|
||||
pParse->nErr++;
|
||||
goto insert_cleanup;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* If there is no IDLIST term but the table has an integer primary
|
||||
** key, the set the keyColumn variable to the primary key column index
|
||||
** in the original table definition.
|
||||
*/
|
||||
if( pColumn==0 ){
|
||||
keyColumn = pTab->iPKey;
|
||||
}
|
||||
|
||||
/* Open the temp table for FOR EACH ROW triggers
|
||||
*/
|
||||
if( row_triggers_exist ){
|
||||
sqliteVdbeAddOp(v, OP_OpenTemp, newIdx, 0);
|
||||
}
|
||||
|
||||
/* Initialize the count of rows to be inserted
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows ){
|
||||
iCntMem = pParse->nMem++;
|
||||
sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
||||
sqliteVdbeAddOp(v, OP_MemStore, iCntMem, 1);
|
||||
}
|
||||
|
||||
/* Open tables and indices if there are no row triggers */
|
||||
if( !row_triggers_exist ){
|
||||
base = pParse->nTab;
|
||||
openOp = pTab->isTemp ? OP_OpenWrAux : OP_OpenWrite;
|
||||
sqliteVdbeAddOp(v, openOp, base, pTab->tnum);
|
||||
sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
|
||||
for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
||||
sqliteVdbeAddOp(v, openOp, idx+base, pIdx->tnum);
|
||||
sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC);
|
||||
}
|
||||
pParse->nTab += idx;
|
||||
}
|
||||
|
||||
/* If the data source is a temporary table, then we have to create
|
||||
** a loop because there might be multiple rows of data. If the data
|
||||
** source is a subroutine call from the SELECT statement, then we need
|
||||
** to launch the SELECT statement processing.
|
||||
*/
|
||||
if( useTempTable ){
|
||||
iBreak = sqliteVdbeMakeLabel(v);
|
||||
sqliteVdbeAddOp(v, OP_Rewind, srcTab, iBreak);
|
||||
iCont = sqliteVdbeCurrentAddr(v);
|
||||
}else if( pSelect ){
|
||||
sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
|
||||
sqliteVdbeResolveLabel(v, iInsertBlock);
|
||||
}
|
||||
|
||||
endOfLoop = sqliteVdbeMakeLabel(v);
|
||||
if( row_triggers_exist ){
|
||||
|
||||
/* build the new.* reference row */
|
||||
sqliteVdbeAddOp(v, OP_Integer, 13, 0);
|
||||
for(i=0; i<pTab->nCol; i++){
|
||||
if( pColumn==0 ){
|
||||
j = i;
|
||||
}else{
|
||||
for(j=0; j<pColumn->nId; j++){
|
||||
if( pColumn->a[j].idx==i ) break;
|
||||
}
|
||||
}
|
||||
if( pColumn && j>=pColumn->nId ){
|
||||
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
||||
sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zDflt, P3_STATIC);
|
||||
}else if( useTempTable ){
|
||||
sqliteVdbeAddOp(v, OP_Column, srcTab, j);
|
||||
}else if( pSelect ){
|
||||
sqliteVdbeAddOp(v, OP_Dup, nColumn-j-1, 1);
|
||||
}else{
|
||||
sqliteExprCode(pParse, pList->a[j].pExpr);
|
||||
}
|
||||
}
|
||||
sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
|
||||
sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
|
||||
sqliteVdbeAddOp(v, OP_Rewind, newIdx, 0);
|
||||
|
||||
/* Fire BEFORE triggers */
|
||||
if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_BEFORE, pTab, newIdx, -1,
|
||||
onError, endOfLoop) ){
|
||||
goto insert_cleanup;
|
||||
}
|
||||
|
||||
/* Open the tables and indices for the INSERT */
|
||||
if( !pTab->pSelect ){
|
||||
base = pParse->nTab;
|
||||
openOp = pTab->isTemp ? OP_OpenWrAux : OP_OpenWrite;
|
||||
sqliteVdbeAddOp(v, openOp, base, pTab->tnum);
|
||||
sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
|
||||
for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
||||
sqliteVdbeAddOp(v, openOp, idx+base, pIdx->tnum);
|
||||
sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC);
|
||||
}
|
||||
pParse->nTab += idx;
|
||||
}
|
||||
}
|
||||
|
||||
/* Push the record number for the new entry onto the stack. The
|
||||
** record number is a randomly generate integer created by NewRecno
|
||||
** except when the table has an INTEGER PRIMARY KEY column, in which
|
||||
** case the record number is the same as that column.
|
||||
*/
|
||||
if( !pTab->pSelect ){
|
||||
if( keyColumn>=0 ){
|
||||
if( useTempTable ){
|
||||
sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn);
|
||||
}else if( pSelect ){
|
||||
sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
|
||||
}else{
|
||||
sqliteExprCode(pParse, pList->a[keyColumn].pExpr);
|
||||
}
|
||||
/* If the PRIMARY KEY expression is NULL, then use OP_NewRecno
|
||||
** to generate a unique primary key value.
|
||||
*/
|
||||
sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
|
||||
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
||||
sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
|
||||
sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
|
||||
}else{
|
||||
sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
|
||||
}
|
||||
|
||||
/* Push onto the stack, data for all columns of the new entry, beginning
|
||||
** with the first column.
|
||||
*/
|
||||
for(i=0; i<pTab->nCol; i++){
|
||||
if( i==pTab->iPKey ){
|
||||
/* The value of the INTEGER PRIMARY KEY column is always a NULL.
|
||||
** Whenever this column is read, the record number will be substituted
|
||||
** in its place. So will fill this column with a NULL to avoid
|
||||
** taking up data space with information that will never be used. */
|
||||
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
||||
continue;
|
||||
}
|
||||
if( pColumn==0 ){
|
||||
j = i;
|
||||
}else{
|
||||
for(j=0; j<pColumn->nId; j++){
|
||||
if( pColumn->a[j].idx==i ) break;
|
||||
}
|
||||
}
|
||||
if( pColumn && j>=pColumn->nId ){
|
||||
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
||||
sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zDflt, P3_STATIC);
|
||||
}else if( useTempTable ){
|
||||
sqliteVdbeAddOp(v, OP_Column, srcTab, j);
|
||||
}else if( pSelect ){
|
||||
sqliteVdbeAddOp(v, OP_Dup, i+nColumn-j, 1);
|
||||
}else{
|
||||
sqliteExprCode(pParse, pList->a[j].pExpr);
|
||||
}
|
||||
}
|
||||
|
||||
/* Generate code to check constraints and generate index keys and
|
||||
** do the insertion.
|
||||
*/
|
||||
sqliteGenerateConstraintChecks(pParse, pTab, base, 0,0,0,onError,endOfLoop);
|
||||
sqliteCompleteInsertion(pParse, pTab, base, 0,0,0);
|
||||
|
||||
/* Update the count of rows that are inserted
|
||||
*/
|
||||
if( (db->flags & SQLITE_CountRows)!=0 ){
|
||||
sqliteVdbeAddOp(v, OP_MemIncr, iCntMem, 0);
|
||||
}
|
||||
}
|
||||
|
||||
if( row_triggers_exist ){
|
||||
/* Close all tables opened */
|
||||
if( !pTab->pSelect ){
|
||||
sqliteVdbeAddOp(v, OP_Close, base, 0);
|
||||
for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
||||
sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/* Code AFTER triggers */
|
||||
if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_AFTER, pTab, newIdx, -1,
|
||||
onError, endOfLoop) ){
|
||||
goto insert_cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
/* The bottom of the loop, if the data source is a SELECT statement
|
||||
*/
|
||||
sqliteVdbeResolveLabel(v, endOfLoop);
|
||||
if( useTempTable ){
|
||||
sqliteVdbeAddOp(v, OP_Next, srcTab, iCont);
|
||||
sqliteVdbeResolveLabel(v, iBreak);
|
||||
sqliteVdbeAddOp(v, OP_Close, srcTab, 0);
|
||||
}else if( pSelect ){
|
||||
sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
|
||||
sqliteVdbeAddOp(v, OP_Return, 0, 0);
|
||||
sqliteVdbeResolveLabel(v, iCleanup);
|
||||
}
|
||||
|
||||
if( !row_triggers_exist ){
|
||||
/* Close all tables opened */
|
||||
sqliteVdbeAddOp(v, OP_Close, base, 0);
|
||||
for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
||||
sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
|
||||
}
|
||||
}
|
||||
|
||||
sqliteEndWriteOperation(pParse);
|
||||
|
||||
/*
|
||||
** Return the number of rows inserted.
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows ){
|
||||
sqliteVdbeAddOp(v, OP_ColumnName, 0, 0);
|
||||
sqliteVdbeChangeP3(v, -1, "rows inserted", P3_STATIC);
|
||||
sqliteVdbeAddOp(v, OP_MemLoad, iCntMem, 0);
|
||||
sqliteVdbeAddOp(v, OP_Callback, 1, 0);
|
||||
}
|
||||
|
||||
insert_cleanup:
|
||||
if( pList ) sqliteExprListDelete(pList);
|
||||
if( pSelect ) sqliteSelectDelete(pSelect);
|
||||
if ( zTab ) sqliteFree(zTab);
|
||||
sqliteIdListDelete(pColumn);
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code to do a constraint check prior to an INSERT or an UPDATE.
|
||||
**
|
||||
** When this routine is called, the stack contains (from bottom to top)
|
||||
** the following values:
|
||||
**
|
||||
** 1. The recno of the row to be updated before it is updated. This
|
||||
** value is omitted unless we are doing an UPDATE that involves a
|
||||
** change to the record number.
|
||||
**
|
||||
** 2. The recno of the row after the update.
|
||||
**
|
||||
** 3. The data in the first column of the entry after the update.
|
||||
**
|
||||
** i. Data from middle columns...
|
||||
**
|
||||
** N. The data in the last column of the entry after the update.
|
||||
**
|
||||
** The old recno shown as entry (1) above is omitted unless both isUpdate
|
||||
** and recnoChng are 1. isUpdate is true for UPDATEs and false for
|
||||
** INSERTs and recnoChng is true if the record number is being changed.
|
||||
**
|
||||
** The code generated by this routine pushes additional entries onto
|
||||
** the stack which are the keys for new index entries for the new record.
|
||||
** The order of index keys is the same as the order of the indices on
|
||||
** the pTable->pIndex list. A key is only created for index i if
|
||||
** aIdxUsed!=0 and aIdxUsed[i]!=0.
|
||||
**
|
||||
** This routine also generates code to check constraints. NOT NULL,
|
||||
** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
|
||||
** then the appropriate action is performed. There are five possible
|
||||
** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
|
||||
**
|
||||
** Constraint type Action What Happens
|
||||
** --------------- ---------- ----------------------------------------
|
||||
** any ROLLBACK The current transaction is rolled back and
|
||||
** sqlite_exec() returns immediately with a
|
||||
** return code of SQLITE_CONSTRAINT.
|
||||
**
|
||||
** any ABORT Back out changes from the current command
|
||||
** only (do not do a complete rollback) then
|
||||
** cause sqlite_exec() to return immediately
|
||||
** with SQLITE_CONSTRAINT.
|
||||
**
|
||||
** any FAIL Sqlite_exec() returns immediately with a
|
||||
** return code of SQLITE_CONSTRAINT. The
|
||||
** transaction is not rolled back and any
|
||||
** prior changes are retained.
|
||||
**
|
||||
** any IGNORE The record number and data is popped from
|
||||
** the stack and there is an immediate jump
|
||||
** to label ignoreDest.
|
||||
**
|
||||
** NOT NULL REPLACE The NULL value is replace by the default
|
||||
** value for that column. If the default value
|
||||
** is NULL, the action is the same as ABORT.
|
||||
**
|
||||
** UNIQUE REPLACE The other row that conflicts with the row
|
||||
** being inserted is removed.
|
||||
**
|
||||
** CHECK REPLACE Illegal. The results in an exception.
|
||||
**
|
||||
** Which action to take is determined by the overrideError parameter.
|
||||
** Or if overrideError==OE_Default, then the pParse->onError parameter
|
||||
** is used. Or if pParse->onError==OE_Default then the onError value
|
||||
** for the constraint is used.
|
||||
**
|
||||
** The calling routine must open a read/write cursor for pTab with
|
||||
** cursor number "base". All indices of pTab must also have open
|
||||
** read/write cursors with cursor number base+i for the i-th cursor.
|
||||
** Except, if there is no possibility of a REPLACE action then
|
||||
** cursors do not need to be open for indices where aIdxUsed[i]==0.
|
||||
**
|
||||
** If the isUpdate flag is true, it means that the "base" cursor is
|
||||
** initially pointing to an entry that is being updated. The isUpdate
|
||||
** flag causes extra code to be generated so that the "base" cursor
|
||||
** is still pointing at the same entry after the routine returns.
|
||||
** Without the isUpdate flag, the "base" cursor might be moved.
|
||||
*/
|
||||
void sqliteGenerateConstraintChecks(
|
||||
Parse *pParse, /* The parser context */
|
||||
Table *pTab, /* the table into which we are inserting */
|
||||
int base, /* Index of a read/write cursor pointing at pTab */
|
||||
char *aIdxUsed, /* Which indices are used. NULL means all are used */
|
||||
int recnoChng, /* True if the record number will change */
|
||||
int isUpdate, /* True for UPDATE, False for INSERT */
|
||||
int overrideError, /* Override onError to this if not OE_Default */
|
||||
int ignoreDest /* Jump to this label on an OE_Ignore resolution */
|
||||
){
|
||||
int i;
|
||||
Vdbe *v;
|
||||
int nCol;
|
||||
int onError;
|
||||
int addr;
|
||||
int extra;
|
||||
int iCur;
|
||||
Index *pIdx;
|
||||
int seenReplace = 0;
|
||||
int jumpInst1, jumpInst2;
|
||||
int contAddr;
|
||||
int hasTwoRecnos = (isUpdate && recnoChng);
|
||||
|
||||
v = sqliteGetVdbe(pParse);
|
||||
assert( v!=0 );
|
||||
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
||||
nCol = pTab->nCol;
|
||||
|
||||
/* Test all NOT NULL constraints.
|
||||
*/
|
||||
for(i=0; i<nCol; i++){
|
||||
if( i==pTab->iPKey ){
|
||||
/* Fix me: Make sure the INTEGER PRIMARY KEY is not NULL. */
|
||||
continue;
|
||||
}
|
||||
onError = pTab->aCol[i].notNull;
|
||||
if( onError==OE_None ) continue;
|
||||
if( overrideError!=OE_Default ){
|
||||
onError = overrideError;
|
||||
}else if( onError==OE_Default ){
|
||||
onError = pParse->db->onError;
|
||||
if( onError==OE_Default ) onError = OE_Abort;
|
||||
}
|
||||
if( onError==OE_Replace && pTab->aCol[i].zDflt==0 ){
|
||||
onError = OE_Abort;
|
||||
}
|
||||
sqliteVdbeAddOp(v, OP_Dup, nCol-1-i, 1);
|
||||
addr = sqliteVdbeAddOp(v, OP_NotNull, 1, 0);
|
||||
switch( onError ){
|
||||
case OE_Rollback:
|
||||
case OE_Abort:
|
||||
case OE_Fail: {
|
||||
char *zMsg = 0;
|
||||
sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
|
||||
sqliteSetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
|
||||
" may not be NULL", 0);
|
||||
sqliteVdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
|
||||
break;
|
||||
}
|
||||
case OE_Ignore: {
|
||||
sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
|
||||
sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
|
||||
break;
|
||||
}
|
||||
case OE_Replace: {
|
||||
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
||||
sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zDflt, P3_STATIC);
|
||||
sqliteVdbeAddOp(v, OP_Push, nCol-i, 0);
|
||||
break;
|
||||
}
|
||||
default: assert(0);
|
||||
}
|
||||
sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
|
||||
}
|
||||
|
||||
/* Test all CHECK constraints
|
||||
*/
|
||||
/**** TBD ****/
|
||||
|
||||
/* If we have an INTEGER PRIMARY KEY, make sure the primary key
|
||||
** of the new record does not previously exist. Except, if this
|
||||
** is an UPDATE and the primary key is not changing, that is OK.
|
||||
** Also, if the conflict resolution policy is REPLACE, then we
|
||||
** can skip this test.
|
||||
*/
|
||||
if( (recnoChng || !isUpdate) && pTab->iPKey>=0 ){
|
||||
onError = pTab->keyConf;
|
||||
if( overrideError!=OE_Default ){
|
||||
onError = overrideError;
|
||||
}else if( onError==OE_Default ){
|
||||
onError = pParse->db->onError;
|
||||
if( onError==OE_Default ) onError = OE_Abort;
|
||||
}
|
||||
if( onError!=OE_Replace ){
|
||||
if( isUpdate ){
|
||||
sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
|
||||
sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
|
||||
jumpInst1 = sqliteVdbeAddOp(v, OP_Eq, 0, 0);
|
||||
}
|
||||
sqliteVdbeAddOp(v, OP_Dup, nCol, 1);
|
||||
jumpInst2 = sqliteVdbeAddOp(v, OP_NotExists, base, 0);
|
||||
switch( onError ){
|
||||
case OE_Rollback:
|
||||
case OE_Abort:
|
||||
case OE_Fail: {
|
||||
sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
|
||||
sqliteVdbeChangeP3(v, -1, "PRIMARY KEY must be unique", P3_STATIC);
|
||||
break;
|
||||
}
|
||||
case OE_Ignore: {
|
||||
sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
|
||||
sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
|
||||
break;
|
||||
}
|
||||
default: assert(0);
|
||||
}
|
||||
contAddr = sqliteVdbeCurrentAddr(v);
|
||||
sqliteVdbeChangeP2(v, jumpInst2, contAddr);
|
||||
if( isUpdate ){
|
||||
sqliteVdbeChangeP2(v, jumpInst1, contAddr);
|
||||
sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
|
||||
sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Test all UNIQUE constraints by creating entries for each UNIQUE
|
||||
** index and making sure that duplicate entries do not already exist.
|
||||
** Add the new records to the indices as we go.
|
||||
*/
|
||||
extra = 0;
|
||||
for(extra=(-1), iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
|
||||
if( aIdxUsed && aIdxUsed[iCur]==0 ) continue;
|
||||
extra++;
|
||||
sqliteVdbeAddOp(v, OP_Dup, nCol+extra, 1);
|
||||
for(i=0; i<pIdx->nColumn; i++){
|
||||
int idx = pIdx->aiColumn[i];
|
||||
if( idx==pTab->iPKey ){
|
||||
sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
|
||||
}else{
|
||||
sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
|
||||
}
|
||||
}
|
||||
jumpInst1 = sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
|
||||
if( pParse->db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
|
||||
onError = pIdx->onError;
|
||||
if( onError==OE_None ) continue;
|
||||
if( overrideError!=OE_Default ){
|
||||
onError = overrideError;
|
||||
}else if( onError==OE_Default ){
|
||||
onError = pParse->db->onError;
|
||||
if( onError==OE_Default ) onError = OE_Abort;
|
||||
}
|
||||
sqliteVdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRecnos, 1);
|
||||
jumpInst2 = sqliteVdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
|
||||
switch( onError ){
|
||||
case OE_Rollback:
|
||||
case OE_Abort:
|
||||
case OE_Fail: {
|
||||
sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
|
||||
sqliteVdbeChangeP3(v, -1, "uniqueness constraint failed", P3_STATIC);
|
||||
break;
|
||||
}
|
||||
case OE_Ignore: {
|
||||
assert( seenReplace==0 );
|
||||
sqliteVdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRecnos, 0);
|
||||
sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
|
||||
break;
|
||||
}
|
||||
case OE_Replace: {
|
||||
sqliteGenerateRowDelete(pParse->db, v, pTab, base, 0);
|
||||
if( isUpdate ){
|
||||
sqliteVdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRecnos, 1);
|
||||
sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
|
||||
}
|
||||
seenReplace = 1;
|
||||
break;
|
||||
}
|
||||
default: assert(0);
|
||||
}
|
||||
contAddr = sqliteVdbeCurrentAddr(v);
|
||||
#if NULL_DISTINCT_FOR_UNIQUE
|
||||
sqliteVdbeChangeP2(v, jumpInst1, contAddr);
|
||||
#endif
|
||||
sqliteVdbeChangeP2(v, jumpInst2, contAddr);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine generates code to finish the INSERT or UPDATE operation
|
||||
** that was started by a prior call to sqliteGenerateConstraintChecks.
|
||||
** The stack must contain keys for all active indices followed by data
|
||||
** and the recno for the new entry. This routine creates the new
|
||||
** entries in all indices and in the main table.
|
||||
**
|
||||
** The arguments to this routine should be the same as the first six
|
||||
** arguments to sqliteGenerateConstraintChecks.
|
||||
*/
|
||||
void sqliteCompleteInsertion(
|
||||
Parse *pParse, /* The parser context */
|
||||
Table *pTab, /* the table into which we are inserting */
|
||||
int base, /* Index of a read/write cursor pointing at pTab */
|
||||
char *aIdxUsed, /* Which indices are used. NULL means all are used */
|
||||
int recnoChng, /* True if the record number will change */
|
||||
int isUpdate /* True for UPDATE, False for INSERT */
|
||||
){
|
||||
int i;
|
||||
Vdbe *v;
|
||||
int nIdx;
|
||||
Index *pIdx;
|
||||
|
||||
v = sqliteGetVdbe(pParse);
|
||||
assert( v!=0 );
|
||||
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
||||
for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
|
||||
for(i=nIdx-1; i>=0; i--){
|
||||
if( aIdxUsed && aIdxUsed[i]==0 ) continue;
|
||||
sqliteVdbeAddOp(v, OP_IdxPut, base+i+1, 0);
|
||||
}
|
||||
sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
|
||||
sqliteVdbeAddOp(v, OP_PutIntKey, base, pParse->trigStack?0:1);
|
||||
if( isUpdate && recnoChng ){
|
||||
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue