Update bundled library to version 2.8.2.

Make OnUpdateInt compatible with ZE2.
Fix the makefile fragment for non-gnu makes
This commit is contained in:
Wez Furlong 2003-06-04 22:40:00 +00:00
parent 82a1818fde
commit 80e7f7001d
42 changed files with 11143 additions and 7558 deletions

View file

@ -54,6 +54,10 @@
#include "btree.h"
#include <assert.h>
/* Forward declarations */
static BtOps sqliteBtreeOps;
static BtCursorOps sqliteBtreeCursorOps;
/*
** Macros used for byteswapping. B is a pointer to the Btree
** structure. This is needed to access the Btree.needSwab boolean
@ -61,7 +65,7 @@
** X is an unsigned integer. SWAB16 byte swaps a 16-bit integer.
** SWAB32 byteswaps a 32-bit integer.
*/
#define SWAB16(B,X) ((B)->needSwab? swab16(X) : (X))
#define SWAB16(B,X) ((B)->needSwab? swab16((u16)X) : ((u16)X))
#define SWAB32(B,X) ((B)->needSwab? swab32(X) : (X))
#define SWAB_ADD(B,X,A) \
if((B)->needSwab){ X=swab32(swab32(X)+A); }else{ X += (A); }
@ -340,6 +344,7 @@ struct MemPage {
** Everything we need to know about an open database
*/
struct Btree {
BtOps *pOps; /* Function table */
Pager *pPager; /* The page cache */
BtCursor *pCursor; /* A list of all open cursors */
PageOne *page1; /* First page of the database */
@ -356,6 +361,7 @@ typedef Btree Bt;
** MemPage.apCell[] of the entry.
*/
struct BtCursor {
BtCursorOps *pOps; /* Function table */
Btree *pBt; /* The Btree to which this cursor belongs */
BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
BtCursor *pShared; /* Loop of cursors with the same root page */
@ -375,6 +381,9 @@ struct BtCursor {
#define SKIP_PREV 2 /* The next sqliteBtreePrevious() is a no-op */
#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
/* Forward declarations */
static int fileBtreeCloseCursor(BtCursor *pCur);
/*
** Routines for byte swapping.
*/
@ -527,7 +536,7 @@ static void freeSpace(Btree *pBt, MemPage *pPage, int start, int size){
if( idx + iSize + size == SWAB16(pBt, pFBlk->iNext) ){
pNext = (FreeBlk*)&pPage->u.aDisk[idx + iSize + size];
if( pBt->needSwab ){
pFBlk->iSize = swab16(swab16(pNext->iSize)+iSize+size);
pFBlk->iSize = swab16((u16)swab16(pNext->iSize)+iSize+size);
}else{
pFBlk->iSize += pNext->iSize;
}
@ -709,6 +718,7 @@ int sqliteBtreeOpen(
pBt->pCursor = 0;
pBt->page1 = 0;
pBt->readOnly = sqlitepager_isreadonly(pBt->pPager);
pBt->pOps = &sqliteBtreeOps;
*ppBtree = pBt;
return SQLITE_OK;
}
@ -716,9 +726,9 @@ int sqliteBtreeOpen(
/*
** Close an open database and invalidate all cursors.
*/
int sqliteBtreeClose(Btree *pBt){
static int fileBtreeClose(Btree *pBt){
while( pBt->pCursor ){
sqliteBtreeCloseCursor(pBt->pCursor);
fileBtreeCloseCursor(pBt->pCursor);
}
sqlitepager_close(pBt->pPager);
sqliteFree(pBt);
@ -740,7 +750,7 @@ int sqliteBtreeClose(Btree *pBt){
** Synchronous is on by default so database corruption is not
** normally a worry.
*/
int sqliteBtreeSetCacheSize(Btree *pBt, int mxPage){
static int fileBtreeSetCacheSize(Btree *pBt, int mxPage){
sqlitepager_set_cachesize(pBt->pPager, mxPage);
return SQLITE_OK;
}
@ -753,7 +763,7 @@ int sqliteBtreeSetCacheSize(Btree *pBt, int mxPage){
** is a very low but non-zero probability of damage. Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
int sqliteBtreeSetSafetyLevel(Btree *pBt, int level){
static int fileBtreeSetSafetyLevel(Btree *pBt, int level){
sqlitepager_set_safety_level(pBt->pPager, level);
return SQLITE_OK;
}
@ -860,7 +870,7 @@ static int newDatabase(Btree *pBt){
** sqliteBtreeDelete()
** sqliteBtreeUpdateMeta()
*/
int sqliteBtreeBeginTrans(Btree *pBt){
static int fileBtreeBeginTrans(Btree *pBt){
int rc;
if( pBt->inTrans ) return SQLITE_ERROR;
if( pBt->readOnly ) return SQLITE_READONLY;
@ -889,7 +899,7 @@ int sqliteBtreeBeginTrans(Btree *pBt){
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
int sqliteBtreeCommit(Btree *pBt){
static int fileBtreeCommit(Btree *pBt){
int rc;
rc = pBt->readOnly ? SQLITE_OK : sqlitepager_commit(pBt->pPager);
pBt->inTrans = 0;
@ -907,7 +917,7 @@ int sqliteBtreeCommit(Btree *pBt){
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
int sqliteBtreeRollback(Btree *pBt){
static int fileBtreeRollback(Btree *pBt){
int rc;
BtCursor *pCur;
if( pBt->inTrans==0 ) return SQLITE_OK;
@ -934,7 +944,7 @@ int sqliteBtreeRollback(Btree *pBt){
** Only one checkpoint may be active at a time. It is an error to try
** to start a new checkpoint if another checkpoint is already active.
*/
int sqliteBtreeBeginCkpt(Btree *pBt){
static int fileBtreeBeginCkpt(Btree *pBt){
int rc;
if( !pBt->inTrans || pBt->inCkpt ){
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
@ -949,7 +959,7 @@ int sqliteBtreeBeginCkpt(Btree *pBt){
** Commit a checkpoint to transaction currently in progress. If no
** checkpoint is active, this is a no-op.
*/
int sqliteBtreeCommitCkpt(Btree *pBt){
static int fileBtreeCommitCkpt(Btree *pBt){
int rc;
if( pBt->inCkpt && !pBt->readOnly ){
rc = sqlitepager_ckpt_commit(pBt->pPager);
@ -968,7 +978,7 @@ int sqliteBtreeCommitCkpt(Btree *pBt){
** to use a cursor that was open at the beginning of this operation
** will result in an error.
*/
int sqliteBtreeRollbackCkpt(Btree *pBt){
static int fileBtreeRollbackCkpt(Btree *pBt){
int rc;
BtCursor *pCur;
if( pBt->inCkpt==0 || pBt->readOnly ) return SQLITE_OK;
@ -1019,7 +1029,7 @@ int sqliteBtreeRollbackCkpt(Btree *pBt){
** root page of a b-tree. If it is not, then the cursor acquired
** will not work correctly.
*/
int sqliteBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
static int fileBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
int rc;
BtCursor *pCur, *pRing;
@ -1044,6 +1054,7 @@ int sqliteBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
if( rc!=SQLITE_OK ){
goto create_cursor_exception;
}
pCur->pOps = &sqliteBtreeCursorOps;
pCur->pBt = pBt;
pCur->wrFlag = wrFlag;
pCur->idx = 0;
@ -1079,7 +1090,7 @@ create_cursor_exception:
** Close a cursor. The read lock on the database file is released
** when the last cursor is closed.
*/
int sqliteBtreeCloseCursor(BtCursor *pCur){
static int fileBtreeCloseCursor(BtCursor *pCur){
Btree *pBt = pCur->pBt;
if( pCur->pPrev ){
pCur->pPrev->pNext = pCur->pNext;
@ -1132,7 +1143,7 @@ static void releaseTempCursor(BtCursor *pCur){
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
int sqliteBtreeKeySize(BtCursor *pCur, int *pSize){
static int fileBtreeKeySize(BtCursor *pCur, int *pSize){
Cell *pCell;
MemPage *pPage;
@ -1221,7 +1232,7 @@ static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
** is raised. The change was made in an effort to boost performance
** by eliminating unneeded tests.
*/
int sqliteBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
static int fileBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
MemPage *pPage;
assert( amt>=0 );
@ -1243,7 +1254,7 @@ int sqliteBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
int sqliteBtreeDataSize(BtCursor *pCur, int *pSize){
static int fileBtreeDataSize(BtCursor *pCur, int *pSize){
Cell *pCell;
MemPage *pPage;
@ -1266,7 +1277,7 @@ int sqliteBtreeDataSize(BtCursor *pCur, int *pSize){
** amount requested if there are not enough bytes in the data
** to satisfy the request.
*/
int sqliteBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
static int fileBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
Cell *pCell;
MemPage *pPage;
@ -1304,7 +1315,7 @@ int sqliteBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
** keys must be exactly the same length. (The length of the pCur key
** is the actual key length minus nIgnore bytes.)
*/
int sqliteBtreeKeyCompare(
static int fileBtreeKeyCompare(
BtCursor *pCur, /* Pointer to entry to compare against */
const void *pKey, /* Key to compare against entry that pCur points to */
int nKey, /* Number of bytes in pKey */
@ -1389,6 +1400,7 @@ static int moveToChild(BtCursor *pCur, int newPgno){
sqlitepager_unref(pCur->pPage);
pCur->pPage = pNewPage;
pCur->idx = 0;
if( pNewPage->nCell<1 ) return SQLITE_CORRUPT;
return SQLITE_OK;
}
@ -1502,7 +1514,7 @@ static int moveToRightmost(BtCursor *pCur){
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqliteBtreeFirst(BtCursor *pCur, int *pRes){
static int fileBtreeFirst(BtCursor *pCur, int *pRes){
int rc;
if( pCur->pPage==0 ) return SQLITE_ABORT;
rc = moveToRoot(pCur);
@ -1521,7 +1533,7 @@ int sqliteBtreeFirst(BtCursor *pCur, int *pRes){
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqliteBtreeLast(BtCursor *pCur, int *pRes){
static int fileBtreeLast(BtCursor *pCur, int *pRes){
int rc;
if( pCur->pPage==0 ) return SQLITE_ABORT;
rc = moveToRoot(pCur);
@ -1560,7 +1572,8 @@ int sqliteBtreeLast(BtCursor *pCur, int *pRes){
** *pRes>0 The cursor is left pointing at an entry that
** is larger than pKey.
*/
int sqliteBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
static
int fileBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
int rc;
if( pCur->pPage==0 ) return SQLITE_ABORT;
pCur->eSkip = SKIP_NONE;
@ -1575,7 +1588,7 @@ int sqliteBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
upr = pPage->nCell-1;
while( lwr<=upr ){
pCur->idx = (lwr+upr)/2;
rc = sqliteBtreeKeyCompare(pCur, pKey, nKey, 0, &c);
rc = fileBtreeKeyCompare(pCur, pKey, nKey, 0, &c);
if( rc ) return rc;
if( c==0 ){
pCur->iMatch = c;
@ -1613,7 +1626,7 @@ int sqliteBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
int sqliteBtreeNext(BtCursor *pCur, int *pRes){
static int fileBtreeNext(BtCursor *pCur, int *pRes){
int rc;
MemPage *pPage = pCur->pPage;
assert( pRes!=0 );
@ -1668,7 +1681,7 @@ int sqliteBtreeNext(BtCursor *pCur, int *pRes){
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
*/
int sqliteBtreePrevious(BtCursor *pCur, int *pRes){
static int fileBtreePrevious(BtCursor *pCur, int *pRes){
int rc;
Pgno pgno;
MemPage *pPage;
@ -2594,7 +2607,7 @@ static int checkReadLocks(BtCursor *pCur){
** define what database the record should be inserted into. The cursor
** is left pointing at the new record.
*/
int sqliteBtreeInsert(
static int fileBtreeInsert(
BtCursor *pCur, /* Insert data into the table of this cursor */
const void *pKey, int nKey, /* The key of the new record */
const void *pData, int nData /* The data of the new record */
@ -2620,7 +2633,7 @@ int sqliteBtreeInsert(
if( checkReadLocks(pCur) ){
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
rc = sqliteBtreeMoveto(pCur, pKey, nKey, &loc);
rc = fileBtreeMoveto(pCur, pKey, nKey, &loc);
if( rc ) return rc;
pPage = pCur->pPage;
assert( pPage->isInit );
@ -2662,7 +2675,7 @@ int sqliteBtreeInsert(
** sqliteBtreePrevious() will always leave the cursor pointing at the
** entry immediately before the one that was deleted.
*/
int sqliteBtreeDelete(BtCursor *pCur){
static int fileBtreeDelete(BtCursor *pCur){
MemPage *pPage = pCur->pPage;
Cell *pCell;
int rc;
@ -2705,7 +2718,7 @@ int sqliteBtreeDelete(BtCursor *pCur){
int szNext;
int notUsed;
getTempCursor(pCur, &leafCur);
rc = sqliteBtreeNext(&leafCur, &notUsed);
rc = fileBtreeNext(&leafCur, &notUsed);
if( rc!=SQLITE_OK ){
return SQLITE_CORRUPT;
}
@ -2745,11 +2758,12 @@ int sqliteBtreeDelete(BtCursor *pCur){
** number for the root page of the new table.
**
** In the current implementation, BTree tables and BTree indices are the
** the same. But in the future, we may change this so that BTree tables
** the same. In the future, we may change this so that BTree tables
** are restricted to having a 4-byte integer key and arbitrary data and
** BTree indices are restricted to having an arbitrary key and no data.
** But for now, this routine also serves to create indices.
*/
int sqliteBtreeCreateTable(Btree *pBt, int *piTable){
static int fileBtreeCreateTable(Btree *pBt, int *piTable){
MemPage *pRoot;
Pgno pgnoRoot;
int rc;
@ -2769,19 +2783,6 @@ int sqliteBtreeCreateTable(Btree *pBt, int *piTable){
return SQLITE_OK;
}
/*
** Create a new BTree index. Write into *piTable the page
** number for the root page of the new index.
**
** In the current implementation, BTree tables and BTree indices are the
** the same. But in the future, we may change this so that BTree tables
** are restricted to having a 4-byte integer key and arbitrary data and
** BTree indices are restricted to having an arbitrary key and no data.
*/
int sqliteBtreeCreateIndex(Btree *pBt, int *piIndex){
return sqliteBtreeCreateTable(pBt, piIndex);
}
/*
** Erase the given database page and all its children. Return
** the page to the freelist.
@ -2825,7 +2826,7 @@ static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){
/*
** Delete all information from a single table in the database.
*/
int sqliteBtreeClearTable(Btree *pBt, int iTable){
static int fileBtreeClearTable(Btree *pBt, int iTable){
int rc;
BtCursor *pCur;
if( !pBt->inTrans ){
@ -2839,7 +2840,7 @@ int sqliteBtreeClearTable(Btree *pBt, int iTable){
}
rc = clearDatabasePage(pBt, (Pgno)iTable, 0);
if( rc ){
sqliteBtreeRollback(pBt);
fileBtreeRollback(pBt);
}
return rc;
}
@ -2849,7 +2850,7 @@ int sqliteBtreeClearTable(Btree *pBt, int iTable){
** the freelist. Except, the root of the principle table (the one on
** page 2) is never added to the freelist.
*/
int sqliteBtreeDropTable(Btree *pBt, int iTable){
static int fileBtreeDropTable(Btree *pBt, int iTable){
int rc;
MemPage *pPage;
BtCursor *pCur;
@ -2863,7 +2864,7 @@ int sqliteBtreeDropTable(Btree *pBt, int iTable){
}
rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
if( rc ) return rc;
rc = sqliteBtreeClearTable(pBt, iTable);
rc = fileBtreeClearTable(pBt, iTable);
if( rc ) return rc;
if( iTable>2 ){
rc = freePage(pBt, pPage, iTable);
@ -2874,10 +2875,109 @@ int sqliteBtreeDropTable(Btree *pBt, int iTable){
return rc;
}
#if 0 /* UNTESTED */
/*
** Copy all cell data from one database file into another.
** pages back the freelist.
*/
static int copyCell(Btree *pBtFrom, BTree *pBtTo, Cell *pCell){
Pager *pFromPager = pBtFrom->pPager;
OverflowPage *pOvfl;
Pgno ovfl, nextOvfl;
Pgno *pPrev;
int rc = SQLITE_OK;
MemPage *pNew, *pPrevPg;
Pgno new;
if( NKEY(pBtTo, pCell->h) + NDATA(pBtTo, pCell->h) <= MX_LOCAL_PAYLOAD ){
return SQLITE_OK;
}
pPrev = &pCell->ovfl;
pPrevPg = 0;
ovfl = SWAB32(pBtTo, pCell->ovfl);
while( ovfl && rc==SQLITE_OK ){
rc = sqlitepager_get(pFromPager, ovfl, (void**)&pOvfl);
if( rc ) return rc;
nextOvfl = SWAB32(pBtFrom, pOvfl->iNext);
rc = allocatePage(pBtTo, &pNew, &new, 0);
if( rc==SQLITE_OK ){
rc = sqlitepager_write(pNew);
if( rc==SQLITE_OK ){
memcpy(pNew, pOvfl, SQLITE_PAGE_SIZE);
*pPrev = SWAB32(pBtTo, new);
if( pPrevPg ){
sqlitepager_unref(pPrevPg);
}
pPrev = &pOvfl->iNext;
pPrevPg = pNew;
}
}
sqlitepager_unref(pOvfl);
ovfl = nextOvfl;
}
if( pPrevPg ){
sqlitepager_unref(pPrevPg);
}
return rc;
}
#endif
#if 0 /* UNTESTED */
/*
** Copy a page of data from one database over to another.
*/
static int copyDatabasePage(
Btree *pBtFrom,
Pgno pgnoFrom,
Btree *pBtTo,
Pgno *pTo
){
MemPage *pPageFrom, *pPage;
Pgno to;
int rc;
Cell *pCell;
int idx;
rc = sqlitepager_get(pBtFrom->pPager, pgno, (void**)&pPageFrom);
if( rc ) return rc;
rc = allocatePage(pBt, &pPage, pTo, 0);
if( rc==SQLITE_OK ){
rc = sqlitepager_write(pPage);
}
if( rc==SQLITE_OK ){
memcpy(pPage, pPageFrom, SQLITE_PAGE_SIZE);
idx = SWAB16(pBt, pPage->u.hdr.firstCell);
while( idx>0 ){
pCell = (Cell*)&pPage->u.aDisk[idx];
idx = SWAB16(pBt, pCell->h.iNext);
if( pCell->h.leftChild ){
Pgno newChld;
rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pCell->h.leftChild),
pBtTo, &newChld);
if( rc ) return rc;
pCell->h.leftChild = SWAB32(pBtFrom, newChld);
}
rc = copyCell(pBtFrom, pBtTo, pCell);
if( rc ) return rc;
}
if( pPage->u.hdr.rightChild ){
Pgno newChld;
rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pPage->u.hdr.rightChild),
pBtTo, &newChld);
if( rc ) return rc;
pPage->u.hdr.rightChild = SWAB32(pBtTo, newChild);
}
}
sqlitepager_unref(pPage);
return rc;
}
#endif
/*
** Read the meta-information out of a database file.
*/
int sqliteBtreeGetMeta(Btree *pBt, int *aMeta){
static int fileBtreeGetMeta(Btree *pBt, int *aMeta){
PageOne *pP1;
int rc;
int i;
@ -2895,7 +2995,7 @@ int sqliteBtreeGetMeta(Btree *pBt, int *aMeta){
/*
** Write meta-information back into the database.
*/
int sqliteBtreeUpdateMeta(Btree *pBt, int *aMeta){
static int fileBtreeUpdateMeta(Btree *pBt, int *aMeta){
PageOne *pP1;
int rc, i;
if( !pBt->inTrans ){
@ -2921,7 +3021,7 @@ int sqliteBtreeUpdateMeta(Btree *pBt, int *aMeta){
** is used for debugging and testing only.
*/
#ifdef SQLITE_TEST
int sqliteBtreePageDump(Btree *pBt, int pgno, int recursive){
static int fileBtreePageDump(Btree *pBt, int pgno, int recursive){
int rc;
MemPage *pPage;
int i, j;
@ -2982,10 +3082,10 @@ int sqliteBtreePageDump(Btree *pBt, int pgno, int recursive){
idx = SWAB16(pBt, pPage->u.hdr.firstCell);
while( idx>0 && idx<SQLITE_PAGE_SIZE-MIN_CELL_SIZE ){
Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
sqliteBtreePageDump(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
fileBtreePageDump(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
idx = SWAB16(pBt, pCell->h.iNext);
}
sqliteBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
fileBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
}
sqlitepager_unref(pPage);
return SQLITE_OK;
@ -3008,7 +3108,7 @@ int sqliteBtreePageDump(Btree *pBt, int pgno, int recursive){
**
** This routine is used for testing and debugging only.
*/
int sqliteBtreeCursorDump(BtCursor *pCur, int *aResult){
static int fileBtreeCursorDump(BtCursor *pCur, int *aResult){
int cnt, idx;
MemPage *pPage = pCur->pPage;
Btree *pBt = pCur->pBt;
@ -3040,7 +3140,7 @@ int sqliteBtreeCursorDump(BtCursor *pCur, int *aResult){
** Return the pager associated with a BTree. This routine is used for
** testing and debugging only.
*/
Pager *sqliteBtreePager(Btree *pBt){
static Pager *fileBtreePager(Btree *pBt){
return pBt->pPager;
}
#endif
@ -3129,7 +3229,7 @@ static void checkList(
FreelistInfo *pInfo = (FreelistInfo*)pOvfl->aPayload;
int n = SWAB32(pCheck->pBt, pInfo->nFree);
for(i=0; i<n; i++){
checkRef(pCheck, SWAB32(pCheck->pBt, pInfo->aFree[i]), zMsg);
checkRef(pCheck, SWAB32(pCheck->pBt, pInfo->aFree[i]), zContext);
}
N -= n;
}
@ -3320,7 +3420,7 @@ static int checkTreePage(
** and a pointer to that error message is returned. The calling function
** is responsible for freeing the error message when it is done.
*/
char *sqliteBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
char *fileBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
int i;
int nRef;
IntegrityCk sCheck;
@ -3380,3 +3480,104 @@ char *sqliteBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
sqliteFree(sCheck.anRef);
return sCheck.zErrMsg;
}
/*
** Return the full pathname of the underlying database file.
*/
static const char *fileBtreeGetFilename(Btree *pBt){
assert( pBt->pPager!=0 );
return sqlitepager_filename(pBt->pPager);
}
/*
** Copy the complete content of pBtFrom into pBtTo. A transaction
** must be active for both files.
**
** The size of file pBtFrom may be reduced by this operation.
** If anything goes wrong, the transaction on pBtFrom is rolled back.
*/
static int fileBtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
int rc = SQLITE_OK;
Pgno i, nPage, nToPage;
if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR;
if( pBtTo->needSwab!=pBtFrom->needSwab ) return SQLITE_ERROR;
if( pBtTo->pCursor ) return SQLITE_BUSY;
memcpy(pBtTo->page1, pBtFrom->page1, SQLITE_PAGE_SIZE);
rc = sqlitepager_overwrite(pBtTo->pPager, 1, pBtFrom->page1);
nToPage = sqlitepager_pagecount(pBtTo->pPager);
nPage = sqlitepager_pagecount(pBtFrom->pPager);
for(i=2; rc==SQLITE_OK && i<=nPage; i++){
void *pPage;
rc = sqlitepager_get(pBtFrom->pPager, i, &pPage);
if( rc ) break;
rc = sqlitepager_overwrite(pBtTo->pPager, i, pPage);
if( rc ) break;
sqlitepager_unref(pPage);
}
for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
void *pPage;
rc = sqlitepager_get(pBtTo->pPager, i, &pPage);
if( rc ) break;
rc = sqlitepager_write(pPage);
sqlitepager_unref(pPage);
sqlitepager_dont_write(pBtTo->pPager, i);
}
if( !rc && nPage<nToPage ){
rc = sqlitepager_truncate(pBtTo->pPager, nPage);
}
if( rc ){
fileBtreeRollback(pBtTo);
}
return rc;
}
/*
** The following tables contain pointers to all of the interface
** routines for this implementation of the B*Tree backend. To
** substitute a different implemention of the backend, one has merely
** to provide pointers to alternative functions in similar tables.
*/
static BtOps sqliteBtreeOps = {
fileBtreeClose,
fileBtreeSetCacheSize,
fileBtreeSetSafetyLevel,
fileBtreeBeginTrans,
fileBtreeCommit,
fileBtreeRollback,
fileBtreeBeginCkpt,
fileBtreeCommitCkpt,
fileBtreeRollbackCkpt,
fileBtreeCreateTable,
fileBtreeCreateTable, /* Really sqliteBtreeCreateIndex() */
fileBtreeDropTable,
fileBtreeClearTable,
fileBtreeCursor,
fileBtreeGetMeta,
fileBtreeUpdateMeta,
fileBtreeIntegrityCheck,
fileBtreeGetFilename,
fileBtreeCopyFile,
#ifdef SQLITE_TEST
fileBtreePageDump,
fileBtreePager
#endif
};
static BtCursorOps sqliteBtreeCursorOps = {
fileBtreeMoveto,
fileBtreeDelete,
fileBtreeInsert,
fileBtreeFirst,
fileBtreeLast,
fileBtreeNext,
fileBtreePrevious,
fileBtreeKeySize,
fileBtreeKey,
fileBtreeKeyCompare,
fileBtreeDataSize,
fileBtreeData,
fileBtreeCloseCursor,
#ifdef SQLITE_TEST
fileBtreeCursorDump,
#endif
};