In 7502c86342, I adjusted the number of error markers emitted on
invalid UTF-8 text to be more consistent with mbstring's behavior on
other text encodings (generally, it emits one error marker for one
unexpected byte). I didn't expect that anybody would actually care one
way or the other, but felt that it was better to be consistent than
not.
Later, Martin Auswöger kindly pointed out that the WHATWG encoding
specification, which governs how various text encodings are handled
by web browsers, does actually specify how many error markers should
be generated for any given piece of invalid UTF-8 text.
Until now, we have never really paid much attention to the WHATWG
specification, but we do want to comply with as many relevant
specifications as possible. And since PHP is commonly used for web
applications, compatibility with the behavior of web browsers is
obviously a good thing.
This was the old behavior of mb_check_encoding() before 3e7acf901d,
but yours truly broke it. If only we had more thorough tests at that
time, this might not have slipped through the cracks.
Thanks to divinity76 for the report.
When converting text to/from wchars, mbstring makes one function call
for each and every byte or wchar to be converted. Typically, each of
these conversion functions contains a state machine, and its state has
to be restored and then saved for every single one of these calls.
It doesn't take much to see that this is grossly inefficient.
Instead of converting one byte or wchar on each call, the new
conversion functions will either fill up or drain a whole buffer of
wchars on each call. In benchmarks, this is about 3-10× faster.
Adding the new, faster conversion functions for all supported legacy
text encodings still needs some work. Also, all the code which uses
the old-style conversion functions needs to be converted to use the
new ones. After that, the old code can be dropped. (The mailparse
extension will also have to be fixed up so it will still compile.)
In a2bc57e0e5, mb_detect_encoding was modified to ensure it would never
return 'UUENCODE', 'QPrint', or other non-encodings as the "detected
text encoding". Before mb_detect_encoding was enhanced so that it could
detect any supported text encoding, those were never returned, and they
are not desired. Actually, we want to eventually remove them completely
from mbstring, since PHP already contains other implementations of
UUEncode, QPrint, Base64, and HTML entities.
For more clarity on why we need to suppress UUEncode, etc. from being
detected by mb_detect_encoding, the existing UUEncode implementation
in mbstring *never* treats any input as erroneous. It just accepts
everything. This means that it would *always* be treated as a valid
choice by mb_detect_encoding, and would be returned in many, many cases
where the input is obviously not UUEncoded.
It turns out that the form of mb_convert_encoding where the user passes
multiple candidate encodings (and mbstring auto-detects which one to
use) was also affected by the same issue. Apply the same fix.
`php_mb_check_encoding()` now uses conversion to `mbfl_encoding_wchar`.
Since `mbfl_encoding_7bit` has no `input_filter`, no filter can be
found. Since we don't actually need to convert to wchar, we encode to
8bit.
Closes GH-7712.
Previously, some accented letters commonly used to write Polish text
were counted as 'rare' codepoints. Treat them as 'common' instead.
Thanks to Alec for pointing this out.
The purpose of mbstring is for working with Unicode and legacy text
encodings; but Base64, QPrint, etc. are not text encodings and don't
really belong in mbstring. PHP already contains separate implementations
of Base64, QPrint, and HTML entities. It will be better to eventually
remove these non-encodings from mbstring.
Regarding HTML entities... there is a bit more to say. mbstring's
implementation of HTML entities is different from the other built-in
implementation (htmlspecialchars and htmlentities). Those functions
convert <, >, and & to HTML entities, but mbstring does not.
It appears that the original author of mbstring intended for something
to be done with <, >, and &. He used a table to identify which
characters should be converted to HTML entities, and </>/& all have a
special value in that table. However, nothing ever checks for that
special value, so the characters are passed through unconverted.
This seems like a very useless implementation of HTML entities. The most
important characters which need to be expressed as entities in HTML
documents are those three!
We must not reuse per-request memory across multiple requests, so this
check triggered during RINIT makes no sense. As explained in the bug
report[1], it can be even harmful, if some request startup fails, and
the pointers refer to already freed memory in the next request.
[1] <https://bugs.php.net/76167>
Closes GH-7604.
Among the text encodings supported by mbstring are several which are
not really 'text encodings'. These include Base64, QPrint, UUencode,
HTML entities, '7 bit', and '8 bit'.
Rather than providing an explicit list of text encodings which they are
interested in, users may pass the output of mb_list_encodings to
mb_detect_encoding. Since Base64, QPrint, and so on are included in
the output of mb_list_encodings, mb_detect_encoding can return one of
these as its 'detected encoding' (and in fact, this often happens).
Before mb_detect_encoding was enhanced so it could detect any of the
supported text encodings, this did not happen, and it is never desired.
Originally, `mb_detect_encoding` essentially just checked all candidate
encodings to see which ones the input string was valid in. However, it
was only able to do this for a limited few of all the text encodings
which are officially supported by mbstring.
In 3e7acf901d, I modified it so it could 'detect' any text encoding
supported by mbstring. While this is arguably an improvement, if the
only text encodings one is interested in are those which
`mb_detect_encoding` could originally handle, the old
`mb_detect_encoding` may have been preferable. Because the new one has
more possible encodings which it can guess, it also has more chances to
get the answer wrong.
This commit adjusts the detection heuristics to provide accurate
detection in a wider variety of scenarios. While the previous detection
code would frequently confuse UTF-32BE with UTF-32LE or UTF-16BE with
UTF-16LE, the adjusted code is extremely accurate in those cases.
Detection for Chinese text in Chinese encodings like GB18030 or BIG5
and for Japanese text in Japanese encodings like EUC-JP or SJIS is
greatly improved. Detection of UTF-7 is also greatly improved. An 8KB
table, with one bit for each codepoint from U+0000 up to U+FFFF, is
used to achieve this.
One significant constraint is that the heuristics are completely based
on looking at each codepoint in a string in isolation, treating some
codepoints as 'likely' and others as 'unlikely'. It might still be
possible to achieve great gains in detection accuracy by looking at
sequences of codepoints rather than individual codepoints. However,
this might require huge tables. Further, we might need a huge corpus
of text in various languages to derive those tables.
Accuracy is still dismal when trying to distinguish single-byte
encodings like ISO-8859-1, ISO-8859-2, KOI8-R, and so on. This is
because the valid bytes in these encodings are basically all the same,
and all valid bytes decode to 'likely' codepoints, so our method of
detection (which is based on rating codepoints as likely or unlikely)
cannot tell any difference between the candidates at all. It just
selects the first encoding in the provided list of candidates.
Speaking of which, if one wants to get good results from
`mb_detect_encoding`, it is important to order the list of candidate
encodings according to your prior belief of which are more likely to
be correct. When the function cannot tell any difference between two
candidates, it returns whichever appeared earlier in the array.
mb_convert_kana is controlled by user-provided flags, which specify what it should convert
and to what. These flags come in inverse pairs, for example "fullwidth numerals to halfwidth
numerals" and "halfwidth numerals to fullwidth numerals". It does not make sense to combine
inverse flags.
But, clever reader of commit logs, you will surely say: What if I want all my halfwidth
numerals to become fullwidth, and all my fullwidth numerals to become halfwidth? Much too
clever, you are! Let's put aside the fact that this bizarre switch-up is ridiculous and
will never be used, and face up to another stark reality: mb_convert_kana does not work
for that case, and never has. This was probably never noticed because nobody ever tried.
Disallowing useless combinations of flags gives freedom to rearrange the kana conversion
code without changing behavior.
We can also reject unrecognized flags. This may help users to catch bugs.
Interestingly, the existing tests used a 'Z' flag, which is useless (it's not recognized
at all).
Rather than doing a linear search of a table of fullwidth codepoint
ranges for every input character,
1) Short-cut the search if the codepoint is below the first such range
2) Otherwise, do a binary (rather than linear) search