php-src/ext/random/gammasection.c
Tim Düsterhus 582b724c35
random: Fix γ-section implementation for Randomizer::getFloat() (#12402)
The reference implementation of the "Drawing Random Floating-Point Numbers from
an Interval" paper contains two mistakes that will result in erroneous values
being returned under certain circumstances:

- For large values of `g` the multiplication of `k * g` might overflow to
  infinity.
- The value of `ceilint()` might exceed 2^53, possibly leading to a rounding
  error when promoting `k` to double within the multiplication of `k * g`.

This commit updates the implementation based on Prof. Goualard suggestions
after reaching out to him. It will correctly handle inputs larger than 2^-1020
in absolute values. This limitation will be documented and those inputs
possibly be rejected in a follow-up commit depending on performance concerns.
2023-10-13 17:55:14 +02:00

184 lines
4.9 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
+----------------------------------------------------------------------+
| Copyright (c) The PHP Group |
+----------------------------------------------------------------------+
| This source file is subject to version 3.01 of the PHP license, |
| that is bundled with this package in the file LICENSE, and is |
| available through the world-wide-web at the following url: |
| https://www.php.net/license/3_01.txt |
| If you did not receive a copy of the PHP license and are unable to |
| obtain it through the world-wide-web, please send a note to |
| license@php.net so we can mail you a copy immediately. |
+----------------------------------------------------------------------+
| Authors: Tim Düsterhus <timwolla@php.net> |
| |
| Based on code from: Frédéric Goualard |
| Corrected to handled appropriately random integers larger than 2^53 |
| converted to double precision floats, and to avoid overflows for |
| large gammas. |
+----------------------------------------------------------------------+
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "php.h"
#include "php_random.h"
#include <math.h>
/* This file implements the γ-section algorithm as published in:
*
* Drawing Random Floating-Point Numbers from an Interval. Frédéric
* Goualard, ACM Trans. Model. Comput. Simul., 32:3, 2022.
* https://doi.org/10.1145/3503512
*/
static double gamma_low(double x)
{
return x - nextafter(x, -DBL_MAX);
}
static double gamma_high(double x)
{
return nextafter(x, DBL_MAX) - x;
}
static double gamma_max(double x, double y)
{
return (fabs(x) > fabs(y)) ? gamma_high(x) : gamma_low(y);
}
static void splitint64(uint64_t v, double *vhi, double *vlo)
{
*vhi = v >> 2;
*vlo = v & UINT64_C(0x3);
}
static uint64_t ceilint(double a, double b, double g)
{
double s = b / g - a / g;
double e;
if (fabs(a) <= fabs(b)) {
e = -a / g - (s - b / g);
} else {
e = b / g - (s + a / g);
}
double si = ceil(s);
return (s != si) ? (uint64_t)si : (uint64_t)si + (e > 0);
}
PHPAPI double php_random_gammasection_closed_open(const php_random_algo *algo, php_random_status *status, double min, double max)
{
double g = gamma_max(min, max);
uint64_t hi = ceilint(min, max, g);
if (UNEXPECTED(max <= min || hi < 1)) {
return NAN;
}
uint64_t k = 1 + php_random_range64(algo, status, hi - 1); /* [1, hi] */
if (fabs(min) <= fabs(max)) {
if (k == hi) {
return min;
} else {
double k_hi, k_lo;
splitint64(k, &k_hi, &k_lo);
return 0x1p+2 * (max * 0x1p-2 - k_hi * g) - k_lo * g;
}
} else {
double k_hi, k_lo;
splitint64(k - 1, &k_hi, &k_lo);
return 0x1p+2 * (min * 0x1p-2 + k_hi * g) + k_lo * g;
}
}
PHPAPI double php_random_gammasection_closed_closed(const php_random_algo *algo, php_random_status *status, double min, double max)
{
double g = gamma_max(min, max);
uint64_t hi = ceilint(min, max, g);
if (UNEXPECTED(max < min)) {
return NAN;
}
uint64_t k = php_random_range64(algo, status, hi); /* [0, hi] */
if (fabs(min) <= fabs(max)) {
if (k == hi) {
return min;
} else {
double k_hi, k_lo;
splitint64(k, &k_hi, &k_lo);
return 0x1p+2 * (max * 0x1p-2 - k_hi * g) - k_lo * g;
}
} else {
if (k == hi) {
return max;
} else {
double k_hi, k_lo;
splitint64(k, &k_hi, &k_lo);
return 0x1p+2 * (min * 0x1p-2 + k_hi * g) + k_lo * g;
}
}
}
PHPAPI double php_random_gammasection_open_closed(const php_random_algo *algo, php_random_status *status, double min, double max)
{
double g = gamma_max(min, max);
uint64_t hi = ceilint(min, max, g);
if (UNEXPECTED(max <= min || hi < 1)) {
return NAN;
}
uint64_t k = php_random_range64(algo, status, hi - 1); /* [0, hi - 1] */
if (fabs(min) <= fabs(max)) {
double k_hi, k_lo;
splitint64(k, &k_hi, &k_lo);
return 0x1p+2 * (max * 0x1p-2 - k_hi * g) - k_lo * g;
} else {
if (k == (hi - 1)) {
return max;
} else {
double k_hi, k_lo;
splitint64(k + 1, &k_hi, &k_lo);
return 0x1p+2 * (min * 0x1p-2 + k_hi * g) + k_lo * g;
}
}
}
PHPAPI double php_random_gammasection_open_open(const php_random_algo *algo, php_random_status *status, double min, double max)
{
double g = gamma_max(min, max);
uint64_t hi = ceilint(min, max, g);
if (UNEXPECTED(max <= min || hi < 2)) {
return NAN;
}
uint64_t k = 1 + php_random_range64(algo, status, hi - 2); /* [1, hi - 1] */
if (fabs(min) <= fabs(max)) {
double k_hi, k_lo;
splitint64(k, &k_hi, &k_lo);
return 0x1p+2 * (max * 0x1p-2 - k_hi * g) - k_lo * g;
} else {
double k_hi, k_lo;
splitint64(k, &k_hi, &k_lo);
return 0x1p+2 * (min * 0x1p-2 + k_hi * g) + k_lo * g;
}
}