php-src/Zend/Optimizer/sccp.c
Christoph M. Becker 2f4973fd88
Revert GH-10279
Cf. <https://github.com/php/php-src/pull/10220#issuecomment-1383739816>.

This reverts commit 45a128c9de.
This reverts commit 1eb71c3f15.
This reverts commit 492523a779.
This reverts commit c7a4633891.
This reverts commit 308adb915c.
This reverts commit cd27d5e07f.
This reverts commit c5933409b4.
This reverts commit 46371f4eb3.
This reverts commit 623e2e9fc6.
This reverts commit e7434c1247.
This reverts commit d28d323ca2.
This reverts commit 1a067b84ee.
This reverts commit a55c0c5fc3.
This reverts commit b5aeb3a4d4.
This reverts commit f061a035e4.
This reverts commit b088575119.
This reverts commit b1d48774a7.
This reverts commit 94f9a20ce6.
This reverts commit 4831e48708.
This reverts commit cd985de190.
This reverts commit 9521d21681.
This reverts commit d6136151e9.
2023-01-16 12:25:59 +01:00

2439 lines
68 KiB
C

/*
+----------------------------------------------------------------------+
| Zend Engine, SCCP - Sparse Conditional Constant Propagation |
+----------------------------------------------------------------------+
| Copyright (c) The PHP Group |
+----------------------------------------------------------------------+
| This source file is subject to version 3.01 of the PHP license, |
| that is bundled with this package in the file LICENSE, and is |
| available through the world-wide-web at the following url: |
| https://www.php.net/license/3_01.txt |
| If you did not receive a copy of the PHP license and are unable to |
| obtain it through the world-wide-web, please send a note to |
| license@php.net so we can mail you a copy immediately. |
+----------------------------------------------------------------------+
| Authors: Nikita Popov <nikic@php.net> |
| Dmitry Stogov <dmitry@php.net> |
+----------------------------------------------------------------------+
*/
#include "zend_API.h"
#include "zend_exceptions.h"
#include "zend_ini.h"
#include "zend_type_info.h"
#include "Optimizer/zend_optimizer_internal.h"
#include "Optimizer/zend_call_graph.h"
#include "Optimizer/zend_inference.h"
#include "Optimizer/scdf.h"
#include "Optimizer/zend_dump.h"
/* This implements sparse conditional constant propagation (SCCP) based on the SCDF framework. The
* used value lattice is defined as follows:
*
* BOT < {constant values} < TOP
*
* TOP indicates an underdefined value, i.e. that we do not yet know the value of variable.
* BOT indicates an overdefined value, i.e. that we know the variable to be non-constant.
*
* All variables are optimistically initialized to TOP, apart from the implicit variables defined
* at the start of the first block. Note that variables that MAY_BE_REF are *not* initialized to
* BOT. We rely on the fact that any operation resulting in a reference will produce a BOT anyway.
* This is better because such operations might never be reached due to the conditional nature of
* the algorithm.
*
* The meet operation for phi functions is defined as follows:
* BOT + any = BOT
* TOP + any = any
* C_i + C_i = C_i (i.e. two equal constants)
* C_i + C_j = BOT (i.e. two different constants)
*
* When evaluating instructions TOP and BOT are handled as follows:
* a) If any operand is BOT, the result is BOT. The main exception to this is op1 of ASSIGN, which
* is ignored. However, if the op1 MAY_BE_REF we do have to propagate the BOT.
* b) Otherwise, if the instruction can never be evaluated (either in general, or with the
* specific modifiers) the result is BOT.
* c) Otherwise, if any operand is TOP, the result is TOP.
* d) Otherwise (at this point all operands are known and constant), if we can compute the result
* for these specific constants (without throwing notices or similar) then that is the result.
* e) Otherwise the result is BOT.
*
* It is sometimes possible to determine a result even if one argument is TOP / BOT, e.g. for things
* like BOT*0. Right now we don't bother with this.
*
* Feasible successors for conditional branches are determined as follows:
* a) If we don't support the branch type or branch on BOT, all successors are feasible.
* b) Otherwise, if we branch on TOP none of the successors are feasible.
* c) Otherwise (we branch on a constant), the feasible successors are marked based on the constant
* (usually only one successor will be feasible).
*
* The original SCCP algorithm is extended with ability to propagate constant array
* elements and object properties. The extension is based on a variation of Array
* SSA form and its application to Spare Constant Propagation, described at
* "Array SSA Form" by Vivek Sarkar, Kathleen Knobe and Stephen Fink in chapter
* 16 of the SSA book.
*/
#define SCP_DEBUG 0
typedef struct _sccp_ctx {
scdf_ctx scdf;
zend_call_info **call_map;
zval *values;
zval top;
zval bot;
} sccp_ctx;
#define TOP ((zend_uchar)-1)
#define BOT ((zend_uchar)-2)
#define PARTIAL_ARRAY ((zend_uchar)-3)
#define PARTIAL_OBJECT ((zend_uchar)-4)
#define IS_TOP(zv) (Z_TYPE_P(zv) == TOP)
#define IS_BOT(zv) (Z_TYPE_P(zv) == BOT)
#define IS_PARTIAL_ARRAY(zv) (Z_TYPE_P(zv) == PARTIAL_ARRAY)
#define IS_PARTIAL_OBJECT(zv) (Z_TYPE_P(zv) == PARTIAL_OBJECT)
#define MAKE_PARTIAL_ARRAY(zv) (Z_TYPE_INFO_P(zv) = PARTIAL_ARRAY | (IS_TYPE_REFCOUNTED << Z_TYPE_FLAGS_SHIFT))
#define MAKE_PARTIAL_OBJECT(zv) (Z_TYPE_INFO_P(zv) = PARTIAL_OBJECT | (IS_TYPE_REFCOUNTED << Z_TYPE_FLAGS_SHIFT))
#define MAKE_TOP(zv) (Z_TYPE_INFO_P(zv) = TOP)
#define MAKE_BOT(zv) (Z_TYPE_INFO_P(zv) = BOT)
static void scp_dump_value(zval *zv) {
if (IS_TOP(zv)) {
fprintf(stderr, " top");
} else if (IS_BOT(zv)) {
fprintf(stderr, " bot");
} else if (Z_TYPE_P(zv) == IS_ARRAY || IS_PARTIAL_ARRAY(zv)) {
fprintf(stderr, " %s[", IS_PARTIAL_ARRAY(zv) ? "partial " : "");
zend_dump_ht(Z_ARRVAL_P(zv));
fprintf(stderr, "]");
} else if (IS_PARTIAL_OBJECT(zv)) {
fprintf(stderr, " {");
zend_dump_ht(Z_ARRVAL_P(zv));
fprintf(stderr, "}");
} else {
zend_dump_const(zv);
}
}
static void empty_partial_array(zval *zv)
{
MAKE_PARTIAL_ARRAY(zv);
Z_ARR_P(zv) = zend_new_array(8);
}
static void dup_partial_array(zval *dst, zval *src)
{
MAKE_PARTIAL_ARRAY(dst);
Z_ARR_P(dst) = zend_array_dup(Z_ARR_P(src));
}
static void empty_partial_object(zval *zv)
{
MAKE_PARTIAL_OBJECT(zv);
Z_ARR_P(zv) = zend_new_array(8);
}
static void dup_partial_object(zval *dst, zval *src)
{
MAKE_PARTIAL_OBJECT(dst);
Z_ARR_P(dst) = zend_array_dup(Z_ARR_P(src));
}
static inline bool value_known(zval *zv) {
return !IS_TOP(zv) && !IS_BOT(zv);
}
/* Sets new value for variable and ensures that it is lower or equal
* the previous one in the constant propagation lattice. */
static void set_value(scdf_ctx *scdf, sccp_ctx *ctx, int var, zval *new) {
zval *value = &ctx->values[var];
if (IS_BOT(value) || IS_TOP(new)) {
return;
}
#if SCP_DEBUG
fprintf(stderr, "Lowering #%d.", var);
zend_dump_var(scdf->op_array, IS_CV, scdf->ssa->vars[var].var);
fprintf(stderr, " from");
scp_dump_value(value);
fprintf(stderr, " to");
scp_dump_value(new);
fprintf(stderr, "\n");
#endif
if (IS_TOP(value) || IS_BOT(new)) {
zval_ptr_dtor_nogc(value);
ZVAL_COPY(value, new);
scdf_add_to_worklist(scdf, var);
return;
}
/* Always replace PARTIAL_(ARRAY|OBJECT), as new maybe changed by join_partial_(arrays|object) */
if (IS_PARTIAL_ARRAY(new) || IS_PARTIAL_OBJECT(new)) {
if (Z_TYPE_P(value) != Z_TYPE_P(new)
|| zend_hash_num_elements(Z_ARR_P(new)) != zend_hash_num_elements(Z_ARR_P(value))) {
zval_ptr_dtor_nogc(value);
ZVAL_COPY(value, new);
scdf_add_to_worklist(scdf, var);
}
return;
}
#if ZEND_DEBUG
ZEND_ASSERT(zend_is_identical(value, new) ||
(Z_TYPE_P(value) == IS_DOUBLE && Z_TYPE_P(new) == IS_DOUBLE && isnan(Z_DVAL_P(value)) && isnan(Z_DVAL_P(new))));
#endif
}
static zval *get_op1_value(sccp_ctx *ctx, zend_op *opline, zend_ssa_op *ssa_op) {
if (opline->op1_type == IS_CONST) {
return CT_CONSTANT_EX(ctx->scdf.op_array, opline->op1.constant);
} else if (ssa_op->op1_use != -1) {
return &ctx->values[ssa_op->op1_use];
} else {
return NULL;
}
}
static zval *get_op2_value(sccp_ctx *ctx, zend_op *opline, zend_ssa_op *ssa_op) {
if (opline->op2_type == IS_CONST) {
return CT_CONSTANT_EX(ctx->scdf.op_array, opline->op2.constant);
} else if (ssa_op->op2_use != -1) {
return &ctx->values[ssa_op->op2_use];
} else {
return NULL;
}
}
static bool can_replace_op1(
const zend_op_array *op_array, zend_op *opline, zend_ssa_op *ssa_op) {
switch (opline->opcode) {
case ZEND_PRE_INC:
case ZEND_PRE_DEC:
case ZEND_PRE_INC_OBJ:
case ZEND_PRE_DEC_OBJ:
case ZEND_POST_INC:
case ZEND_POST_DEC:
case ZEND_POST_INC_OBJ:
case ZEND_POST_DEC_OBJ:
case ZEND_ASSIGN:
case ZEND_ASSIGN_REF:
case ZEND_ASSIGN_DIM:
case ZEND_ASSIGN_OBJ:
case ZEND_ASSIGN_OBJ_REF:
case ZEND_ASSIGN_OP:
case ZEND_ASSIGN_DIM_OP:
case ZEND_ASSIGN_OBJ_OP:
case ZEND_ASSIGN_STATIC_PROP_OP:
case ZEND_FETCH_DIM_W:
case ZEND_FETCH_DIM_RW:
case ZEND_FETCH_DIM_UNSET:
case ZEND_FETCH_DIM_FUNC_ARG:
case ZEND_FETCH_OBJ_W:
case ZEND_FETCH_OBJ_RW:
case ZEND_FETCH_OBJ_UNSET:
case ZEND_FETCH_OBJ_FUNC_ARG:
case ZEND_FETCH_LIST_W:
case ZEND_UNSET_DIM:
case ZEND_UNSET_OBJ:
case ZEND_SEND_REF:
case ZEND_SEND_VAR_EX:
case ZEND_SEND_FUNC_ARG:
case ZEND_SEND_UNPACK:
case ZEND_SEND_ARRAY:
case ZEND_SEND_USER:
case ZEND_FE_RESET_RW:
return 0;
/* Do not accept CONST */
case ZEND_ROPE_ADD:
case ZEND_ROPE_END:
case ZEND_BIND_STATIC:
case ZEND_BIND_GLOBAL:
case ZEND_MAKE_REF:
case ZEND_UNSET_CV:
case ZEND_ISSET_ISEMPTY_CV:
return 0;
case ZEND_INIT_ARRAY:
case ZEND_ADD_ARRAY_ELEMENT:
return !(opline->extended_value & ZEND_ARRAY_ELEMENT_REF);
case ZEND_YIELD:
return !(op_array->fn_flags & ZEND_ACC_RETURN_REFERENCE);
case ZEND_VERIFY_RETURN_TYPE:
// TODO: This would require a non-local change ???
return 0;
case ZEND_OP_DATA:
return (opline - 1)->opcode != ZEND_ASSIGN_OBJ_REF &&
(opline - 1)->opcode != ZEND_ASSIGN_STATIC_PROP_REF;
default:
if (ssa_op->op1_def != -1) {
ZEND_UNREACHABLE();
return 0;
}
}
return 1;
}
static bool can_replace_op2(
const zend_op_array *op_array, zend_op *opline, zend_ssa_op *ssa_op) {
switch (opline->opcode) {
/* Do not accept CONST */
case ZEND_DECLARE_CLASS_DELAYED:
case ZEND_BIND_LEXICAL:
case ZEND_FE_FETCH_R:
case ZEND_FE_FETCH_RW:
return 0;
}
return 1;
}
static bool try_replace_op1(
sccp_ctx *ctx, zend_op *opline, zend_ssa_op *ssa_op, int var, zval *value) {
if (ssa_op->op1_use == var && can_replace_op1(ctx->scdf.op_array, opline, ssa_op)) {
zval zv;
ZVAL_COPY(&zv, value);
if (zend_optimizer_update_op1_const(ctx->scdf.op_array, opline, &zv)) {
return 1;
}
zval_ptr_dtor_nogc(&zv);
}
return 0;
}
static bool try_replace_op2(
sccp_ctx *ctx, zend_op *opline, zend_ssa_op *ssa_op, int var, zval *value) {
if (ssa_op->op2_use == var && can_replace_op2(ctx->scdf.op_array, opline, ssa_op)) {
zval zv;
ZVAL_COPY(&zv, value);
if (zend_optimizer_update_op2_const(ctx->scdf.op_array, opline, &zv)) {
return 1;
}
zval_ptr_dtor_nogc(&zv);
}
return 0;
}
static inline zend_result ct_eval_binary_op(zval *result, zend_uchar binop, zval *op1, zval *op2) {
/* TODO: We could implement support for evaluation of + on partial arrays. */
if (IS_PARTIAL_ARRAY(op1) || IS_PARTIAL_ARRAY(op2)) {
return FAILURE;
}
return zend_optimizer_eval_binary_op(result, binop, op1, op2);
}
static inline zend_result ct_eval_bool_cast(zval *result, zval *op) {
if (IS_PARTIAL_ARRAY(op)) {
if (zend_hash_num_elements(Z_ARRVAL_P(op)) == 0) {
/* An empty partial array may be non-empty at runtime, we don't know whether the
* result will be true or false. */
return FAILURE;
}
ZVAL_TRUE(result);
return SUCCESS;
}
ZVAL_BOOL(result, zend_is_true(op));
return SUCCESS;
}
static inline zend_result zval_to_string_offset(zend_long *result, zval *op) {
switch (Z_TYPE_P(op)) {
case IS_LONG:
*result = Z_LVAL_P(op);
return SUCCESS;
case IS_STRING:
if (IS_LONG == is_numeric_string(
Z_STRVAL_P(op), Z_STRLEN_P(op), result, NULL, 0)) {
return SUCCESS;
}
return FAILURE;
default:
return FAILURE;
}
}
static inline zend_result fetch_array_elem(zval **result, zval *op1, zval *op2) {
switch (Z_TYPE_P(op2)) {
case IS_NULL:
*result = zend_hash_find(Z_ARR_P(op1), ZSTR_EMPTY_ALLOC());
return SUCCESS;
case IS_FALSE:
*result = zend_hash_index_find(Z_ARR_P(op1), 0);
return SUCCESS;
case IS_TRUE:
*result = zend_hash_index_find(Z_ARR_P(op1), 1);
return SUCCESS;
case IS_LONG:
*result = zend_hash_index_find(Z_ARR_P(op1), Z_LVAL_P(op2));
return SUCCESS;
case IS_DOUBLE: {
zend_long lval = zend_dval_to_lval(Z_DVAL_P(op2));
if (!zend_is_long_compatible(Z_DVAL_P(op2), lval)) {
return FAILURE;
}
*result = zend_hash_index_find(Z_ARR_P(op1), lval);
return SUCCESS;
}
case IS_STRING:
*result = zend_symtable_find(Z_ARR_P(op1), Z_STR_P(op2));
return SUCCESS;
default:
return FAILURE;
}
}
static inline zend_result ct_eval_fetch_dim(zval *result, zval *op1, zval *op2, int support_strings) {
if (Z_TYPE_P(op1) == IS_ARRAY || IS_PARTIAL_ARRAY(op1)) {
zval *value;
if (fetch_array_elem(&value, op1, op2) == SUCCESS && value && !IS_BOT(value)) {
ZVAL_COPY(result, value);
return SUCCESS;
}
} else if (support_strings && Z_TYPE_P(op1) == IS_STRING) {
zend_long index;
if (zval_to_string_offset(&index, op2) == FAILURE) {
return FAILURE;
}
if (index >= 0 && index < Z_STRLEN_P(op1)) {
ZVAL_STR(result, zend_string_init(&Z_STRVAL_P(op1)[index], 1, 0));
return SUCCESS;
}
}
return FAILURE;
}
/* op1 may be NULL here to indicate an unset value */
static inline zend_result ct_eval_isset_isempty(zval *result, uint32_t extended_value, zval *op1) {
zval zv;
if (!(extended_value & ZEND_ISEMPTY)) {
ZVAL_BOOL(result, op1 && Z_TYPE_P(op1) != IS_NULL);
return SUCCESS;
} else if (!op1) {
ZVAL_TRUE(result);
return SUCCESS;
} else if (ct_eval_bool_cast(&zv, op1) == SUCCESS) {
ZVAL_BOOL(result, Z_TYPE(zv) == IS_FALSE);
return SUCCESS;
} else {
return FAILURE;
}
}
static inline zend_result ct_eval_isset_dim(zval *result, uint32_t extended_value, zval *op1, zval *op2) {
if (Z_TYPE_P(op1) == IS_ARRAY || IS_PARTIAL_ARRAY(op1)) {
zval *value;
if (fetch_array_elem(&value, op1, op2) == FAILURE) {
return FAILURE;
}
if (IS_PARTIAL_ARRAY(op1) && (!value || IS_BOT(value))) {
return FAILURE;
}
return ct_eval_isset_isempty(result, extended_value, value);
} else if (Z_TYPE_P(op1) == IS_STRING) {
// TODO
return FAILURE;
} else {
ZVAL_BOOL(result, (extended_value & ZEND_ISEMPTY));
return SUCCESS;
}
}
static inline zend_result ct_eval_del_array_elem(zval *result, zval *key) {
ZEND_ASSERT(IS_PARTIAL_ARRAY(result));
switch (Z_TYPE_P(key)) {
case IS_NULL:
zend_hash_del(Z_ARR_P(result), ZSTR_EMPTY_ALLOC());
break;
case IS_FALSE:
zend_hash_index_del(Z_ARR_P(result), 0);
break;
case IS_TRUE:
zend_hash_index_del(Z_ARR_P(result), 1);
break;
case IS_LONG:
zend_hash_index_del(Z_ARR_P(result), Z_LVAL_P(key));
break;
case IS_DOUBLE: {
zend_long lval = zend_dval_to_lval(Z_DVAL_P(key));
if (!zend_is_long_compatible(Z_DVAL_P(key), lval)) {
return FAILURE;
}
zend_hash_index_del(Z_ARR_P(result), lval);
break;
}
case IS_STRING:
zend_symtable_del(Z_ARR_P(result), Z_STR_P(key));
break;
default:
return FAILURE;
}
return SUCCESS;
}
static inline zend_result ct_eval_add_array_elem(zval *result, zval *value, zval *key) {
if (!key) {
SEPARATE_ARRAY(result);
if ((value = zend_hash_next_index_insert(Z_ARR_P(result), value))) {
Z_TRY_ADDREF_P(value);
return SUCCESS;
}
return FAILURE;
}
switch (Z_TYPE_P(key)) {
case IS_NULL:
SEPARATE_ARRAY(result);
value = zend_hash_update(Z_ARR_P(result), ZSTR_EMPTY_ALLOC(), value);
break;
case IS_FALSE:
SEPARATE_ARRAY(result);
value = zend_hash_index_update(Z_ARR_P(result), 0, value);
break;
case IS_TRUE:
SEPARATE_ARRAY(result);
value = zend_hash_index_update(Z_ARR_P(result), 1, value);
break;
case IS_LONG:
SEPARATE_ARRAY(result);
value = zend_hash_index_update(Z_ARR_P(result), Z_LVAL_P(key), value);
break;
case IS_DOUBLE: {
zend_long lval = zend_dval_to_lval(Z_DVAL_P(key));
if (!zend_is_long_compatible(Z_DVAL_P(key), lval)) {
return FAILURE;
}
SEPARATE_ARRAY(result);
value = zend_hash_index_update(
Z_ARR_P(result), lval, value);
break;
}
case IS_STRING:
SEPARATE_ARRAY(result);
value = zend_symtable_update(Z_ARR_P(result), Z_STR_P(key), value);
break;
default:
return FAILURE;
}
Z_TRY_ADDREF_P(value);
return SUCCESS;
}
static inline zend_result ct_eval_add_array_unpack(zval *result, zval *array) {
zend_string *key;
zval *value;
if (Z_TYPE_P(array) != IS_ARRAY) {
return FAILURE;
}
SEPARATE_ARRAY(result);
ZEND_HASH_FOREACH_STR_KEY_VAL(Z_ARRVAL_P(array), key, value) {
if (key) {
value = zend_hash_update(Z_ARR_P(result), key, value);
} else {
value = zend_hash_next_index_insert(Z_ARR_P(result), value);
}
if (!value) {
return FAILURE;
}
Z_TRY_ADDREF_P(value);
} ZEND_HASH_FOREACH_END();
return SUCCESS;
}
static inline zend_result ct_eval_assign_dim(zval *result, zval *value, zval *key) {
switch (Z_TYPE_P(result)) {
case IS_NULL:
case IS_FALSE:
array_init(result);
ZEND_FALLTHROUGH;
case IS_ARRAY:
case PARTIAL_ARRAY:
return ct_eval_add_array_elem(result, value, key);
case IS_STRING:
// TODO Before enabling this case, make sure ARRAY_DIM result op is correct
#if 0
zend_long index;
zend_string *new_str, *value_str;
if (!key || Z_TYPE_P(value) == IS_ARRAY
|| zval_to_string_offset(&index, key) == FAILURE || index < 0) {
return FAILURE;
}
if (index >= Z_STRLEN_P(result)) {
new_str = zend_string_alloc(index + 1, 0);
memcpy(ZSTR_VAL(new_str), Z_STRVAL_P(result), Z_STRLEN_P(result));
memset(ZSTR_VAL(new_str) + Z_STRLEN_P(result), ' ', index - Z_STRLEN_P(result));
ZSTR_VAL(new_str)[index + 1] = 0;
} else {
new_str = zend_string_init(Z_STRVAL_P(result), Z_STRLEN_P(result), 0);
}
value_str = zval_get_string(value);
ZVAL_STR(result, new_str);
Z_STRVAL_P(result)[index] = ZSTR_VAL(value_str)[0];
zend_string_release_ex(value_str, 0);
#endif
return FAILURE;
default:
return FAILURE;
}
}
static inline zend_result fetch_obj_prop(zval **result, zval *op1, zval *op2) {
switch (Z_TYPE_P(op2)) {
case IS_STRING:
*result = zend_symtable_find(Z_ARR_P(op1), Z_STR_P(op2));
return SUCCESS;
default:
return FAILURE;
}
}
static inline zend_result ct_eval_fetch_obj(zval *result, zval *op1, zval *op2) {
if (IS_PARTIAL_OBJECT(op1)) {
zval *value;
if (fetch_obj_prop(&value, op1, op2) == SUCCESS && value && !IS_BOT(value)) {
ZVAL_COPY(result, value);
return SUCCESS;
}
}
return FAILURE;
}
static inline zend_result ct_eval_isset_obj(zval *result, uint32_t extended_value, zval *op1, zval *op2) {
if (IS_PARTIAL_OBJECT(op1)) {
zval *value;
if (fetch_obj_prop(&value, op1, op2) == FAILURE) {
return FAILURE;
}
if (!value || IS_BOT(value)) {
return FAILURE;
}
return ct_eval_isset_isempty(result, extended_value, value);
} else {
ZVAL_BOOL(result, (extended_value & ZEND_ISEMPTY));
return SUCCESS;
}
}
static inline zend_result ct_eval_del_obj_prop(zval *result, zval *key) {
ZEND_ASSERT(IS_PARTIAL_OBJECT(result));
switch (Z_TYPE_P(key)) {
case IS_STRING:
zend_symtable_del(Z_ARR_P(result), Z_STR_P(key));
break;
default:
return FAILURE;
}
return SUCCESS;
}
static inline zend_result ct_eval_add_obj_prop(zval *result, zval *value, zval *key) {
switch (Z_TYPE_P(key)) {
case IS_STRING:
value = zend_symtable_update(Z_ARR_P(result), Z_STR_P(key), value);
break;
default:
return FAILURE;
}
Z_TRY_ADDREF_P(value);
return SUCCESS;
}
static inline zend_result ct_eval_assign_obj(zval *result, zval *value, zval *key) {
switch (Z_TYPE_P(result)) {
case IS_NULL:
case IS_FALSE:
empty_partial_object(result);
ZEND_FALLTHROUGH;
case PARTIAL_OBJECT:
return ct_eval_add_obj_prop(result, value, key);
default:
return FAILURE;
}
}
static inline zend_result ct_eval_incdec(zval *result, zend_uchar opcode, zval *op1) {
if (Z_TYPE_P(op1) == IS_ARRAY || IS_PARTIAL_ARRAY(op1)) {
return FAILURE;
}
ZVAL_COPY(result, op1);
if (opcode == ZEND_PRE_INC
|| opcode == ZEND_POST_INC
|| opcode == ZEND_PRE_INC_OBJ
|| opcode == ZEND_POST_INC_OBJ) {
increment_function(result);
} else {
decrement_function(result);
}
return SUCCESS;
}
static inline void ct_eval_type_check(zval *result, uint32_t type_mask, zval *op1) {
uint32_t type = Z_TYPE_P(op1);
if (type == PARTIAL_ARRAY) {
type = IS_ARRAY;
} else if (type == PARTIAL_OBJECT) {
type = IS_OBJECT;
}
ZVAL_BOOL(result, (type_mask >> type) & 1);
}
static inline zend_result ct_eval_in_array(zval *result, uint32_t extended_value, zval *op1, zval *op2) {
HashTable *ht;
bool res;
if (Z_TYPE_P(op2) != IS_ARRAY) {
return FAILURE;
}
ht = Z_ARRVAL_P(op2);
if (EXPECTED(Z_TYPE_P(op1) == IS_STRING)) {
res = zend_hash_exists(ht, Z_STR_P(op1));
} else if (extended_value) {
if (EXPECTED(Z_TYPE_P(op1) == IS_LONG)) {
res = zend_hash_index_exists(ht, Z_LVAL_P(op1));
} else {
res = 0;
}
} else if (Z_TYPE_P(op1) <= IS_FALSE) {
res = zend_hash_exists(ht, ZSTR_EMPTY_ALLOC());
} else {
zend_string *key;
zval key_tmp;
res = 0;
ZEND_HASH_MAP_FOREACH_STR_KEY(ht, key) {
ZVAL_STR(&key_tmp, key);
if (zend_compare(op1, &key_tmp) == 0) {
res = 1;
break;
}
} ZEND_HASH_FOREACH_END();
}
ZVAL_BOOL(result, res);
return SUCCESS;
}
static inline zend_result ct_eval_array_key_exists(zval *result, zval *op1, zval *op2) {
zval *value;
if (Z_TYPE_P(op2) != IS_ARRAY && !IS_PARTIAL_ARRAY(op2)) {
return FAILURE;
}
if (Z_TYPE_P(op1) != IS_STRING && Z_TYPE_P(op1) != IS_LONG && Z_TYPE_P(op1) != IS_NULL) {
return FAILURE;
}
if (fetch_array_elem(&value, op2, op1) == FAILURE) {
return FAILURE;
}
if (IS_PARTIAL_ARRAY(op2) && (!value || IS_BOT(value))) {
return FAILURE;
}
ZVAL_BOOL(result, value != NULL);
return SUCCESS;
}
static bool can_ct_eval_func_call(zend_function *func, zend_string *name, uint32_t num_args, zval **args) {
/* Precondition: func->type == ZEND_INTERNAL_FUNCTION, this is a global function */
/* Functions setting ZEND_ACC_COMPILE_TIME_EVAL (@compile-time-eval) must always produce the same result for the same arguments,
* and have no dependence on global state (such as locales). It is okay if they throw
* or warn on invalid arguments, as we detect this and will discard the evaluation result. */
if (func->common.fn_flags & ZEND_ACC_COMPILE_TIME_EVAL) {
/* This has @compile-time-eval in stub info and uses a macro such as ZEND_SUPPORTS_COMPILE_TIME_EVAL_FE */
return true;
}
#ifndef ZEND_WIN32
/* On Windows this function may be code page dependent. */
if (zend_string_equals_literal(name, "dirname")) {
return true;
}
#endif
if (num_args == 2) {
if (zend_string_equals_literal(name, "str_repeat")) {
/* Avoid creating overly large strings at compile-time. */
bool overflow;
return Z_TYPE_P(args[0]) == IS_STRING
&& Z_TYPE_P(args[1]) == IS_LONG
&& zend_safe_address(Z_STRLEN_P(args[0]), Z_LVAL_P(args[1]), 0, &overflow) < 64 * 1024
&& !overflow;
}
return false;
}
return false;
}
/* The functions chosen here are simple to implement and either likely to affect a branch,
* or just happened to be commonly used with constant operands in WP (need to test other
* applications as well, of course). */
static inline zend_result ct_eval_func_call(
zend_op_array *op_array, zval *result, zend_string *name, uint32_t num_args, zval **args) {
uint32_t i;
zend_function *func = zend_hash_find_ptr(CG(function_table), name);
if (!func || func->type != ZEND_INTERNAL_FUNCTION) {
return FAILURE;
}
if (num_args == 1 && Z_TYPE_P(args[0]) == IS_STRING &&
zend_optimizer_eval_special_func_call(result, name, Z_STR_P(args[0])) == SUCCESS) {
return SUCCESS;
}
if (!can_ct_eval_func_call(func, name, num_args, args)) {
return FAILURE;
}
zend_execute_data *prev_execute_data = EG(current_execute_data);
zend_execute_data *execute_data, dummy_frame;
zend_op dummy_opline;
/* Add a dummy frame to get the correct strict_types behavior. */
memset(&dummy_frame, 0, sizeof(zend_execute_data));
memset(&dummy_opline, 0, sizeof(zend_op));
dummy_frame.func = (zend_function *) op_array;
dummy_frame.opline = &dummy_opline;
dummy_opline.opcode = ZEND_DO_FCALL;
execute_data = safe_emalloc(num_args, sizeof(zval), ZEND_CALL_FRAME_SLOT * sizeof(zval));
memset(execute_data, 0, sizeof(zend_execute_data));
execute_data->prev_execute_data = &dummy_frame;
EG(current_execute_data) = execute_data;
/* Enable suppression and counting of warnings. */
ZEND_ASSERT(EG(capture_warnings_during_sccp) == 0);
EG(capture_warnings_during_sccp) = 1;
EX(func) = func;
EX_NUM_ARGS() = num_args;
for (i = 0; i < num_args; i++) {
ZVAL_COPY(EX_VAR_NUM(i), args[i]);
}
ZVAL_NULL(result);
func->internal_function.handler(execute_data, result);
for (i = 0; i < num_args; i++) {
zval_ptr_dtor_nogc(EX_VAR_NUM(i));
}
zend_result retval = SUCCESS;
if (EG(exception)) {
zval_ptr_dtor(result);
zend_clear_exception();
retval = FAILURE;
}
if (EG(capture_warnings_during_sccp) > 1) {
zval_ptr_dtor(result);
retval = FAILURE;
}
EG(capture_warnings_during_sccp) = 0;
efree(execute_data);
EG(current_execute_data) = prev_execute_data;
return retval;
}
#define SET_RESULT(op, zv) do { \
if (ssa_op->op##_def >= 0) { \
set_value(scdf, ctx, ssa_op->op##_def, zv); \
} \
} while (0)
#define SET_RESULT_BOT(op) SET_RESULT(op, &ctx->bot)
#define SET_RESULT_TOP(op) SET_RESULT(op, &ctx->top)
#define SKIP_IF_TOP(op) if (IS_TOP(op)) return;
static void sccp_visit_instr(scdf_ctx *scdf, zend_op *opline, zend_ssa_op *ssa_op) {
sccp_ctx *ctx = (sccp_ctx *) scdf;
zval *op1, *op2, zv; /* zv is a temporary to hold result values */
op1 = get_op1_value(ctx, opline, ssa_op);
op2 = get_op2_value(ctx, opline, ssa_op);
switch (opline->opcode) {
case ZEND_ASSIGN:
/* The value of op1 is irrelevant here, because we are overwriting it
* -- unless it can be a reference, in which case we propagate a BOT.
* The result is also BOT in this case, because it might be a typed reference. */
if (IS_BOT(op1) && (ctx->scdf.ssa->var_info[ssa_op->op1_use].type & MAY_BE_REF)) {
SET_RESULT_BOT(op1);
SET_RESULT_BOT(result);
} else {
SET_RESULT(op1, op2);
SET_RESULT(result, op2);
}
return;
case ZEND_ASSIGN_DIM:
{
zval *data = get_op1_value(ctx, opline+1, ssa_op+1);
/* If $a in $a[$b]=$c is UNDEF, treat it like NULL. There is no warning. */
if ((ctx->scdf.ssa->var_info[ssa_op->op1_use].type & MAY_BE_ANY) == 0) {
op1 = &EG(uninitialized_zval);
}
if (IS_BOT(op1)) {
SET_RESULT_BOT(result);
SET_RESULT_BOT(op1);
return;
}
SKIP_IF_TOP(op1);
SKIP_IF_TOP(data);
if (op2) {
SKIP_IF_TOP(op2);
}
if (op2 && IS_BOT(op2)) {
/* Update of unknown index */
SET_RESULT_BOT(result);
if (ssa_op->op1_def >= 0) {
empty_partial_array(&zv);
SET_RESULT(op1, &zv);
zval_ptr_dtor_nogc(&zv);
} else {
SET_RESULT_BOT(op1);
}
return;
}
if (IS_BOT(data)) {
SET_RESULT_BOT(result);
if ((IS_PARTIAL_ARRAY(op1)
|| Z_TYPE_P(op1) == IS_NULL
|| Z_TYPE_P(op1) == IS_FALSE
|| Z_TYPE_P(op1) == IS_ARRAY)
&& ssa_op->op1_def >= 0) {
if (Z_TYPE_P(op1) == IS_NULL || Z_TYPE_P(op1) == IS_FALSE) {
empty_partial_array(&zv);
} else {
dup_partial_array(&zv, op1);
}
if (!op2) {
/* We can't add NEXT element into partial array (skip it) */
SET_RESULT(op1, &zv);
} else if (ct_eval_del_array_elem(&zv, op2) == SUCCESS) {
SET_RESULT(op1, &zv);
} else {
SET_RESULT_BOT(op1);
}
zval_ptr_dtor_nogc(&zv);
} else {
SET_RESULT_BOT(op1);
}
} else {
if (IS_PARTIAL_ARRAY(op1)) {
dup_partial_array(&zv, op1);
} else {
ZVAL_COPY(&zv, op1);
}
if (!op2 && IS_PARTIAL_ARRAY(&zv)) {
/* We can't add NEXT element into partial array (skip it) */
SET_RESULT(result, data);
SET_RESULT(op1, &zv);
} else if (ct_eval_assign_dim(&zv, data, op2) == SUCCESS) {
/* Mark array containing partial array as partial */
if (IS_PARTIAL_ARRAY(data)) {
MAKE_PARTIAL_ARRAY(&zv);
}
SET_RESULT(result, data);
SET_RESULT(op1, &zv);
} else {
SET_RESULT_BOT(result);
SET_RESULT_BOT(op1);
}
zval_ptr_dtor_nogc(&zv);
}
return;
}
case ZEND_ASSIGN_OBJ:
if (ssa_op->op1_def >= 0
&& ctx->scdf.ssa->vars[ssa_op->op1_def].escape_state == ESCAPE_STATE_NO_ESCAPE) {
zval *data = get_op1_value(ctx, opline+1, ssa_op+1);
zend_ssa_var_info *var_info = &ctx->scdf.ssa->var_info[ssa_op->op1_use];
/* Don't try to propagate assignments to (potentially) typed properties. We would
* need to deal with errors and type conversions first. */
// TODO: Distinguish dynamic and declared property assignments here?
if (!var_info->ce || (var_info->ce->ce_flags & ZEND_ACC_HAS_TYPE_HINTS) ||
!(var_info->ce->ce_flags & ZEND_ACC_ALLOW_DYNAMIC_PROPERTIES)) {
SET_RESULT_BOT(result);
SET_RESULT_BOT(op1);
return;
}
if (IS_BOT(op1)) {
SET_RESULT_BOT(result);
SET_RESULT_BOT(op1);
return;
}
SKIP_IF_TOP(op1);
SKIP_IF_TOP(data);
SKIP_IF_TOP(op2);
if (IS_BOT(op2)) {
/* Update of unknown property */
SET_RESULT_BOT(result);
empty_partial_object(&zv);
SET_RESULT(op1, &zv);
zval_ptr_dtor_nogc(&zv);
return;
}
if (IS_BOT(data)) {
SET_RESULT_BOT(result);
if (IS_PARTIAL_OBJECT(op1)
|| Z_TYPE_P(op1) == IS_NULL
|| Z_TYPE_P(op1) == IS_FALSE) {
if (Z_TYPE_P(op1) == IS_NULL || Z_TYPE_P(op1) == IS_FALSE) {
empty_partial_object(&zv);
} else {
dup_partial_object(&zv, op1);
}
if (ct_eval_del_obj_prop(&zv, op2) == SUCCESS) {
SET_RESULT(op1, &zv);
} else {
SET_RESULT_BOT(op1);
}
zval_ptr_dtor_nogc(&zv);
} else {
SET_RESULT_BOT(op1);
}
} else {
if (IS_PARTIAL_OBJECT(op1)) {
dup_partial_object(&zv, op1);
} else {
ZVAL_COPY(&zv, op1);
}
if (ct_eval_assign_obj(&zv, data, op2) == SUCCESS) {
SET_RESULT(result, data);
SET_RESULT(op1, &zv);
} else {
SET_RESULT_BOT(result);
SET_RESULT_BOT(op1);
}
zval_ptr_dtor_nogc(&zv);
}
} else {
SET_RESULT_BOT(result);
SET_RESULT_BOT(op1);
}
return;
case ZEND_SEND_VAL:
case ZEND_SEND_VAR:
{
/* If the value of a SEND for an ICALL changes, we need to reconsider the
* ICALL result value. Otherwise we can ignore the opcode. */
zend_call_info *call;
if (!ctx->call_map) {
return;
}
call = ctx->call_map[opline - ctx->scdf.op_array->opcodes];
if (IS_TOP(op1) || !call || !call->caller_call_opline
|| call->caller_call_opline->opcode != ZEND_DO_ICALL) {
return;
}
opline = call->caller_call_opline;
ssa_op = &ctx->scdf.ssa->ops[opline - ctx->scdf.op_array->opcodes];
break;
}
case ZEND_INIT_ARRAY:
case ZEND_ADD_ARRAY_ELEMENT:
{
zval *result = NULL;
if (opline->opcode == ZEND_ADD_ARRAY_ELEMENT) {
result = &ctx->values[ssa_op->result_use];
if (IS_BOT(result)) {
SET_RESULT_BOT(result);
SET_RESULT_BOT(op1);
return;
}
SKIP_IF_TOP(result);
}
if (op1) {
SKIP_IF_TOP(op1);
}
if (op2) {
SKIP_IF_TOP(op2);
}
/* We want to avoid keeping around intermediate arrays for each SSA variable in the
* ADD_ARRAY_ELEMENT chain. We do this by only keeping the array on the last opcode
* and use a NULL value everywhere else. */
if (result && Z_TYPE_P(result) == IS_NULL) {
SET_RESULT_BOT(result);
return;
}
if (op2 && IS_BOT(op2)) {
/* Update of unknown index */
SET_RESULT_BOT(op1);
if (ssa_op->result_def >= 0) {
empty_partial_array(&zv);
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
} else {
SET_RESULT_BOT(result);
}
return;
}
if ((op1 && IS_BOT(op1))
|| (opline->extended_value & ZEND_ARRAY_ELEMENT_REF)) {
SET_RESULT_BOT(op1);
if (ssa_op->result_def >= 0) {
if (!result) {
empty_partial_array(&zv);
} else {
MAKE_PARTIAL_ARRAY(result);
ZVAL_COPY_VALUE(&zv, result);
ZVAL_NULL(result);
}
if (!op2) {
/* We can't add NEXT element into partial array (skip it) */
SET_RESULT(result, &zv);
} else if (ct_eval_del_array_elem(&zv, op2) == SUCCESS) {
SET_RESULT(result, &zv);
} else {
SET_RESULT_BOT(result);
}
zval_ptr_dtor_nogc(&zv);
} else {
/* If any operand is BOT, mark the result as BOT right away.
* Exceptions to this rule are handled above. */
SET_RESULT_BOT(result);
}
} else {
if (result) {
ZVAL_COPY_VALUE(&zv, result);
ZVAL_NULL(result);
} else {
array_init(&zv);
}
if (op1) {
if (!op2 && IS_PARTIAL_ARRAY(&zv)) {
/* We can't add NEXT element into partial array (skip it) */
SET_RESULT(result, &zv);
} else if (ct_eval_add_array_elem(&zv, op1, op2) == SUCCESS) {
if (IS_PARTIAL_ARRAY(op1)) {
MAKE_PARTIAL_ARRAY(&zv);
}
SET_RESULT(result, &zv);
} else {
SET_RESULT_BOT(result);
}
} else {
SET_RESULT(result, &zv);
}
zval_ptr_dtor_nogc(&zv);
}
return;
}
case ZEND_ADD_ARRAY_UNPACK: {
zval *result = &ctx->values[ssa_op->result_use];
if (IS_BOT(result) || IS_BOT(op1)) {
SET_RESULT_BOT(result);
return;
}
SKIP_IF_TOP(result);
SKIP_IF_TOP(op1);
/* See comment for ADD_ARRAY_ELEMENT. */
if (Z_TYPE_P(result) == IS_NULL) {
SET_RESULT_BOT(result);
return;
}
ZVAL_COPY_VALUE(&zv, result);
ZVAL_NULL(result);
if (ct_eval_add_array_unpack(&zv, op1) == SUCCESS) {
SET_RESULT(result, &zv);
} else {
SET_RESULT_BOT(result);
}
zval_ptr_dtor_nogc(&zv);
return;
}
case ZEND_NEW:
if (ssa_op->result_def >= 0
&& ctx->scdf.ssa->vars[ssa_op->result_def].escape_state == ESCAPE_STATE_NO_ESCAPE) {
empty_partial_object(&zv);
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
} else {
SET_RESULT_BOT(result);
}
return;
case ZEND_ASSIGN_STATIC_PROP_REF:
case ZEND_ASSIGN_OBJ_REF:
/* Handled here because we also need to BOT the OP_DATA operand, while the generic
* code below will not do so. */
SET_RESULT_BOT(result);
SET_RESULT_BOT(op1);
SET_RESULT_BOT(op2);
opline++;
ssa_op++;
SET_RESULT_BOT(op1);
break;
}
if ((op1 && IS_BOT(op1)) || (op2 && IS_BOT(op2))) {
/* If any operand is BOT, mark the result as BOT right away.
* Exceptions to this rule are handled above. */
SET_RESULT_BOT(result);
SET_RESULT_BOT(op1);
SET_RESULT_BOT(op2);
return;
}
switch (opline->opcode) {
case ZEND_ADD:
case ZEND_SUB:
case ZEND_MUL:
case ZEND_DIV:
case ZEND_MOD:
case ZEND_POW:
case ZEND_SL:
case ZEND_SR:
case ZEND_CONCAT:
case ZEND_FAST_CONCAT:
case ZEND_IS_EQUAL:
case ZEND_IS_NOT_EQUAL:
case ZEND_IS_SMALLER:
case ZEND_IS_SMALLER_OR_EQUAL:
case ZEND_IS_IDENTICAL:
case ZEND_IS_NOT_IDENTICAL:
case ZEND_BW_OR:
case ZEND_BW_AND:
case ZEND_BW_XOR:
case ZEND_BOOL_XOR:
case ZEND_CASE:
case ZEND_CASE_STRICT:
SKIP_IF_TOP(op1);
SKIP_IF_TOP(op2);
if (ct_eval_binary_op(&zv, opline->opcode, op1, op2) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_ASSIGN_OP:
case ZEND_ASSIGN_DIM_OP:
case ZEND_ASSIGN_OBJ_OP:
case ZEND_ASSIGN_STATIC_PROP_OP:
if (op1) {
SKIP_IF_TOP(op1);
}
if (op2) {
SKIP_IF_TOP(op2);
}
if (opline->opcode == ZEND_ASSIGN_OP) {
if (ct_eval_binary_op(&zv, opline->extended_value, op1, op2) == SUCCESS) {
SET_RESULT(op1, &zv);
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
} else if (opline->opcode == ZEND_ASSIGN_DIM_OP) {
if ((IS_PARTIAL_ARRAY(op1) || Z_TYPE_P(op1) == IS_ARRAY)
&& ssa_op->op1_def >= 0 && op2) {
zval tmp;
zval *data = get_op1_value(ctx, opline+1, ssa_op+1);
SKIP_IF_TOP(data);
if (ct_eval_fetch_dim(&tmp, op1, op2, 0) == SUCCESS) {
if (IS_BOT(data)) {
dup_partial_array(&zv, op1);
ct_eval_del_array_elem(&zv, op2);
SET_RESULT_BOT(result);
SET_RESULT(op1, &zv);
zval_ptr_dtor_nogc(&tmp);
zval_ptr_dtor_nogc(&zv);
break;
}
if (ct_eval_binary_op(&tmp, opline->extended_value, &tmp, data) == FAILURE) {
SET_RESULT_BOT(result);
SET_RESULT_BOT(op1);
zval_ptr_dtor_nogc(&tmp);
break;
}
if (IS_PARTIAL_ARRAY(op1)) {
dup_partial_array(&zv, op1);
} else {
ZVAL_COPY(&zv, op1);
}
if (ct_eval_assign_dim(&zv, &tmp, op2) == SUCCESS) {
SET_RESULT(result, &tmp);
SET_RESULT(op1, &zv);
zval_ptr_dtor_nogc(&tmp);
zval_ptr_dtor_nogc(&zv);
break;
}
zval_ptr_dtor_nogc(&tmp);
zval_ptr_dtor_nogc(&zv);
}
}
} else if (opline->opcode == ZEND_ASSIGN_OBJ_OP) {
if (op1 && IS_PARTIAL_OBJECT(op1)
&& ssa_op->op1_def >= 0
&& ctx->scdf.ssa->vars[ssa_op->op1_def].escape_state == ESCAPE_STATE_NO_ESCAPE) {
zval tmp;
zval *data = get_op1_value(ctx, opline+1, ssa_op+1);
SKIP_IF_TOP(data);
if (ct_eval_fetch_obj(&tmp, op1, op2) == SUCCESS) {
if (IS_BOT(data)) {
dup_partial_object(&zv, op1);
ct_eval_del_obj_prop(&zv, op2);
SET_RESULT_BOT(result);
SET_RESULT(op1, &zv);
zval_ptr_dtor_nogc(&tmp);
zval_ptr_dtor_nogc(&zv);
break;
}
if (ct_eval_binary_op(&tmp, opline->extended_value, &tmp, data) == FAILURE) {
SET_RESULT_BOT(result);
SET_RESULT_BOT(op1);
zval_ptr_dtor_nogc(&tmp);
break;
}
dup_partial_object(&zv, op1);
if (ct_eval_assign_obj(&zv, &tmp, op2) == SUCCESS) {
SET_RESULT(result, &tmp);
SET_RESULT(op1, &zv);
zval_ptr_dtor_nogc(&tmp);
zval_ptr_dtor_nogc(&zv);
break;
}
zval_ptr_dtor_nogc(&tmp);
zval_ptr_dtor_nogc(&zv);
}
}
}
SET_RESULT_BOT(result);
SET_RESULT_BOT(op1);
break;
case ZEND_PRE_INC_OBJ:
case ZEND_PRE_DEC_OBJ:
case ZEND_POST_INC_OBJ:
case ZEND_POST_DEC_OBJ:
if (op1) {
SKIP_IF_TOP(op1);
SKIP_IF_TOP(op2);
if (IS_PARTIAL_OBJECT(op1)
&& ssa_op->op1_def >= 0
&& ctx->scdf.ssa->vars[ssa_op->op1_def].escape_state == ESCAPE_STATE_NO_ESCAPE) {
zval tmp1, tmp2;
if (ct_eval_fetch_obj(&tmp1, op1, op2) == SUCCESS
&& ct_eval_incdec(&tmp2, opline->opcode, &tmp1) == SUCCESS) {
dup_partial_object(&zv, op1);
ct_eval_assign_obj(&zv, &tmp2, op2);
if (opline->opcode == ZEND_PRE_INC_OBJ || opline->opcode == ZEND_PRE_DEC_OBJ) {
SET_RESULT(result, &tmp2);
} else {
SET_RESULT(result, &tmp1);
}
zval_ptr_dtor_nogc(&tmp1);
zval_ptr_dtor_nogc(&tmp2);
SET_RESULT(op1, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
}
}
SET_RESULT_BOT(op1);
SET_RESULT_BOT(result);
break;
case ZEND_PRE_INC:
case ZEND_PRE_DEC:
SKIP_IF_TOP(op1);
if (ct_eval_incdec(&zv, opline->opcode, op1) == SUCCESS) {
SET_RESULT(op1, &zv);
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(op1);
SET_RESULT_BOT(result);
break;
case ZEND_POST_INC:
case ZEND_POST_DEC:
SKIP_IF_TOP(op1);
SET_RESULT(result, op1);
if (ct_eval_incdec(&zv, opline->opcode, op1) == SUCCESS) {
SET_RESULT(op1, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(op1);
break;
case ZEND_BW_NOT:
case ZEND_BOOL_NOT:
SKIP_IF_TOP(op1);
if (IS_PARTIAL_ARRAY(op1)) {
SET_RESULT_BOT(result);
break;
}
if (zend_optimizer_eval_unary_op(&zv, opline->opcode, op1) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_CAST:
SKIP_IF_TOP(op1);
if (IS_PARTIAL_ARRAY(op1)) {
SET_RESULT_BOT(result);
break;
}
if (zend_optimizer_eval_cast(&zv, opline->extended_value, op1) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_BOOL:
case ZEND_JMPZ_EX:
case ZEND_JMPNZ_EX:
SKIP_IF_TOP(op1);
if (ct_eval_bool_cast(&zv, op1) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_STRLEN:
SKIP_IF_TOP(op1);
if (zend_optimizer_eval_strlen(&zv, op1) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_YIELD_FROM:
// tmp = yield from [] -> tmp = null
SKIP_IF_TOP(op1);
if (Z_TYPE_P(op1) == IS_ARRAY && zend_hash_num_elements(Z_ARR_P(op1)) == 0) {
ZVAL_NULL(&zv);
SET_RESULT(result, &zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_COUNT:
SKIP_IF_TOP(op1);
if (Z_TYPE_P(op1) == IS_ARRAY) {
ZVAL_LONG(&zv, zend_hash_num_elements(Z_ARRVAL_P(op1)));
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_IN_ARRAY:
SKIP_IF_TOP(op1);
SKIP_IF_TOP(op2);
if (ct_eval_in_array(&zv, opline->extended_value, op1, op2) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_ARRAY_KEY_EXISTS:
SKIP_IF_TOP(op1);
SKIP_IF_TOP(op2);
if (ct_eval_array_key_exists(&zv, op1, op2) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_FETCH_DIM_R:
case ZEND_FETCH_DIM_IS:
case ZEND_FETCH_LIST_R:
SKIP_IF_TOP(op1);
SKIP_IF_TOP(op2);
if (ct_eval_fetch_dim(&zv, op1, op2, (opline->opcode != ZEND_FETCH_LIST_R)) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_ISSET_ISEMPTY_DIM_OBJ:
SKIP_IF_TOP(op1);
SKIP_IF_TOP(op2);
if (ct_eval_isset_dim(&zv, opline->extended_value, op1, op2) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_FETCH_OBJ_R:
case ZEND_FETCH_OBJ_IS:
if (op1) {
SKIP_IF_TOP(op1);
SKIP_IF_TOP(op2);
if (ct_eval_fetch_obj(&zv, op1, op2) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
}
SET_RESULT_BOT(result);
break;
case ZEND_ISSET_ISEMPTY_PROP_OBJ:
if (op1) {
SKIP_IF_TOP(op1);
SKIP_IF_TOP(op2);
if (ct_eval_isset_obj(&zv, opline->extended_value, op1, op2) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
}
SET_RESULT_BOT(result);
break;
case ZEND_QM_ASSIGN:
case ZEND_JMP_SET:
case ZEND_COALESCE:
case ZEND_COPY_TMP:
SET_RESULT(result, op1);
break;
case ZEND_JMP_NULL:
switch (opline->extended_value & ZEND_SHORT_CIRCUITING_CHAIN_MASK) {
case ZEND_SHORT_CIRCUITING_CHAIN_EXPR:
ZVAL_NULL(&zv);
break;
case ZEND_SHORT_CIRCUITING_CHAIN_ISSET:
ZVAL_FALSE(&zv);
break;
case ZEND_SHORT_CIRCUITING_CHAIN_EMPTY:
ZVAL_TRUE(&zv);
break;
EMPTY_SWITCH_DEFAULT_CASE()
}
SET_RESULT(result, &zv);
break;
case ZEND_FETCH_CLASS:
SET_RESULT(result, op2);
break;
case ZEND_ISSET_ISEMPTY_CV:
SKIP_IF_TOP(op1);
if (ct_eval_isset_isempty(&zv, opline->extended_value, op1) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_TYPE_CHECK:
SKIP_IF_TOP(op1);
ct_eval_type_check(&zv, opline->extended_value, op1);
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
case ZEND_INSTANCEOF:
SKIP_IF_TOP(op1);
ZVAL_FALSE(&zv);
SET_RESULT(result, &zv);
break;
case ZEND_ROPE_INIT:
SKIP_IF_TOP(op2);
if (IS_PARTIAL_ARRAY(op2)) {
SET_RESULT_BOT(result);
break;
}
if (zend_optimizer_eval_cast(&zv, IS_STRING, op2) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_ROPE_ADD:
case ZEND_ROPE_END:
// TODO The way this is currently implemented will result in quadratic runtime
// This is not necessary, the way the algorithm works it's okay to reuse the same
// string for all SSA vars with some extra checks
SKIP_IF_TOP(op1);
SKIP_IF_TOP(op2);
if (ct_eval_binary_op(&zv, ZEND_CONCAT, op1, op2) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
SET_RESULT_BOT(result);
break;
case ZEND_DO_ICALL:
{
zend_call_info *call;
zval *name, *args[3] = {NULL};
int i;
if (!ctx->call_map) {
SET_RESULT_BOT(result);
break;
}
call = ctx->call_map[opline - ctx->scdf.op_array->opcodes];
name = CT_CONSTANT_EX(ctx->scdf.op_array, call->caller_init_opline->op2.constant);
/* We already know it can't be evaluated, don't bother checking again */
if (ssa_op->result_def < 0 || IS_BOT(&ctx->values[ssa_op->result_def])) {
break;
}
/* We're only interested in functions with up to three arguments right now */
if (call->num_args > 3 || call->send_unpack || call->is_prototype) {
SET_RESULT_BOT(result);
break;
}
for (i = 0; i < call->num_args; i++) {
zend_op *opline = call->arg_info[i].opline;
if (opline->opcode != ZEND_SEND_VAL && opline->opcode != ZEND_SEND_VAR) {
SET_RESULT_BOT(result);
return;
}
args[i] = get_op1_value(ctx, opline,
&ctx->scdf.ssa->ops[opline - ctx->scdf.op_array->opcodes]);
if (args[i]) {
if (IS_BOT(args[i]) || IS_PARTIAL_ARRAY(args[i])) {
SET_RESULT_BOT(result);
return;
} else if (IS_TOP(args[i])) {
return;
}
}
}
/* We didn't get a BOT argument, so value stays the same */
if (!IS_TOP(&ctx->values[ssa_op->result_def])) {
break;
}
if (ct_eval_func_call(scdf->op_array, &zv, Z_STR_P(name), call->num_args, args) == SUCCESS) {
SET_RESULT(result, &zv);
zval_ptr_dtor_nogc(&zv);
break;
}
#if 0
/* sort out | uniq -c | sort -n */
fprintf(stderr, "%s\n", Z_STRVAL_P(name));
/*if (args[1]) {
php_printf("%s %Z %Z\n", Z_STRVAL_P(name), args[0], args[1]);
} else {
php_printf("%s %Z\n", Z_STRVAL_P(name), args[0]);
}*/
#endif
SET_RESULT_BOT(result);
break;
}
default:
{
/* If we have no explicit implementation return BOT */
SET_RESULT_BOT(result);
SET_RESULT_BOT(op1);
SET_RESULT_BOT(op2);
break;
}
}
}
static zval *value_from_type_and_range(sccp_ctx *ctx, int var_num, zval *tmp) {
zend_ssa *ssa = ctx->scdf.ssa;
zend_ssa_var_info *info = &ssa->var_info[var_num];
if (info->type & MAY_BE_UNDEF) {
return NULL;
}
if (!(info->type & MAY_BE_ANY)) {
/* This code must be unreachable. We could replace operands with NULL, but this doesn't
* really make things better. It would be better to later remove this code entirely. */
return NULL;
}
if (!(info->type & ((MAY_BE_ANY|MAY_BE_UNDEF)-MAY_BE_NULL))) {
if (ssa->vars[var_num].definition >= 0
&& ctx->scdf.op_array->opcodes[ssa->vars[var_num].definition].opcode == ZEND_VERIFY_RETURN_TYPE) {
return NULL;
}
ZVAL_NULL(tmp);
return tmp;
}
if (!(info->type & ((MAY_BE_ANY|MAY_BE_UNDEF)-MAY_BE_FALSE))) {
if (ssa->vars[var_num].definition >= 0
&& ctx->scdf.op_array->opcodes[ssa->vars[var_num].definition].opcode == ZEND_VERIFY_RETURN_TYPE) {
return NULL;
}
ZVAL_FALSE(tmp);
return tmp;
}
if (!(info->type & ((MAY_BE_ANY|MAY_BE_UNDEF)-MAY_BE_TRUE))) {
if (ssa->vars[var_num].definition >= 0
&& ctx->scdf.op_array->opcodes[ssa->vars[var_num].definition].opcode == ZEND_VERIFY_RETURN_TYPE) {
return NULL;
}
ZVAL_TRUE(tmp);
return tmp;
}
if (!(info->type & ((MAY_BE_ANY|MAY_BE_UNDEF)-MAY_BE_LONG))
&& info->has_range
&& !info->range.overflow && !info->range.underflow
&& info->range.min == info->range.max) {
ZVAL_LONG(tmp, info->range.min);
return tmp;
}
return NULL;
}
/* Returns whether there is a successor */
static void sccp_mark_feasible_successors(
scdf_ctx *scdf,
int block_num, zend_basic_block *block,
zend_op *opline, zend_ssa_op *ssa_op) {
sccp_ctx *ctx = (sccp_ctx *) scdf;
zval *op1, zv;
int s;
/* We can't determine the branch target at compile-time for these */
switch (opline->opcode) {
case ZEND_ASSERT_CHECK:
case ZEND_CATCH:
case ZEND_FE_FETCH_R:
case ZEND_FE_FETCH_RW:
scdf_mark_edge_feasible(scdf, block_num, block->successors[0]);
scdf_mark_edge_feasible(scdf, block_num, block->successors[1]);
return;
}
op1 = get_op1_value(ctx, opline, ssa_op);
if (IS_BOT(op1)) {
ZEND_ASSERT(ssa_op->op1_use >= 0);
op1 = value_from_type_and_range(ctx, ssa_op->op1_use, &zv);
}
/* Branch target can be either one */
if (!op1 || IS_BOT(op1)) {
for (s = 0; s < block->successors_count; s++) {
scdf_mark_edge_feasible(scdf, block_num, block->successors[s]);
}
return;
}
/* Branch target not yet known */
if (IS_TOP(op1)) {
return;
}
switch (opline->opcode) {
case ZEND_JMPZ:
case ZEND_JMPZ_EX:
{
if (ct_eval_bool_cast(&zv, op1) == FAILURE) {
scdf_mark_edge_feasible(scdf, block_num, block->successors[0]);
scdf_mark_edge_feasible(scdf, block_num, block->successors[1]);
return;
}
s = Z_TYPE(zv) == IS_TRUE;
break;
}
case ZEND_JMPNZ:
case ZEND_JMPNZ_EX:
case ZEND_JMP_SET:
{
if (ct_eval_bool_cast(&zv, op1) == FAILURE) {
scdf_mark_edge_feasible(scdf, block_num, block->successors[0]);
scdf_mark_edge_feasible(scdf, block_num, block->successors[1]);
return;
}
s = Z_TYPE(zv) == IS_FALSE;
break;
}
case ZEND_COALESCE:
s = (Z_TYPE_P(op1) == IS_NULL);
break;
case ZEND_JMP_NULL:
s = (Z_TYPE_P(op1) != IS_NULL);
break;
case ZEND_FE_RESET_R:
case ZEND_FE_RESET_RW:
/* A non-empty partial array is definitely non-empty, but an
* empty partial array may be non-empty at runtime. */
if (Z_TYPE_P(op1) != IS_ARRAY ||
(IS_PARTIAL_ARRAY(op1) && zend_hash_num_elements(Z_ARR_P(op1)) == 0)) {
scdf_mark_edge_feasible(scdf, block_num, block->successors[0]);
scdf_mark_edge_feasible(scdf, block_num, block->successors[1]);
return;
}
s = zend_hash_num_elements(Z_ARR_P(op1)) != 0;
break;
case ZEND_SWITCH_LONG:
case ZEND_SWITCH_STRING:
case ZEND_MATCH:
{
bool strict_comparison = opline->opcode == ZEND_MATCH;
zend_uchar type = Z_TYPE_P(op1);
bool correct_type =
(opline->opcode == ZEND_SWITCH_LONG && type == IS_LONG)
|| (opline->opcode == ZEND_SWITCH_STRING && type == IS_STRING)
|| (opline->opcode == ZEND_MATCH && (type == IS_LONG || type == IS_STRING));
if (correct_type) {
zend_op_array *op_array = scdf->op_array;
zend_ssa *ssa = scdf->ssa;
HashTable *jmptable = Z_ARRVAL_P(CT_CONSTANT_EX(op_array, opline->op2.constant));
zval *jmp_zv = type == IS_LONG
? zend_hash_index_find(jmptable, Z_LVAL_P(op1))
: zend_hash_find(jmptable, Z_STR_P(op1));
int target;
if (jmp_zv) {
target = ssa->cfg.map[ZEND_OFFSET_TO_OPLINE_NUM(op_array, opline, Z_LVAL_P(jmp_zv))];
} else {
target = ssa->cfg.map[ZEND_OFFSET_TO_OPLINE_NUM(op_array, opline, opline->extended_value)];
}
scdf_mark_edge_feasible(scdf, block_num, target);
return;
} else if (strict_comparison) {
zend_op_array *op_array = scdf->op_array;
zend_ssa *ssa = scdf->ssa;
int target = ssa->cfg.map[ZEND_OFFSET_TO_OPLINE_NUM(op_array, opline, opline->extended_value)];
scdf_mark_edge_feasible(scdf, block_num, target);
return;
}
s = block->successors_count - 1;
break;
}
default:
for (s = 0; s < block->successors_count; s++) {
scdf_mark_edge_feasible(scdf, block_num, block->successors[s]);
}
return;
}
scdf_mark_edge_feasible(scdf, block_num, block->successors[s]);
}
static void join_hash_tables(HashTable *ret, HashTable *ht1, HashTable *ht2)
{
zend_ulong index;
zend_string *key;
zval *val1, *val2;
ZEND_HASH_FOREACH_KEY_VAL(ht1, index, key, val1) {
if (key) {
val2 = zend_hash_find(ht2, key);
} else {
val2 = zend_hash_index_find(ht2, index);
}
if (val2 && zend_is_identical(val1, val2)) {
if (key) {
val1 = zend_hash_add_new(ret, key, val1);
} else {
val1 = zend_hash_index_add_new(ret, index, val1);
}
Z_TRY_ADDREF_P(val1);
}
} ZEND_HASH_FOREACH_END();
}
static zend_result join_partial_arrays(zval *a, zval *b)
{
zval ret;
if ((Z_TYPE_P(a) != IS_ARRAY && !IS_PARTIAL_ARRAY(a))
|| (Z_TYPE_P(b) != IS_ARRAY && !IS_PARTIAL_ARRAY(b))) {
return FAILURE;
}
empty_partial_array(&ret);
join_hash_tables(Z_ARRVAL(ret), Z_ARRVAL_P(a), Z_ARRVAL_P(b));
zval_ptr_dtor_nogc(a);
ZVAL_COPY_VALUE(a, &ret);
return SUCCESS;
}
static zend_result join_partial_objects(zval *a, zval *b)
{
zval ret;
if (!IS_PARTIAL_OBJECT(a) || !IS_PARTIAL_OBJECT(b)) {
return FAILURE;
}
empty_partial_object(&ret);
join_hash_tables(Z_ARRVAL(ret), Z_ARRVAL_P(a), Z_ARRVAL_P(b));
zval_ptr_dtor_nogc(a);
ZVAL_COPY_VALUE(a, &ret);
return SUCCESS;
}
static void join_phi_values(zval *a, zval *b, bool escape) {
if (IS_BOT(a) || IS_TOP(b)) {
return;
}
if (IS_TOP(a)) {
zval_ptr_dtor_nogc(a);
ZVAL_COPY(a, b);
return;
}
if (IS_BOT(b)) {
zval_ptr_dtor_nogc(a);
MAKE_BOT(a);
return;
}
if (IS_PARTIAL_ARRAY(a) || IS_PARTIAL_ARRAY(b)) {
if (join_partial_arrays(a, b) == FAILURE) {
zval_ptr_dtor_nogc(a);
MAKE_BOT(a);
}
} else if (IS_PARTIAL_OBJECT(a) || IS_PARTIAL_OBJECT(b)) {
if (escape || join_partial_objects(a, b) == FAILURE) {
zval_ptr_dtor_nogc(a);
MAKE_BOT(a);
}
} else if (!zend_is_identical(a, b)) {
if (join_partial_arrays(a, b) == FAILURE) {
zval_ptr_dtor_nogc(a);
MAKE_BOT(a);
}
}
}
static void sccp_visit_phi(scdf_ctx *scdf, zend_ssa_phi *phi) {
sccp_ctx *ctx = (sccp_ctx *) scdf;
zend_ssa *ssa = scdf->ssa;
ZEND_ASSERT(phi->ssa_var >= 0);
if (!IS_BOT(&ctx->values[phi->ssa_var])) {
zend_basic_block *block = &ssa->cfg.blocks[phi->block];
int *predecessors = &ssa->cfg.predecessors[block->predecessor_offset];
int i;
zval result;
MAKE_TOP(&result);
#if SCP_DEBUG
fprintf(stderr, "Handling phi(");
#endif
if (phi->pi >= 0) {
ZEND_ASSERT(phi->sources[0] >= 0);
if (scdf_is_edge_feasible(scdf, phi->pi, phi->block)) {
join_phi_values(&result, &ctx->values[phi->sources[0]], ssa->vars[phi->ssa_var].escape_state != ESCAPE_STATE_NO_ESCAPE);
}
} else {
for (i = 0; i < block->predecessors_count; i++) {
ZEND_ASSERT(phi->sources[i] >= 0);
if (scdf_is_edge_feasible(scdf, predecessors[i], phi->block)) {
#if SCP_DEBUG
scp_dump_value(&ctx->values[phi->sources[i]]);
fprintf(stderr, ",");
#endif
join_phi_values(&result, &ctx->values[phi->sources[i]], ssa->vars[phi->ssa_var].escape_state != ESCAPE_STATE_NO_ESCAPE);
} else {
#if SCP_DEBUG
fprintf(stderr, " --,");
#endif
}
}
}
#if SCP_DEBUG
fprintf(stderr, ")\n");
#endif
set_value(scdf, ctx, phi->ssa_var, &result);
zval_ptr_dtor_nogc(&result);
}
}
/* Call instruction -> remove opcodes that are part of the call */
static int remove_call(sccp_ctx *ctx, zend_op *opline, zend_ssa_op *ssa_op)
{
zend_ssa *ssa = ctx->scdf.ssa;
zend_op_array *op_array = ctx->scdf.op_array;
zend_call_info *call;
int i;
ZEND_ASSERT(ctx->call_map);
call = ctx->call_map[opline - op_array->opcodes];
ZEND_ASSERT(call);
ZEND_ASSERT(call->caller_call_opline == opline);
zend_ssa_remove_instr(ssa, opline, ssa_op);
zend_ssa_remove_instr(ssa, call->caller_init_opline,
&ssa->ops[call->caller_init_opline - op_array->opcodes]);
for (i = 0; i < call->num_args; i++) {
zend_ssa_remove_instr(ssa, call->arg_info[i].opline,
&ssa->ops[call->arg_info[i].opline - op_array->opcodes]);
}
// TODO: remove call_info completely???
call->callee_func = NULL;
return call->num_args + 2;
}
/* This is a basic DCE pass we run after SCCP. It only works on those instructions those result
* value(s) were determined by SCCP. It removes dead computational instructions and converts
* CV-affecting instructions into CONST ASSIGNs. This basic DCE is performed for multiple reasons:
* a) During operand replacement we eliminate FREEs. The corresponding computational instructions
* must be removed to avoid leaks. This way SCCP can run independently of the full DCE pass.
* b) The main DCE pass relies on type analysis to determine whether instructions have side-effects
* and can't be DCEd. This means that it will not be able collect all instructions rendered dead
* by SCCP, because they may have potentially side-effecting types, but the actual values are
* not. As such doing DCE here will allow us to eliminate more dead code in combination.
* c) The ordinary DCE pass cannot collect dead calls. However SCCP can result in dead calls, which
* we need to collect.
* d) The ordinary DCE pass cannot collect construction of dead non-escaping arrays and objects.
*/
static int try_remove_definition(sccp_ctx *ctx, int var_num, zend_ssa_var *var, zval *value)
{
zend_ssa *ssa = ctx->scdf.ssa;
zend_op_array *op_array = ctx->scdf.op_array;
int removed_ops = 0;
if (var->definition >= 0) {
zend_op *opline = &op_array->opcodes[var->definition];
zend_ssa_op *ssa_op = &ssa->ops[var->definition];
if (ssa_op->result_def == var_num) {
if (opline->opcode == ZEND_ASSIGN) {
/* We can't drop the ASSIGN, but we can remove the result. */
if (var->use_chain < 0 && var->phi_use_chain == NULL) {
opline->result_type = IS_UNUSED;
zend_ssa_remove_result_def(ssa, ssa_op);
}
return 0;
}
if (ssa_op->op1_def >= 0 || ssa_op->op2_def >= 0) {
if (var->use_chain < 0 && var->phi_use_chain == NULL) {
switch (opline->opcode) {
case ZEND_ASSIGN:
case ZEND_ASSIGN_REF:
case ZEND_ASSIGN_DIM:
case ZEND_ASSIGN_OBJ:
case ZEND_ASSIGN_OBJ_REF:
case ZEND_ASSIGN_STATIC_PROP:
case ZEND_ASSIGN_STATIC_PROP_REF:
case ZEND_ASSIGN_OP:
case ZEND_ASSIGN_DIM_OP:
case ZEND_ASSIGN_OBJ_OP:
case ZEND_ASSIGN_STATIC_PROP_OP:
case ZEND_PRE_INC:
case ZEND_PRE_DEC:
case ZEND_PRE_INC_OBJ:
case ZEND_PRE_DEC_OBJ:
case ZEND_DO_ICALL:
case ZEND_DO_UCALL:
case ZEND_DO_FCALL_BY_NAME:
case ZEND_DO_FCALL:
case ZEND_INCLUDE_OR_EVAL:
case ZEND_YIELD:
case ZEND_YIELD_FROM:
case ZEND_ASSERT_CHECK:
opline->result_type = IS_UNUSED;
zend_ssa_remove_result_def(ssa, ssa_op);
break;
default:
break;
}
}
/* we cannot remove instruction that defines other variables */
return 0;
} else if (opline->opcode == ZEND_JMPZ_EX
|| opline->opcode == ZEND_JMPNZ_EX
|| opline->opcode == ZEND_JMP_SET
|| opline->opcode == ZEND_COALESCE
|| opline->opcode == ZEND_JMP_NULL
|| opline->opcode == ZEND_FE_RESET_R
|| opline->opcode == ZEND_FE_RESET_RW
|| opline->opcode == ZEND_FE_FETCH_R
|| opline->opcode == ZEND_FE_FETCH_RW
|| opline->opcode == ZEND_NEW) {
/* we cannot simple remove jump instructions */
return 0;
} else if (var->use_chain >= 0
|| var->phi_use_chain != NULL) {
if (value
&& (opline->result_type & (IS_VAR|IS_TMP_VAR))
&& opline->opcode != ZEND_QM_ASSIGN
&& opline->opcode != ZEND_FETCH_CLASS
&& opline->opcode != ZEND_ROPE_INIT
&& opline->opcode != ZEND_ROPE_ADD
&& opline->opcode != ZEND_INIT_ARRAY
&& opline->opcode != ZEND_ADD_ARRAY_ELEMENT
&& opline->opcode != ZEND_ADD_ARRAY_UNPACK) {
/* Replace with QM_ASSIGN */
zend_uchar old_type = opline->result_type;
uint32_t old_var = opline->result.var;
ssa_op->result_def = -1;
if (opline->opcode == ZEND_DO_ICALL) {
removed_ops = remove_call(ctx, opline, ssa_op) - 1;
} else {
zend_ssa_remove_instr(ssa, opline, ssa_op);
}
ssa_op->result_def = var_num;
opline->opcode = ZEND_QM_ASSIGN;
opline->result_type = old_type;
opline->result.var = old_var;
Z_TRY_ADDREF_P(value);
zend_optimizer_update_op1_const(ctx->scdf.op_array, opline, value);
}
return 0;
} else if ((opline->op2_type & (IS_VAR|IS_TMP_VAR))
&& (!value_known(&ctx->values[ssa_op->op2_use])
|| IS_PARTIAL_ARRAY(&ctx->values[ssa_op->op2_use])
|| IS_PARTIAL_OBJECT(&ctx->values[ssa_op->op2_use]))) {
return 0;
} else if ((opline->op1_type & (IS_VAR|IS_TMP_VAR))
&& (!value_known(&ctx->values[ssa_op->op1_use])
|| IS_PARTIAL_ARRAY(&ctx->values[ssa_op->op1_use])
|| IS_PARTIAL_OBJECT(&ctx->values[ssa_op->op1_use]))) {
if (opline->opcode == ZEND_TYPE_CHECK
|| opline->opcode == ZEND_BOOL) {
zend_ssa_remove_result_def(ssa, ssa_op);
/* For TYPE_CHECK we may compute the result value without knowing the
* operand, based on type inference information. Make sure the operand is
* freed and leave further cleanup to DCE. */
opline->opcode = ZEND_FREE;
opline->result_type = IS_UNUSED;
removed_ops++;
} else {
return 0;
}
} else {
zend_ssa_remove_result_def(ssa, ssa_op);
if (opline->opcode == ZEND_DO_ICALL) {
removed_ops = remove_call(ctx, opline, ssa_op);
} else {
zend_ssa_remove_instr(ssa, opline, ssa_op);
removed_ops++;
}
}
} else if (ssa_op->op1_def == var_num) {
if (opline->opcode == ZEND_ASSIGN) {
/* Leave assigns to DCE (due to dtor effects) */
return 0;
}
/* Compound assign or incdec -> convert to direct ASSIGN */
if (!value) {
/* In some cases zend_may_throw() may be avoided */
switch (opline->opcode) {
case ZEND_ASSIGN_DIM:
case ZEND_ASSIGN_OBJ:
case ZEND_ASSIGN_OP:
case ZEND_ASSIGN_DIM_OP:
case ZEND_ASSIGN_OBJ_OP:
case ZEND_ASSIGN_STATIC_PROP_OP:
if ((ssa_op->op2_use >= 0 && !value_known(&ctx->values[ssa_op->op2_use]))
|| ((ssa_op+1)->op1_use >= 0 &&!value_known(&ctx->values[(ssa_op+1)->op1_use]))) {
return 0;
}
break;
case ZEND_PRE_INC_OBJ:
case ZEND_PRE_DEC_OBJ:
case ZEND_POST_INC_OBJ:
case ZEND_POST_DEC_OBJ:
if (ssa_op->op2_use >= 0 && !value_known(&ctx->values[ssa_op->op2_use])) {
return 0;
}
break;
case ZEND_INIT_ARRAY:
case ZEND_ADD_ARRAY_ELEMENT:
if (opline->op2_type == IS_UNUSED) {
return 0;
}
/* break missing intentionally */
default:
if (zend_may_throw(opline, ssa_op, op_array, ssa)) {
return 0;
}
break;
}
}
/* Mark result unused, if possible */
if (ssa_op->result_def >= 0) {
if (ssa->vars[ssa_op->result_def].use_chain < 0
&& ssa->vars[ssa_op->result_def].phi_use_chain == NULL) {
zend_ssa_remove_result_def(ssa, ssa_op);
opline->result_type = IS_UNUSED;
} else if (opline->opcode != ZEND_PRE_INC &&
opline->opcode != ZEND_PRE_DEC) {
/* op1_def and result_def are different */
return removed_ops;
}
}
/* Destroy previous op2 */
if (opline->op2_type == IS_CONST) {
literal_dtor(&ZEND_OP2_LITERAL(opline));
} else if (ssa_op->op2_use >= 0) {
if (ssa_op->op2_use != ssa_op->op1_use) {
zend_ssa_unlink_use_chain(ssa, var->definition, ssa_op->op2_use);
}
ssa_op->op2_use = -1;
ssa_op->op2_use_chain = -1;
}
/* Remove OP_DATA opcode */
switch (opline->opcode) {
case ZEND_ASSIGN_DIM:
case ZEND_ASSIGN_OBJ:
removed_ops++;
zend_ssa_remove_instr(ssa, opline + 1, ssa_op + 1);
break;
case ZEND_ASSIGN_DIM_OP:
case ZEND_ASSIGN_OBJ_OP:
case ZEND_ASSIGN_STATIC_PROP_OP:
removed_ops++;
zend_ssa_remove_instr(ssa, opline + 1, ssa_op + 1);
break;
default:
break;
}
if (value) {
/* Convert to ASSIGN */
opline->opcode = ZEND_ASSIGN;
opline->op2_type = IS_CONST;
opline->op2.constant = zend_optimizer_add_literal(op_array, value);
Z_TRY_ADDREF_P(value);
} else {
/* Remove dead array or object construction */
removed_ops++;
if (var->use_chain >= 0 || var->phi_use_chain != NULL) {
zend_ssa_rename_var_uses(ssa, ssa_op->op1_def, ssa_op->op1_use, 1);
}
zend_ssa_remove_op1_def(ssa, ssa_op);
zend_ssa_remove_instr(ssa, opline, ssa_op);
}
}
} else if (var->definition_phi
&& var->use_chain < 0
&& var->phi_use_chain == NULL) {
zend_ssa_remove_phi(ssa, var->definition_phi);
}
return removed_ops;
}
/* This will try to replace uses of SSA variables we have determined to be constant. Not all uses
* can be replaced, because some instructions don't accept constant operands or only accept them
* if they have a certain type. */
static int replace_constant_operands(sccp_ctx *ctx) {
zend_ssa *ssa = ctx->scdf.ssa;
zend_op_array *op_array = ctx->scdf.op_array;
int i;
zval tmp;
int removed_ops = 0;
/* We iterate the variables backwards, so we can eliminate sequences like INIT_ROPE
* and INIT_ARRAY. */
for (i = ssa->vars_count - 1; i >= op_array->last_var; i--) {
zend_ssa_var *var = &ssa->vars[i];
zval *value;
int use;
if (IS_PARTIAL_ARRAY(&ctx->values[i])
|| IS_PARTIAL_OBJECT(&ctx->values[i])) {
if (!Z_DELREF(ctx->values[i])) {
zend_array_destroy(Z_ARR(ctx->values[i]));
}
MAKE_BOT(&ctx->values[i]);
if ((var->use_chain < 0 && var->phi_use_chain == NULL) || var->no_val) {
removed_ops += try_remove_definition(ctx, i, var, NULL);
}
continue;
} else if (value_known(&ctx->values[i])) {
value = &ctx->values[i];
} else {
value = value_from_type_and_range(ctx, i, &tmp);
if (!value) {
continue;
}
}
FOREACH_USE(var, use) {
zend_op *opline = &op_array->opcodes[use];
zend_ssa_op *ssa_op = &ssa->ops[use];
if (try_replace_op1(ctx, opline, ssa_op, i, value)) {
if (opline->opcode == ZEND_NOP) {
removed_ops++;
}
ZEND_ASSERT(ssa_op->op1_def == -1);
if (ssa_op->op1_use != ssa_op->op2_use) {
zend_ssa_unlink_use_chain(ssa, use, ssa_op->op1_use);
} else {
ssa_op->op2_use_chain = ssa_op->op1_use_chain;
}
ssa_op->op1_use = -1;
ssa_op->op1_use_chain = -1;
}
if (try_replace_op2(ctx, opline, ssa_op, i, value)) {
ZEND_ASSERT(ssa_op->op2_def == -1);
if (ssa_op->op2_use != ssa_op->op1_use) {
zend_ssa_unlink_use_chain(ssa, use, ssa_op->op2_use);
}
ssa_op->op2_use = -1;
ssa_op->op2_use_chain = -1;
}
} FOREACH_USE_END();
if (value_known(&ctx->values[i])) {
removed_ops += try_remove_definition(ctx, i, var, value);
}
}
return removed_ops;
}
static void sccp_context_init(zend_optimizer_ctx *ctx, sccp_ctx *sccp,
zend_ssa *ssa, zend_op_array *op_array, zend_call_info **call_map) {
int i;
sccp->call_map = call_map;
sccp->values = zend_arena_alloc(&ctx->arena, sizeof(zval) * ssa->vars_count);
MAKE_TOP(&sccp->top);
MAKE_BOT(&sccp->bot);
i = 0;
for (; i < op_array->last_var; ++i) {
/* These are all undefined variables, which we have to mark BOT.
* Otherwise the undefined variable warning might not be preserved. */
MAKE_BOT(&sccp->values[i]);
}
for (; i < ssa->vars_count; ++i) {
if (ssa->vars[i].alias) {
MAKE_BOT(&sccp->values[i]);
} else {
MAKE_TOP(&sccp->values[i]);
}
}
}
static void sccp_context_free(sccp_ctx *sccp) {
int i;
for (i = sccp->scdf.op_array->last_var; i < sccp->scdf.ssa->vars_count; ++i) {
zval_ptr_dtor_nogc(&sccp->values[i]);
}
}
int sccp_optimize_op_array(zend_optimizer_ctx *ctx, zend_op_array *op_array, zend_ssa *ssa, zend_call_info **call_map)
{
sccp_ctx sccp;
int removed_ops = 0;
void *checkpoint = zend_arena_checkpoint(ctx->arena);
sccp_context_init(ctx, &sccp, ssa, op_array, call_map);
sccp.scdf.handlers.visit_instr = sccp_visit_instr;
sccp.scdf.handlers.visit_phi = sccp_visit_phi;
sccp.scdf.handlers.mark_feasible_successors = sccp_mark_feasible_successors;
scdf_init(ctx, &sccp.scdf, op_array, ssa);
scdf_solve(&sccp.scdf, "SCCP");
if (ctx->debug_level & ZEND_DUMP_SCCP) {
int i, first = 1;
for (i = op_array->last_var; i < ssa->vars_count; i++) {
zval *zv = &sccp.values[i];
if (IS_TOP(zv) || IS_BOT(zv)) {
continue;
}
if (first) {
first = 0;
fprintf(stderr, "\nSCCP Values for \"");
zend_dump_op_array_name(op_array);
fprintf(stderr, "\":\n");
}
fprintf(stderr, " #%d.", i);
zend_dump_var(op_array, IS_CV, ssa->vars[i].var);
fprintf(stderr, " =");
scp_dump_value(zv);
fprintf(stderr, "\n");
}
}
removed_ops += scdf_remove_unreachable_blocks(&sccp.scdf);
removed_ops += replace_constant_operands(&sccp);
sccp_context_free(&sccp);
zend_arena_release(&ctx->arena, checkpoint);
return removed_ops;
}