mirror of
https://github.com/php/php-src.git
synced 2025-08-16 05:58:45 +02:00

The reference implementation of the "Drawing Random Floating-Point Numbers from an Interval" paper contains two mistakes that will result in erroneous values being returned under certain circumstances: - For large values of `g` the multiplication of `k * g` might overflow to infinity. - The value of `ceilint()` might exceed 2^53, possibly leading to a rounding error when promoting `k` to double within the multiplication of `k * g`. This commit updates the implementation based on Prof. Goualard suggestions after reaching out to him. It will correctly handle inputs larger than 2^-1020 in absolute values. This limitation will be documented and those inputs possibly be rejected in a follow-up commit depending on performance concerns.
184 lines
4.9 KiB
C
184 lines
4.9 KiB
C
/*
|
||
+----------------------------------------------------------------------+
|
||
| Copyright (c) The PHP Group |
|
||
+----------------------------------------------------------------------+
|
||
| This source file is subject to version 3.01 of the PHP license, |
|
||
| that is bundled with this package in the file LICENSE, and is |
|
||
| available through the world-wide-web at the following url: |
|
||
| https://www.php.net/license/3_01.txt |
|
||
| If you did not receive a copy of the PHP license and are unable to |
|
||
| obtain it through the world-wide-web, please send a note to |
|
||
| license@php.net so we can mail you a copy immediately. |
|
||
+----------------------------------------------------------------------+
|
||
| Authors: Tim Düsterhus <timwolla@php.net> |
|
||
| |
|
||
| Based on code from: Frédéric Goualard |
|
||
| Corrected to handled appropriately random integers larger than 2^53 |
|
||
| converted to double precision floats, and to avoid overflows for |
|
||
| large gammas. |
|
||
+----------------------------------------------------------------------+
|
||
*/
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
# include "config.h"
|
||
#endif
|
||
|
||
#include "php.h"
|
||
#include "php_random.h"
|
||
#include <math.h>
|
||
|
||
/* This file implements the γ-section algorithm as published in:
|
||
*
|
||
* Drawing Random Floating-Point Numbers from an Interval. Frédéric
|
||
* Goualard, ACM Trans. Model. Comput. Simul., 32:3, 2022.
|
||
* https://doi.org/10.1145/3503512
|
||
*/
|
||
|
||
static double gamma_low(double x)
|
||
{
|
||
return x - nextafter(x, -DBL_MAX);
|
||
}
|
||
|
||
static double gamma_high(double x)
|
||
{
|
||
return nextafter(x, DBL_MAX) - x;
|
||
}
|
||
|
||
static double gamma_max(double x, double y)
|
||
{
|
||
return (fabs(x) > fabs(y)) ? gamma_high(x) : gamma_low(y);
|
||
}
|
||
|
||
static void splitint64(uint64_t v, double *vhi, double *vlo)
|
||
{
|
||
*vhi = v >> 2;
|
||
*vlo = v & UINT64_C(0x3);
|
||
}
|
||
|
||
static uint64_t ceilint(double a, double b, double g)
|
||
{
|
||
double s = b / g - a / g;
|
||
double e;
|
||
|
||
if (fabs(a) <= fabs(b)) {
|
||
e = -a / g - (s - b / g);
|
||
} else {
|
||
e = b / g - (s + a / g);
|
||
}
|
||
|
||
double si = ceil(s);
|
||
|
||
return (s != si) ? (uint64_t)si : (uint64_t)si + (e > 0);
|
||
}
|
||
|
||
PHPAPI double php_random_gammasection_closed_open(const php_random_algo *algo, php_random_status *status, double min, double max)
|
||
{
|
||
double g = gamma_max(min, max);
|
||
uint64_t hi = ceilint(min, max, g);
|
||
|
||
if (UNEXPECTED(max <= min || hi < 1)) {
|
||
return NAN;
|
||
}
|
||
|
||
uint64_t k = 1 + php_random_range64(algo, status, hi - 1); /* [1, hi] */
|
||
|
||
if (fabs(min) <= fabs(max)) {
|
||
if (k == hi) {
|
||
return min;
|
||
} else {
|
||
double k_hi, k_lo;
|
||
splitint64(k, &k_hi, &k_lo);
|
||
|
||
return 0x1p+2 * (max * 0x1p-2 - k_hi * g) - k_lo * g;
|
||
}
|
||
} else {
|
||
double k_hi, k_lo;
|
||
splitint64(k - 1, &k_hi, &k_lo);
|
||
|
||
return 0x1p+2 * (min * 0x1p-2 + k_hi * g) + k_lo * g;
|
||
}
|
||
}
|
||
|
||
PHPAPI double php_random_gammasection_closed_closed(const php_random_algo *algo, php_random_status *status, double min, double max)
|
||
{
|
||
double g = gamma_max(min, max);
|
||
uint64_t hi = ceilint(min, max, g);
|
||
|
||
if (UNEXPECTED(max < min)) {
|
||
return NAN;
|
||
}
|
||
|
||
uint64_t k = php_random_range64(algo, status, hi); /* [0, hi] */
|
||
|
||
if (fabs(min) <= fabs(max)) {
|
||
if (k == hi) {
|
||
return min;
|
||
} else {
|
||
double k_hi, k_lo;
|
||
splitint64(k, &k_hi, &k_lo);
|
||
|
||
return 0x1p+2 * (max * 0x1p-2 - k_hi * g) - k_lo * g;
|
||
}
|
||
} else {
|
||
if (k == hi) {
|
||
return max;
|
||
} else {
|
||
double k_hi, k_lo;
|
||
splitint64(k, &k_hi, &k_lo);
|
||
|
||
return 0x1p+2 * (min * 0x1p-2 + k_hi * g) + k_lo * g;
|
||
}
|
||
}
|
||
}
|
||
|
||
PHPAPI double php_random_gammasection_open_closed(const php_random_algo *algo, php_random_status *status, double min, double max)
|
||
{
|
||
double g = gamma_max(min, max);
|
||
uint64_t hi = ceilint(min, max, g);
|
||
|
||
if (UNEXPECTED(max <= min || hi < 1)) {
|
||
return NAN;
|
||
}
|
||
|
||
uint64_t k = php_random_range64(algo, status, hi - 1); /* [0, hi - 1] */
|
||
|
||
if (fabs(min) <= fabs(max)) {
|
||
double k_hi, k_lo;
|
||
splitint64(k, &k_hi, &k_lo);
|
||
|
||
return 0x1p+2 * (max * 0x1p-2 - k_hi * g) - k_lo * g;
|
||
} else {
|
||
if (k == (hi - 1)) {
|
||
return max;
|
||
} else {
|
||
double k_hi, k_lo;
|
||
splitint64(k + 1, &k_hi, &k_lo);
|
||
|
||
return 0x1p+2 * (min * 0x1p-2 + k_hi * g) + k_lo * g;
|
||
}
|
||
}
|
||
}
|
||
|
||
PHPAPI double php_random_gammasection_open_open(const php_random_algo *algo, php_random_status *status, double min, double max)
|
||
{
|
||
double g = gamma_max(min, max);
|
||
uint64_t hi = ceilint(min, max, g);
|
||
|
||
if (UNEXPECTED(max <= min || hi < 2)) {
|
||
return NAN;
|
||
}
|
||
|
||
uint64_t k = 1 + php_random_range64(algo, status, hi - 2); /* [1, hi - 1] */
|
||
|
||
if (fabs(min) <= fabs(max)) {
|
||
double k_hi, k_lo;
|
||
splitint64(k, &k_hi, &k_lo);
|
||
|
||
return 0x1p+2 * (max * 0x1p-2 - k_hi * g) - k_lo * g;
|
||
} else {
|
||
double k_hi, k_lo;
|
||
splitint64(k, &k_hi, &k_lo);
|
||
|
||
return 0x1p+2 * (min * 0x1p-2 + k_hi * g) + k_lo * g;
|
||
}
|
||
}
|