Ex: `str.encode` and `str.encode!` work across ractors now.
The global table `transcoder_table` needs a lock around each st_lookup/st_insert, and it's a two-level
table so the second level also needs to be locked around insertion/deletion. In addition to this, the
transcoder entries (values in the second-level hash table) need to be locked around retrieving them and
loading them as they are loaded lazily.
The transcoding objects (`Encoding::Converter`) can't be made shareable, so their operations don't need to be locked.
This commit extracts the Ractor safe table used for frozen strings into
ractor_safe_table.c, which will allow it to be used elsewhere, including
for the global symbol table.
[Bug #17516]
`fork(2)` only leave the calling thread alive in the child.
Because of this forking from the non-main ractor can easily
leave the VM in a corrupted state.
It may be possible in the future to carefully allow forking from non-main
Ractor, but shot term it's preferable to add this restriction.
Using this `reg_cache` is racy across ractors, so don't use it when in a
ractor. Also, its use across ractors can cause a regular expression created
in 1 ractor to be used in another ractor (an isolation bug).
This behave almost exactly as a T_OBJECT, the layout is entirely
compatible.
This aims to solve two problems.
First, it solves the problem of namspaced classes having
a single `shape_id`. Now each namespaced classext
has an object that can hold the namespace specific
shape.
Second, it open the door to later make class instance variable
writes atomics, hence be able to read class variables
without locking the VM.
In the future, in multi-ractor mode, we can do the write
on a copy of the `fields_obj` and then atomically swap it.
Considerations:
- Right now the `RClass` shape_id is always synchronized,
but with namespace we should likely mark classes that have
multiple namespace with a specific shape flag.
If the revision of bundled gems is specified for ruby master (and
`git` is usable), checkout that revision and build a snapshot gem, and
use it for `test-spec` instead of the downloaded release version.
There are various targets such as `install-bin`, `install-ext`, etc.,
but since then, the number of installation types has increased too
much to add all the targets.
Array#to_a, Hash#to_h, Enumerable#to_a, and Enumerable#to_h do not
allow you to specify subclasses. This has undesired behavior when
passing non-Set subclasses. All of these are currently allowed, and
none make sense:
```ruby
enum = [1,2,3].to_enum
enum.to_set(Hash)
enum.to_set(Struct.new("A", :a))
enum.to_set(ArgumentError)
enum.to_set(Thread){}
```
Users who want to create instances of a subclass of Set from an
enumerable should pass the enumerable to SetSubclass.new instead of
using to_set.
* Added `Ractor::Port`
* `Ractor::Port#receive` (support multi-threads)
* `Rcator::Port#close`
* `Ractor::Port#closed?`
* Added some methods
* `Ractor#join`
* `Ractor#value`
* `Ractor#monitor`
* `Ractor#unmonitor`
* Removed some methods
* `Ractor#take`
* `Ractor.yield`
* Change the spec
* `Racotr.select`
You can wait for multiple sequences of messages with `Ractor::Port`.
```ruby
ports = 3.times.map{ Ractor::Port.new }
ports.map.with_index do |port, ri|
Ractor.new port,ri do |port, ri|
3.times{|i| port << "r#{ri}-#{i}"}
end
end
p ports.each{|port| pp 3.times.map{port.receive}}
```
In this example, we use 3 ports, and 3 Ractors send messages to them respectively.
We can receive a series of messages from each port.
You can use `Ractor#value` to get the last value of a Ractor's block:
```ruby
result = Ractor.new do
heavy_task()
end.value
```
You can wait for the termination of a Ractor with `Ractor#join` like this:
```ruby
Ractor.new do
some_task()
end.join
```
`#value` and `#join` are similar to `Thread#value` and `Thread#join`.
To implement `#join`, `Ractor#monitor` (and `Ractor#unmonitor`) is introduced.
This commit changes `Ractor.select()` method.
It now only accepts ports or Ractors, and returns when a port receives a message or a Ractor terminates.
We removes `Ractor.yield` and `Ractor#take` because:
* `Ractor::Port` supports most of similar use cases in a simpler manner.
* Removing them significantly simplifies the code.
We also change the internal thread scheduler code (thread_pthread.c):
* During barrier synchronization, we keep the `ractor_sched` lock to avoid deadlocks.
This lock is released by `rb_ractor_sched_barrier_end()`
which is called at the end of operations that require the barrier.
* fix potential deadlock issues by checking interrupts just before setting UBF.
https://bugs.ruby-lang.org/issues/21262
In non-main ractors, don't use `sym_proc_cache`. It is not thread-safe
to add to this array without a lock and also it leaks procs from one
ractor to another. Instead, we create a new proc each time. If this
results in poor performance we can come up with a solution later.
Fixes [Bug #21354]
`ruby --yjit --zjit` already warns and exits, but it was still possible
to enable both with `ruby --zjit -e 'RubyVM:YJIT.enable`.
This commit prevents that with a warning and an early return. (We could
also exit, but that seems a bit unfriendly once we're already running
the program.)
Co-authored-by: ywenc <ywenc@github.com>
This commit allows building YJIT and ZJIT simultaneously, a "combo
build". Previously, `./configure --enable-yjit --enable-zjit` failed. At
runtime, though, only one of the two can be enabled at a time.
Add a root Cargo workspace that contains both the yjit and zjit crate.
The common Rust build integration mechanisms are factored out into
defs/jit.mk.
Combo YJIT+ZJIT dev builds are supported; if either JIT uses
`--enable-*=dev`, both of them are built in dev mode.
The combo build requires Cargo, but building one JIT at a time with only
rustc in release build remains supported.
Working towards having YJIT and ZJIT in the same build, we need to
deduplicate some glue code that would otherwise cause name collision.
Add jit.c for this and build it for YJIT and ZJIT builds. Update bindgen
to look at jit.c; some shuffling of functions in the output, but the set
of functions shouldn't have changed.
Now that we have a `set_table` implementation, we can
use it to track const caches and save some memory.
We could even save some more memory if `numtable` didn't
store a copy of the `hash` and instead recomputed it every
time, but this is a quick win.
Set has been an autoloaded standard library since Ruby 3.2.
The standard library Set is less efficient than it could be, as it
uses Hash for storage, which stores unnecessary values for each key.
Implementation details:
* Core Set uses a modified version of `st_table`, named `set_table`.
than `s/st_/set_/`, the main difference is that the stored records
do not have values, making them 1/3 smaller. `st_table_entry` stores
`hash`, `key`, and `record` (value), while `set_table_entry` only
stores `hash` and `key`. This results in large sets using ~33% less
memory compared to stdlib Set. For small sets, core Set uses 12% more
memory (160 byte object slot and 64 malloc bytes, while stdlib set
uses 40 for Set and 160 for Hash). More memory is used because
the set_table is embedded and 72 bytes in the object slot are
currently wasted. Hopefully we can make this more efficient and have
it stored in an 80 byte object slot in the future.
* All methods are implemented as cfuncs, except the pretty_print
methods, which were moved to `lib/pp.rb` (which is where the
pretty_print methods for other core classes are defined). As is
typical for core classes, internal calls call C functions and
not Ruby methods. For example, to check if something is a Set,
`rb_obj_is_kind_of` is used, instead of calling `is_a?(Set)` on the
related object.
* Almost all methods use the same algorithm that the pure-Ruby
implementation used. The exception is when calling `Set#divide` with a
block with 2-arity. The pure-Ruby method used tsort to implement this.
I developed an algorithm that only allocates a single intermediate
hash and does not need tsort.
* The `flatten_merge` protected method is no longer necessary, so it
is not implemented (it could be).
* Similar to Hash/Array, subclasses of Set are no longer reflected in
`inspect` output.
* RDoc from stdlib Set was moved to core Set, with minor updates.
This includes a comprehensive benchmark suite for all public Set
methods. As you would expect, the native version is faster in the
vast majority of cases, and multiple times faster in many cases.
There are a few cases where it is significantly slower:
* Set.new with no arguments (~1.6x)
* Set#compare_by_identity for small sets (~1.3x)
* Set#clone for small sets (~1.5x)
* Set#dup for small sets (~1.7x)
These are slower as Set does not currently use the AR table
optimization that Hash does, so a new set_table is initialized for
each call. I'm not sure it's worth the complexity to have an AR
table-like optimization for small sets (for hashes it makes sense,
as small hashes are used everywhere in Ruby).
The rbs and repl_type_completor bundled gems will need updates to
support core Set. The pull request marks them as allowed failures.
This passes all set tests with no changes. The following specs
needed modification:
* Modifying frozen set error message (changed for the better)
* `Set#divide` when passed a 2-arity block no longer yields the same
object as both the first and second argument (this seems like an issue
with the previous implementation).
* Set-like objects that override `is_a?` such that `is_a?(Set)` return
`true` are no longer treated as Set instances.
* `Set.allocate.hash` is no longer the same as `nil.hash`
* `Set#join` no longer calls `Set#to_a` (it calls the underlying C
function).
* `Set#flatten_merge` protected method is not implemented.
Previously, `set.rb` added a `SortedSet` autoload, which loads
`set/sorted_set.rb`. This replaces the `Set` autoload in `prelude.rb`
with a `SortedSet` autoload, but I recommend removing it and
`set/sorted_set.rb`.
This moves `test/set/test_set.rb` to `test/ruby/test_set.rb`,
reflecting that switch to a core class. This does not move the spec
files, as I'm not sure how they should be handled.
Internally, this uses the st_* types and functions as much as
possible, and only adds set_* types and functions as needed.
The underlying set_table implementation is stored in st.c, but
there is no public C-API for it, nor is there one planned, in
order to keep the ability to change the internals going forward.
For internal uses of st_table with Qtrue values, those can
probably be replaced with set_table. To do that, include
internal/set_table.h. To handle symbol visibility (rb_ prefix),
internal/set_table.h uses the same macro approach that
include/ruby/st.h uses.
The Set class (rb_cSet) and all methods are defined in set.c.
There isn't currently a C-API for the Set class, though C-API
functions can be added as needed going forward.
Implements [Feature #21216]
Co-authored-by: Jean Boussier <jean.boussier@gmail.com>
Co-authored-by: Oliver Nutter <mrnoname1000@riseup.net>
* Assert everything is compiled in test_zjit
* Update a comment on rb_zjit_assert_compiles
Co-authored-by: Maxime Chevalier-Boisvert <maxime.chevalierboisvert@shopify.com>
* Add a comment about assert_compiles
* Actually use pipe_fd
---------
Co-authored-by: Maxime Chevalier-Boisvert <maxime.chevalierboisvert@shopify.com>
* Add zjit_* instructions to profile the interpreter
* Rename FixnumPlus to FixnumAdd
* Update a comment about Invalidate
* Rename Guard to GuardType
* Rename Invalidate to PatchPoint
* Drop unneeded debug!()
* Plan on profiling the types
* Use the output of GuardType as type refined outputs
[Bug #20271]
[Bug #20267]
[Bug #20255]
`rb_obj_alloc(RBASIC_CLASS(obj))` will always allocate from the basic
40B pool, so if `obj` is larger than `40B`, we'll create a corrupted
object when we later copy the shape_id.
Instead we can use the same logic than ractor copy, which is
to use `rb_obj_clone`, and later ask the GC to free the original
object.
We then must turn it into a `T_OBJECT`, because otherwise
just changing its class to `RactorMoved` leaves a lot of
ways to keep using the object, e.g.:
```
a = [1, 2, 3]
Ractor.new{}.send(a, move: true)
[].concat(a) # Should raise, but wasn't.
```
If it turns out that `rb_obj_clone` isn't performant enough
for some uses, we can always have carefully crafted specialized
paths for the types that would benefit from it.
[Bug #21170]
st_table reserves -1 as a special hash value to indicate that an entry
has been deleted. So that that's a valid value to be returned from the
hash function, do_hash replaces -1 with 0 so that it is not mistaken for
the sentinel.
Previously, when upgrading an AR table to an ST table,
rb_st_add_direct_with_hash was used which did not perform the same
conversion, this could lead to a hash in a broken state where one if its
entries which was supposed to exist being marked as a tombstone.
The hash could then become further corrupted when the ST table required
resizing as the falsely tombstoned entry would be skipped but it would
be counted in num entries, leading to an uninitialized entry at index
15.
In most cases this will be really rare, unless using a very poorly
implemented custom hash function.
This also adds two debug assertions, one that st_add_direct_with_hash
does not receive the reserved hash value, and a second in
rebuild_table_with, which ensures that after we rebuild/compact a table
it contains the expected number of elements.
Co-authored-by: Alan Wu <alanwu@ruby-lang.org>
If the provided Hash doesn't have a default proc, we know for
sure that we'll never call into user provided code, hence the
string we allocate to access the Hash can't possibly escape.
So we don't actually have to allocate it, we can use a fake_str,
AKA a stack allocated string.
```
compare-ruby: ruby 3.5.0dev (2025-02-10T13:47:44Z master 3fb455adab) +PRISM [arm64-darwin23]
built-ruby: ruby 3.5.0dev (2025-02-10T17:09:52Z opt-gsub-alloc ea5c28958f) +PRISM [arm64-darwin23]
warming up....
| |compare-ruby|built-ruby|
|:----------------|-----------:|---------:|
|escape | 3.374k| 3.722k|
| | -| 1.10x|
|escape_bin | 5.469k| 6.587k|
| | -| 1.20x|
|escape_utf8 | 3.465k| 3.734k|
| | -| 1.08x|
|escape_utf8_bin | 5.752k| 7.283k|
| | -| 1.27x|
```