This commit splits gc.c into two files:
- gc.c now only contains code not specific to Ruby GC. This includes
code to mark objects (which the GC implementation may choose not to
use) and wrappers for internal APIs that the implementation may need
to use (e.g. locking the VM).
- gc_impl.c now contains the implementation of Ruby's GC. This includes
marking, sweeping, compaction, and statistics. Most importantly,
gc_impl.c only uses public APIs in Ruby and a limited set of functions
exposed in gc.c. This allows us to build gc_impl.c independently of
Ruby and plug Ruby's GC into itself.
This PR moves `rb_copy_wb_protected_attribute` and
`rb_gc_copy_finalizer` into a single function called
`rb_gc_copy_attributes` to be called by `init_copy`. This reduces the
surface area of the GC API.
Co-authored-by: Peter Zhu <peter@peterzhu.ca>
I was trying to debug an (unrelated) issue in the GC, and wanted to turn
on the trace-level GC output by compiling it with -DRGENGC_DEBUG=5.
Unfortunately, this actually causes a crash in newobj_init() because the
code there tries to log the obj_info() of the newly created object.
However, the object is not actually sufficiently set up for some of the
things that obj_info() tries to do:
* The instance variable table for a class is not yet initialized, and
when using variable-length RVALUES, said ivar table is embedded in
as-yet unitialized memory after the struct RValue. Attempting to read
this, as obj_info() does, causes a crash.
* T_DATA variables need to dereference their ->type field to print out
the underlying C type name, which is not set up until newobj_fill() is
called.
To fix this, create a new method `obj_info_basic`, which dumps out only
the parts of the object that are valid before the object is fully
initialized.
[Fixes#18795]
When generic instance variable has a shape, it is marked movable. If it
it transitions to too complex, it needs to update references otherwise
it may have incorrect references.
If we're during incremental marking, then Ruby code can execute that
deallocates certain memory buffers that have been called with
rb_gc_mark_weak, which can cause use-after-free bugs.
This is an internal only function not exposed to the C extension API.
It's only use so far is from rb_vm_mark, where it's used to mark the
values in the vm->trap_list.cmd array.
There shouldn't be any reason why these cannot move.
This commit allows them to move by updating their references during the
reference updating step of compaction.
To do this we've introduced another internal function
rb_gc_update_values as a partner to rb_gc_mark_values.
This allows us to refactor rb_gc_mark_values to not pin
[Feature #19783]
This commit adds support for weak references in the GC through the
function `rb_gc_mark_weak`. Unlike strong references, weak references
does not mark the object, but rather lets the GC know that an object
refers to another one. If the child object is freed, the pointer from
the parent object is overwritten with `Qundef`.
Co-Authored-By: Jean Boussier <byroot@ruby-lang.org>
[Feature #18885]
For now, the optimizations performed are:
- Run a major GC
- Compact the heap
- Promote all surviving objects to oldgen
Other optimizations may follow.
Introduce Universal Parser mode for the parser.
This commit includes these changes:
* Introduce `UNIVERSAL_PARSER` macro. All of CRuby related functions
are passed via `struct rb_parser_config_struct` when this macro is enabled.
* Add CI task with 'cppflags=-DUNIVERSAL_PARSER' for ubuntu.
Remove !USE_RVARGC code
[Feature #19579]
The Variable Width Allocation feature was turned on by default in Ruby
3.2. Since then, we haven't received bug reports or backports to the
non-Variable Width Allocation code paths, so we assume that nobody is
using it. We also don't plan on maintaining the non-Variable Width
Allocation code, so we are going to remove it.
[Feature #18885]
For now, the optimizations performed are:
- Run a major GC
- Compact the heap
- Promote all surviving objects to oldgen
Other optimizations may follow.
These classes don't belong in gc.c as they're not actually part of the
GC. This commit refactors the code by moving all the code into a
weakmap.c file.
This commit adds rb_gc_mark_and_move which takes a pointer to an object
and marks it during marking phase and updates references during compaction.
This allows for marking and reference updating to be combined into a
single function, which reduces code duplication and prevents bugs if
marking and reference updating goes out of sync.
This commit also implements rb_gc_mark_and_move on iseq as an example.