Because of `double` in `RFloat`, `RValue` would be packed by
`sizeof(double)` by default, on platforms where `double` is wider
than `VALUE`. Size of `RValue` is multiple of 5 now.
[A previous commit](b59077eecf912a16efefc0256f6e94a000ce3888) removes some macro definitions that are used when RGENGC_CHECK_MODE >=4 because they were using data stored against objspace, which is not ractor safe
This commit reinstates those macro definitions, using the current ractor
Co-authored-by: peterzhu2118 <peter@peterzhu.ca>
Some objects can survive the GC before compaction, but get collected in
the second compaction. This means we could have objects reference
T_MOVED during "free" in the second, compacting GC. If that is the
case, we need to invalidate those "moved" addresses. Invalidation is
done via read barrier, so we need to make sure the read barrier is
active even during `GC.compact`.
This also means we don't actually need to do one GC before compaction,
we can just do the compaction and GC in one step.
constant cache `IC` is accessed by non-atomic manner and there are
thread-safety issues, so Ruby 3.0 disables to use const cache on
non-main ractors.
This patch enables it by introducing `imemo_constcache` and allocates
it by every re-fill of const cache like `imemo_callcache`.
[Bug #17510]
Now `IC` only has one entry `IC::entry` and it points to
`iseq_inline_constant_cache_entry`, managed by T_IMEMO object.
`IC` is atomic data structure so `rb_mjit_before_vm_ic_update()` and
`rb_mjit_after_vm_ic_update()` is not needed.
separate some fields from rb_ractor_t to rb_ractor_pub and put it
at the beggining of rb_ractor_t and declare it in vm_core.h so
vm_core.h can access rb_ractor_pub fields.
Now rb_ec_ractor_hooks() is a complete inline function and no
MJIT related issue.
ObjectSpace._id2ref(id) can return any objects even if they are
unshareable, so this patch raises RangeError if it runs on multi-ractor
mode and the found object is unshareable.
Per ractor method cache (GH-#3842) only cached 1 page and this patch
caches several pages to keep at least 512 free slots if available.
If you increase the number of cached free slots, all cached slots
will be collected when the GC is invoked.
A program with multiple ractors can consume more objects per
unit time, so this patch set minimum/maximum free_slots to
relative to ractors count (upto 8).
Lazy sweep tries to collect free (unused) slots incrementally, and
it only collect a few pages. This patch makes lazy sweep collects
more objects (at least 2048 objects) and GC overhead of multi-ractor
execution will be reduced.
Write barrier requires VM lock because it accesses VM global bitmap
but RB_VM_LOCK_ENTER() can invoke GC because another ractor can wait
to invoke GC and RB_VM_LOCK_ENTER() is barrier point. This means that
before protecting by a write barrier, GC can invoke.
To prevent such situation, RB_VM_LOCK_ENTER_NO_BARRIER() is introduced.
This lock primitive does not become GC barrier points.
Now object allocation requires VM global lock to synchronize objspace.
However, of course, it introduces huge overhead.
This patch caches some slots (in a page) by each ractor and use cached
slots for object allocation. If there is no cached slots, acquire the global lock
and get new cached slots, or start GC (marking or lazy sweeping).
This seems to be breaking the build for some reason.
This command can reproduce it:
`make yes-test-all TESTS=--repeat-count=20`
This reverts commit 88bb1a672c.