This works much like the existing `defined` implementation,
but calls out to rb_ivar_defined instead of the more general
rb_vm_defined.
Other difference to the existing `defined` implementation is
that this new instruction has to take the same operands as
the CRuby `defined_ivar` instruction.
If you have a method that takes rest arguments and a splat call that
happens to line up perfectly with that rest, you can just dupe the
array rather than move anything around. We still have to dupe, because
people could have a custom to_a method or something like that which
means it is hard to guarantee we have exclusive access to that array.
Example:
```ruby
def foo(a, b, *rest)
end
foo(1, 2, *[3, 4])
```
Given that signleton classes don't have an allocator,
we can re-use these bytes to store the attached object
in `rb_classext_struct` without making it larger.
YJIT: Implement splat for cfuncs. Split exit cases
This also implements a new check for ruby2keywords as the last
argument of a splat. This does mean that we generate more code, but in
actual benchmarks where we gained speed from this (binarytrees) I
don't see any significant slow down. I did have to struggle here with
the register allocator to find code that didn't allocate too many
registers. It's a bit hard when everything is implicit. But I think I
got to the minimal amount of copying and stuff given our current
allocation strategy.
* YJIT: Make iseq_get_location consistent with iseq.c
* YJIT: Call it "YJIT entry point"
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
When an object becomes "too complex" (in other words it has too many
variations in the shape tree), we transition it to use a "too complex"
shape and use a hash for storing instance variables.
Without this patch, there were rare cases where shape tree growth could
"explode" and cause performance degradation on what would otherwise have
been cached fast paths.
This patch puts a limit on shape tree growth, and gracefully degrades in
the rare case where there could be a factorial growth in the shape tree.
For example:
```ruby
class NG; end
HUGE_NUMBER.times do
NG.new.instance_variable_set(:"@unique_ivar_#{_1}", 1)
end
```
We consider objects to be "too complex" when the object's class has more
than SHAPE_MAX_VARIATIONS (currently 8) leaf nodes in the shape tree and
the object introduces a new variation (a new leaf node) associated with
that class.
For example, new variations on instances of the following class would be
considered "too complex" because those instances create more than 8
leaves in the shape tree:
```ruby
class Foo; end
9.times { Foo.new.instance_variable_set(":@uniq_#{_1}", 1) }
```
However, the following class is *not* too complex because it only has
one leaf in the shape tree:
```ruby
class Foo
def initialize
@a = @b = @c = @d = @e = @f = @g = @h = @i = nil
end
end
9.times { Foo.new }
``
This case is rare, so we don't expect this change to impact performance
of most applications, but it needs to be handled.
Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
The new version has an option to merge everything into a big
`extern "C"` block and it's nicer.
More importantly, this upgrade fixes an issue where Ubuntu with Clang 12
and macOS with Clang 14 gave a one line diff for `rb_shape_t`. It was
slightly annoying because we use macOS locally.
* YJIT: Make case-when optimization respect === redefinition
Even when a fixnum key is in the dispatch hash, if there is a case such
that its basic operations for === is redefined, we need to fall back to
checking each case like the interpreter. Semantically we're always
checking each case by calling === in order, it's just that this is not
observable when basic operations are intact.
When all the keys are fixnums, though, we can do the optimization we're
doing right now. Check for this condition.
* Update yjit/src/cruby_bindings.inc.rs
Co-authored-by: Takashi Kokubun <takashikkbn@gmail.com>
Co-authored-by: Takashi Kokubun <takashikkbn@gmail.com>
* YJIT: Reorder branches for Fixnum opt_case_dispatch
Co-authored-by: Maxime Chevalier-Boisvert <maxime.chevalierboisvert@shopify.com>
Co-authored-by: Alan Wu <alansi.xingwu@shopify.com>
* YJIT: Don't support too large values
Co-authored-by: Maxime Chevalier-Boisvert <maxime.chevalierboisvert@shopify.com>
Co-authored-by: Alan Wu <alansi.xingwu@shopify.com>
This dispatches to a c func for doing the dynamic lookup. I experimented with chain on the proc but wasn't able to detect which call sites would be monomorphic vs polymorphic. There is definitely room for optimization here, but it does reduce exits.
* Implement optimize send in yjit
This successfully makes all our benchmarks exit way less for optimize send reasons.
It makes some benchmarks faster, but not by as much as I'd like. I think this implementation
works, but there are definitely more optimial arrangements. For example, what if we compiled
send to a jump table? That seems like perhaps the most optimal we could do, but not obvious (to me)
how to implement give our current setup.
Co-authored-by: Alan Wu <XrXr@users.noreply.github.com>
* Attempt at fixing the issues raised by @XrXr
* fix allowlist
* returns 0 instead of nil when not found
* remove comment about encoding exception
* Fix up c changes
* Update assert
Co-authored-by: Alan Wu <XrXr@users.noreply.github.com>
* get rid of unneeded code and fix the flags
* Apply suggestions from code review
Co-authored-by: Alan Wu <XrXr@users.noreply.github.com>
* rename and fix typo
Co-authored-by: Alan Wu <XrXr@users.noreply.github.com>
* YJIT: fix a parameter name
* YJIT: add support for calling bmethods
This commit adds support for the VM_METHOD_TYPE_BMETHOD method type in
YJIT. You can get these type of methods from facilities like
Kernel#define_singleton_method and Module#define_method.
Even though the body of these methods are blocks, the parameter setup
for them is exactly the same as VM_METHOD_TYPE_ISEQ, so we can reuse
the same logic in gen_send_iseq(). You can see this from how
vm_call_bmethod() eventually calls setup_parameters_complex() with
arg_setup_method.
Bmethods do need their frame environment to be setup differently. We
handle this by allowing callers of gen_send_iseq() to control the iseq,
the frame flag, and the prev_ep. The `prev_ep` goes into the same
location as the block handler would go into in an iseq method frame.
Co-authored-by: John Hawthorn <john@hawthorn.email>
Co-authored-by: John Hawthorn <john@hawthorn.email>
Object Shapes is used for accessing instance variables and representing the
"frozenness" of objects. Object instances have a "shape" and the shape
represents some attributes of the object (currently which instance variables are
set and the "frozenness"). Shapes form a tree data structure, and when a new
instance variable is set on an object, that object "transitions" to a new shape
in the shape tree. Each shape has an ID that is used for caching. The shape
structure is independent of class, so objects of different types can have the
same shape.
For example:
```ruby
class Foo
def initialize
# Starts with shape id 0
@a = 1 # transitions to shape id 1
@b = 1 # transitions to shape id 2
end
end
class Bar
def initialize
# Starts with shape id 0
@a = 1 # transitions to shape id 1
@b = 1 # transitions to shape id 2
end
end
foo = Foo.new # `foo` has shape id 2
bar = Bar.new # `bar` has shape id 2
```
Both `foo` and `bar` instances have the same shape because they both set
instance variables of the same name in the same order.
This technique can help to improve inline cache hits as well as generate more
efficient machine code in JIT compilers.
This commit also adds some methods for debugging shapes on objects. See
`RubyVM::Shape` for more details.
For more context on Object Shapes, see [Feature: #18776]
Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
Co-Authored-By: Eileen M. Uchitelle <eileencodes@gmail.com>
Co-Authored-By: John Hawthorn <john@hawthorn.email>
Object Shapes is used for accessing instance variables and representing the
"frozenness" of objects. Object instances have a "shape" and the shape
represents some attributes of the object (currently which instance variables are
set and the "frozenness"). Shapes form a tree data structure, and when a new
instance variable is set on an object, that object "transitions" to a new shape
in the shape tree. Each shape has an ID that is used for caching. The shape
structure is independent of class, so objects of different types can have the
same shape.
For example:
```ruby
class Foo
def initialize
# Starts with shape id 0
@a = 1 # transitions to shape id 1
@b = 1 # transitions to shape id 2
end
end
class Bar
def initialize
# Starts with shape id 0
@a = 1 # transitions to shape id 1
@b = 1 # transitions to shape id 2
end
end
foo = Foo.new # `foo` has shape id 2
bar = Bar.new # `bar` has shape id 2
```
Both `foo` and `bar` instances have the same shape because they both set
instance variables of the same name in the same order.
This technique can help to improve inline cache hits as well as generate more
efficient machine code in JIT compilers.
This commit also adds some methods for debugging shapes on objects. See
`RubyVM::Shape` for more details.
For more context on Object Shapes, see [Feature: #18776]
Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
Co-Authored-By: Eileen M. Uchitelle <eileencodes@gmail.com>
Co-Authored-By: John Hawthorn <john@hawthorn.email>
* Initial support for VM_CALL_ARGS_SPLAT
This implements support for calls with splat (*) for some methods. In
benchmarks this made very little difference for most benchmarks, but a
large difference for binarytrees. Looking at side exits, many
benchmarks now don't exit for splat, but exit for some other
reason. Binarytrees however had a number of calls that used splat args
that are now much faster. In my non-scientific benchmarking this made
splat args performance on par with not using splat args at all.
* Fix wording and whitespace
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
* Get rid of side_effect reassignment
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
Previously we cleared the cache for all the code in the system when we
flip memory protection, which was prohibitively expensive since the
operation is not constant time. Instead, only clear the cache for the
memory region of newly written code when we write out new code.
This brings the runtime for the 30k_if_else test down to about 6 seconds
from the previous 45 seconds on my laptop.
We have a large extern block in cruby.rs leftover from the port. We can
use bindgen for it now and reserve the manual declaration for just a
handful of vm_insnhelper.c functions.
Fixup a few minor discrepencies bindgen found between the C declaration
and the manual declaration. Mostly missing `const` on the C side.
This commit implements Objects on Variable Width Allocation. This allows
Objects with more ivars to be embedded (i.e. contents directly follow the
object header) which improves performance through better cache locality.