This removes the security features added by $SAFE = 1, and warns for access
or modification of $SAFE from Ruby-level, as well as warning when calling
all public C functions related to $SAFE.
This modifies some internal functions that took a safe level argument
to no longer take the argument.
rb_require_safe now warns, rb_require_string has been added as a
version that takes a VALUE and does not warn.
One public C function that still takes a safe level argument and that
this doesn't warn for is rb_eval_cmd. We may want to consider
adding an alternative method that does not take a safe level argument,
and warn for rb_eval_cmd.
Looking at the list of symbols inside of libruby-static.a, I found
hundreds of functions that are defined, but used from nowhere.
There can be reasons for each of them (e.g. some functions are
specific to some platform, some are useful when debugging, etc).
However it seems the functions deleted here exist for no reason.
This changeset reduces the size of ruby binary from 26,671,456
bytes to 26,592,864 bytes on my machine.
Get rid of these redundant and useless warnings.
```
$ ruby -e 'def bar(a) a; end; def foo(...) bar(...) end; foo({})'
-e:1: warning: The last argument is used as the keyword parameter
-e:1: warning: for `foo' defined here
-e:1: warning: The keyword argument is passed as the last hash parameter
-e:1: warning: for `bar' defined here
```
* parse.y (struct local_vars): moved numbered parameter NODEs for
nesting check to separate per local variable scopes, as numbered
parameters should belong to local variable scopes. [Bug #16248]
This function has been used wrongly always at first, "allocate a
buffer then wrap it with tmpbuf". This order can cause a memory
leak, as tmpbuf creation also can raise a NoMemoryError exception.
The right order is "create a tmpbuf then allocate&wrap a buffer".
So the argument of this function is rather harmful than just
useless.
TODO:
* Rename this function to more proper name, as it is not used
"temporary" (function local) purpose.
* Allocate and wrap at once safely, like `ALLOCV`.
The parser needs to determine whether a local varaiable is defined or
not in outer scope. For the sake, "base_block" field has kept the outer
block.
However, the whole block was actually unneeded; the parser used only
base_block->iseq.
So, this change lets parser_params have the iseq directly, instead of
the whole block.
The relation between parser_param#base_block and #in_main were very
subtle.
A main script (that is passed via a command line) was parsed under
base_block = TOPLEVEL_BINDING and in_main = 1.
A script loaded by Kernel#require was parsed under
base_block = NULL and in_main = 0.
If base_block is non-NULL and in_main == 0, it is parsed by Kernel#eval
or family.
However, we know that TOPLEVEL_BINDING has no local variables when a
main script is parsed. So, we don't have to parse a main script under
base_block = TOPLEVEL_BINDING.
Instead, this change parses a main script under base_block = 0.
If base_block is non-NULL, it is parsed by Kernel#eval or family.
By this simplication, "in_main" is no longer needed.
We are seeing SEGVs in CI:
http://ci.rvm.jp/results/trunk-gc-asserts@ruby-sky1/2253563
This is happening because Ripper constructs AST nodes differently than
parse.y normally does. Specifically in this case Ripper is assigning 3
`VALUE` objects:
1febb6f4a1/parse.y (L757-L761)
Where parse.y will normally assign other things:
1febb6f4a1/parse.y (L11258-L11260)
The important one is the last one, the `struct rb_ary_pattern_info`. The
mark function assumed that `NODE_ARYPTN` have a pointer to `struct
rb_ary_pattern_info`, and used it:
1febb6f4a1/node.c (L1269-L1274)
In the case of Ripper, `NODE_ARYPTN` doesn't point to an
`rb_ary_pattern_info`, so the mark function would SEGV. This commit
changes Ripper so that its `NODE_ARYPTN` nodes also point at an
`rb_ary_pattern_info`, and the mark function can continue with the same
assumption.