#include #include "insns.inc" #include "internal.h" #include "vm_core.h" #include "vm_callinfo.h" #include "builtin.h" #include "insns_info.inc" #include "ujit_compile.h" #include "ujit_asm.h" // TODO: give ujit_examples.h some more meaningful file name #include "ujit_examples.h" // Code generation context typedef struct ctx_struct { // Current PC VALUE* pc; // TODO: virtual stack pointer handling } ctx_t; // Code generation function typedef void (*codegen_fn)(codeblock_t* cb, ctx_t* ctx); // Map from YARV opcodes to code generation functions static st_table *gen_fns; // Code block into which we write machine code static codeblock_t block; static codeblock_t* cb = NULL; // Hash table of encoded instructions extern st_table *rb_encoded_insn_data; static void ujit_init(); // Ruby instruction entry static void ujit_instr_entry(codeblock_t* cb) { for (size_t i = 0; i < sizeof(ujit_pre_call_bytes); ++i) cb_write_byte(cb, ujit_pre_call_bytes[i]); } // Ruby instruction exit static void ujit_instr_exit(codeblock_t* cb) { for (size_t i = 0; i < sizeof(ujit_post_call_bytes); ++i) cb_write_byte(cb, ujit_post_call_bytes[i]); } // Keep track of mapping from instructions to generated code // See comment for rb_encoded_insn_data in iseq.c static void addr2insn_bookkeeping(void *code_ptr, int insn) { const void * const *table = rb_vm_get_insns_address_table(); const void * const translated_address = table[insn]; st_data_t encoded_insn_data; if (st_lookup(rb_encoded_insn_data, (st_data_t)translated_address, &encoded_insn_data)) { st_insert(rb_encoded_insn_data, (st_data_t)code_ptr, encoded_insn_data); } else { rb_bug("ujit: failed to find info for original instruction while dealing with addr2insn"); } } // Get the current instruction opcode from the context object int ctx_get_opcode(ctx_t* ctx) { return (int)(*ctx->pc); } // Get an instruction argument from the context object VALUE ctx_get_arg(ctx_t* ctx, size_t arg_idx) { assert (arg_idx + 1 < insn_len(ctx_get_opcode(ctx))); return *(ctx->pc + arg_idx + 1); } /* Generate a chunk of machine code for one individual bytecode instruction Eventually, this will handle multiple instructions in a sequence MicroJIT code gets a pointer to the cfp as the first argument in RDI See rb_ujit_empty_func(rb_control_frame_t *cfp) in iseq.c System V ABI reference: https://wiki.osdev.org/System_V_ABI#x86-64 */ uint8_t * ujit_compile_insn(rb_iseq_t *iseq, size_t insn_idx) { // If not previously done, initialize ujit if (!cb) { ujit_init(); } if (cb->write_pos + 1024 >= cb->mem_size) { rb_bug("out of executable memory"); } // Get a pointer to the current write position in the code block uint8_t *code_ptr = &cb->mem_block[cb->write_pos]; //printf("write pos: %ld\n", cb->write_pos); int insn = (int)iseq->body->iseq_encoded[insn_idx]; int len = insn_len(insn); //const char* name = insn_name(insn); //printf("%s\n", name); // Lookup the codegen function for this instruction st_data_t st_gen_fn; int found = rb_st_lookup(gen_fns, insn, &st_gen_fn); if (!found) return 0; codegen_fn gen_fn = (codegen_fn)st_gen_fn; // Write the pre call bytes ujit_instr_entry(cb); // Create codegen context ctx_t ctx; // Set the current PC ctx.pc = &iseq->body->iseq_encoded[insn_idx]; // Call the code generation function gen_fn(cb, &ctx); // Directly return the next PC, which is a constant void *next_pc = &iseq->body->iseq_encoded[insn_idx + len]; mov(cb, RAX, const_ptr_opnd(next_pc)); // Write the post call bytes ujit_instr_exit(cb); addr2insn_bookkeeping(code_ptr, insn); return code_ptr; } void gen_nop(codeblock_t* cb, ctx_t* ctx) { } void gen_pop(codeblock_t* cb, ctx_t* ctx) { // Decrement SP sub(cb, mem_opnd(64, RDI, 8), imm_opnd(8)); } void gen_putobject_int2fix(codeblock_t* cb, ctx_t* ctx) { // Load current SP into RAX mov(cb, RAX, mem_opnd(64, RDI, 8)); // Write constant at SP int opcode = ctx_get_opcode(ctx); int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1; mov(cb, mem_opnd(64, RAX, 0), imm_opnd(INT2FIX(cst_val))); // Load incremented SP into RCX lea(cb, RCX, mem_opnd(64, RAX, 8)); // Write back incremented SP mov(cb, mem_opnd(64, RDI, 8), RCX); } // TODO: putnil // could we reuse code from putobject_int2fix here? // TODO: implement putself // TODO: implement putobject void gen_getlocal_wc0(codeblock_t* cb, ctx_t* ctx) { // Load current SP from CFP mov(cb, RAX, mem_opnd(64, RDI, 8)); // Load block pointer from CFP mov(cb, RDX, mem_opnd(64, RDI, 32)); // Compute the offset from BP to the local int32_t local_idx = (int32_t)ctx_get_arg(ctx, 0); const int32_t offs = -8 * local_idx; // Load the local from the block mov(cb, RCX, mem_opnd(64, RDX, offs)); // Write the local at SP mov(cb, mem_opnd(64, RAX, 0), RCX); // Compute address of incremented SP lea(cb, RCX, mem_opnd(64, RAX, 8)); // Write back incremented SP mov(cb, mem_opnd(64, RDI, 8), RCX); } static void ujit_init() { // 4MB ought to be enough for anybody cb = █ cb_init(cb, 4000000); // Initialize the codegen function table gen_fns = rb_st_init_numtable(); // Map YARV opcodes to the corresponding codegen functions st_insert(gen_fns, (st_data_t)BIN(nop), (st_data_t)&gen_nop); st_insert(gen_fns, (st_data_t)BIN(pop), (st_data_t)&gen_pop); st_insert(gen_fns, (st_data_t)BIN(putobject_INT2FIX_0_), (st_data_t)&gen_putobject_int2fix); st_insert(gen_fns, (st_data_t)BIN(putobject_INT2FIX_1_), (st_data_t)&gen_putobject_int2fix); st_insert(gen_fns, (st_data_t)BIN(getlocal_WC_0), (st_data_t)&gen_getlocal_wc0); }