ruby/ext/openssl/ossl_pkey.c
usa c2fdfb05a4 merge 3af2635f11
patched by Kazuki Yamaguchi <k@rhe.jp>

	bio: prevent possible GC issue in ossl_obj2bio()

	Prevent the new object created by StringValue() from being GCed.
	Luckily, as none of the callers of ossl_obj2bio() reads from the
	returned BIO after possible triggering GC, this has not been a real
	problem.

	As a bonus, ossl_protect_obj2bio() function which is no longer used
	anywhere is removed.

	merge f842b0d5c5
	patched by Kazuki Yamaguchi <k@rhe.jp>

	bio: do not use the FILE BIO method in ossl_obj2bio()

	Read everything from an IO object into a String first and use the
	memory buffer BIO method just as we do for String inputs.

	For MSVC builds, the FILE BIO method uses the "UPLINK" interface that
	requires the application to provide OPENSSL_Applink() function. For us,
	the "application" means ruby.exe, in which we can't do anything. As a
	workaround, avoid using the FILE BIO method at all.

	Usually private keys or X.509 certificates aren't that large and the
	temporarily increased memory usage hopefully won't be an issue.

	ext/openssl/ossl_version.h (OpenSSL::VERSION): bump to 1.1.1.


git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/branches/ruby_2_3@62885 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-03-22 03:33:56 +00:00

455 lines
12 KiB
C

/*
* 'OpenSSL for Ruby' project
* Copyright (C) 2001-2002 Michal Rokos <m.rokos@sh.cvut.cz>
* All rights reserved.
*/
/*
* This program is licensed under the same licence as Ruby.
* (See the file 'LICENCE'.)
*/
#include "ossl.h"
/*
* Classes
*/
VALUE mPKey;
VALUE cPKey;
VALUE ePKeyError;
ID id_private_q;
/*
* callback for generating keys
*/
void
ossl_generate_cb(int p, int n, void *arg)
{
VALUE ary;
ary = rb_ary_new2(2);
rb_ary_store(ary, 0, INT2NUM(p));
rb_ary_store(ary, 1, INT2NUM(n));
rb_yield(ary);
}
#if HAVE_BN_GENCB
/* OpenSSL 2nd version of GN generation callback */
int
ossl_generate_cb_2(int p, int n, BN_GENCB *cb)
{
VALUE ary;
struct ossl_generate_cb_arg *arg;
int state;
arg = (struct ossl_generate_cb_arg *)cb->arg;
if (arg->yield) {
ary = rb_ary_new2(2);
rb_ary_store(ary, 0, INT2NUM(p));
rb_ary_store(ary, 1, INT2NUM(n));
/*
* can be break by raising exception or 'break'
*/
rb_protect(rb_yield, ary, &state);
if (state) {
arg->stop = 1;
arg->state = state;
}
}
if (arg->stop) return 0;
return 1;
}
void
ossl_generate_cb_stop(void *ptr)
{
struct ossl_generate_cb_arg *arg = (struct ossl_generate_cb_arg *)ptr;
arg->stop = 1;
}
#endif
static void
ossl_evp_pkey_free(void *ptr)
{
EVP_PKEY_free(ptr);
}
/*
* Public
*/
const rb_data_type_t ossl_evp_pkey_type = {
"OpenSSL/EVP_PKEY",
{
0, ossl_evp_pkey_free,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY,
};
VALUE
ossl_pkey_new(EVP_PKEY *pkey)
{
if (!pkey) {
ossl_raise(ePKeyError, "Cannot make new key from NULL.");
}
switch (EVP_PKEY_type(pkey->type)) {
#if !defined(OPENSSL_NO_RSA)
case EVP_PKEY_RSA:
return ossl_rsa_new(pkey);
#endif
#if !defined(OPENSSL_NO_DSA)
case EVP_PKEY_DSA:
return ossl_dsa_new(pkey);
#endif
#if !defined(OPENSSL_NO_DH)
case EVP_PKEY_DH:
return ossl_dh_new(pkey);
#endif
#if !defined(OPENSSL_NO_EC) && (OPENSSL_VERSION_NUMBER >= 0x0090802fL)
case EVP_PKEY_EC:
return ossl_ec_new(pkey);
#endif
default:
ossl_raise(ePKeyError, "unsupported key type");
}
UNREACHABLE;
}
VALUE
ossl_pkey_new_from_file(VALUE filename)
{
FILE *fp;
EVP_PKEY *pkey;
SafeStringValue(filename);
if (!(fp = fopen(RSTRING_PTR(filename), "r"))) {
ossl_raise(ePKeyError, "%s", strerror(errno));
}
rb_fd_fix_cloexec(fileno(fp));
pkey = PEM_read_PrivateKey(fp, NULL, ossl_pem_passwd_cb, NULL);
fclose(fp);
if (!pkey) {
ossl_raise(ePKeyError, NULL);
}
return ossl_pkey_new(pkey);
}
/*
* call-seq:
* OpenSSL::PKey.read(string [, pwd ] ) -> PKey
* OpenSSL::PKey.read(file [, pwd ]) -> PKey
*
* === Parameters
* * +string+ is a DER- or PEM-encoded string containing an arbitrary private
* or public key.
* * +file+ is an instance of +File+ containing a DER- or PEM-encoded
* arbitrary private or public key.
* * +pwd+ is an optional password in case +string+ or +file+ is an encrypted
* PEM resource.
*/
static VALUE
ossl_pkey_new_from_data(int argc, VALUE *argv, VALUE self)
{
EVP_PKEY *pkey;
BIO *bio;
VALUE data, pass;
char *passwd = NULL;
rb_scan_args(argc, argv, "11", &data, &pass);
bio = ossl_obj2bio(&data);
if (!(pkey = d2i_PrivateKey_bio(bio, NULL))) {
OSSL_BIO_reset(bio);
if (!NIL_P(pass)) {
passwd = StringValuePtr(pass);
}
if (!(pkey = PEM_read_bio_PrivateKey(bio, NULL, ossl_pem_passwd_cb, passwd))) {
OSSL_BIO_reset(bio);
if (!(pkey = d2i_PUBKEY_bio(bio, NULL))) {
OSSL_BIO_reset(bio);
if (!NIL_P(pass)) {
passwd = StringValuePtr(pass);
}
pkey = PEM_read_bio_PUBKEY(bio, NULL, ossl_pem_passwd_cb, passwd);
}
}
}
BIO_free(bio);
if (!pkey)
ossl_raise(rb_eArgError, "Could not parse PKey");
return ossl_pkey_new(pkey);
}
EVP_PKEY *
GetPKeyPtr(VALUE obj)
{
EVP_PKEY *pkey;
SafeGetPKey(obj, pkey);
return pkey;
}
EVP_PKEY *
GetPrivPKeyPtr(VALUE obj)
{
EVP_PKEY *pkey;
if (rb_funcallv(obj, id_private_q, 0, NULL) != Qtrue) {
ossl_raise(rb_eArgError, "Private key is needed.");
}
SafeGetPKey(obj, pkey);
return pkey;
}
EVP_PKEY *
DupPKeyPtr(VALUE obj)
{
EVP_PKEY *pkey;
SafeGetPKey(obj, pkey);
CRYPTO_add(&pkey->references, 1, CRYPTO_LOCK_EVP_PKEY);
return pkey;
}
EVP_PKEY *
DupPrivPKeyPtr(VALUE obj)
{
EVP_PKEY *pkey;
if (rb_funcallv(obj, id_private_q, 0, NULL) != Qtrue) {
ossl_raise(rb_eArgError, "Private key is needed.");
}
SafeGetPKey(obj, pkey);
CRYPTO_add(&pkey->references, 1, CRYPTO_LOCK_EVP_PKEY);
return pkey;
}
/*
* Private
*/
static VALUE
ossl_pkey_alloc(VALUE klass)
{
EVP_PKEY *pkey;
VALUE obj;
obj = NewPKey(klass);
if (!(pkey = EVP_PKEY_new())) {
ossl_raise(ePKeyError, NULL);
}
SetPKey(obj, pkey);
return obj;
}
/*
* call-seq:
* PKeyClass.new -> self
*
* Because PKey is an abstract class, actually calling this method explicitly
* will raise a +NotImplementedError+.
*/
static VALUE
ossl_pkey_initialize(VALUE self)
{
if (rb_obj_is_instance_of(self, cPKey)) {
ossl_raise(rb_eNotImpError, "OpenSSL::PKey::PKey is an abstract class.");
}
return self;
}
/*
* call-seq:
* pkey.sign(digest, data) -> String
*
* To sign the +String+ +data+, +digest+, an instance of OpenSSL::Digest, must
* be provided. The return value is again a +String+ containing the signature.
* A PKeyError is raised should errors occur.
* Any previous state of the +Digest+ instance is irrelevant to the signature
* outcome, the digest instance is reset to its initial state during the
* operation.
*
* == Example
* data = 'Sign me!'
* digest = OpenSSL::Digest::SHA256.new
* pkey = OpenSSL::PKey::RSA.new(2048)
* signature = pkey.sign(digest, data)
*/
static VALUE
ossl_pkey_sign(VALUE self, VALUE digest, VALUE data)
{
EVP_PKEY *pkey;
EVP_MD_CTX ctx;
unsigned int buf_len;
VALUE str;
int result;
if (rb_funcallv(self, id_private_q, 0, NULL) != Qtrue) {
ossl_raise(rb_eArgError, "Private key is needed.");
}
GetPKey(self, pkey);
EVP_SignInit(&ctx, GetDigestPtr(digest));
StringValue(data);
EVP_SignUpdate(&ctx, RSTRING_PTR(data), RSTRING_LEN(data));
str = rb_str_new(0, EVP_PKEY_size(pkey)+16);
result = EVP_SignFinal(&ctx, (unsigned char *)RSTRING_PTR(str), &buf_len, pkey);
EVP_MD_CTX_cleanup(&ctx);
if (!result)
ossl_raise(ePKeyError, NULL);
assert((long)buf_len <= RSTRING_LEN(str));
rb_str_set_len(str, buf_len);
return str;
}
/*
* call-seq:
* pkey.verify(digest, signature, data) -> String
*
* To verify the +String+ +signature+, +digest+, an instance of
* OpenSSL::Digest, must be provided to re-compute the message digest of the
* original +data+, also a +String+. The return value is +true+ if the
* signature is valid, +false+ otherwise. A PKeyError is raised should errors
* occur.
* Any previous state of the +Digest+ instance is irrelevant to the validation
* outcome, the digest instance is reset to its initial state during the
* operation.
*
* == Example
* data = 'Sign me!'
* digest = OpenSSL::Digest::SHA256.new
* pkey = OpenSSL::PKey::RSA.new(2048)
* signature = pkey.sign(digest, data)
* pub_key = pkey.public_key
* puts pub_key.verify(digest, signature, data) # => true
*/
static VALUE
ossl_pkey_verify(VALUE self, VALUE digest, VALUE sig, VALUE data)
{
EVP_PKEY *pkey;
EVP_MD_CTX ctx;
int result;
GetPKey(self, pkey);
StringValue(sig);
StringValue(data);
EVP_VerifyInit(&ctx, GetDigestPtr(digest));
EVP_VerifyUpdate(&ctx, RSTRING_PTR(data), RSTRING_LEN(data));
result = EVP_VerifyFinal(&ctx, (unsigned char *)RSTRING_PTR(sig), RSTRING_LENINT(sig), pkey);
EVP_MD_CTX_cleanup(&ctx);
switch (result) {
case 0:
return Qfalse;
case 1:
return Qtrue;
default:
ossl_raise(ePKeyError, NULL);
}
return Qnil; /* dummy */
}
/*
* INIT
*/
void
Init_ossl_pkey(void)
{
#if 0
mOSSL = rb_define_module("OpenSSL"); /* let rdoc know about mOSSL */
#endif
/* Document-module: OpenSSL::PKey
*
* == Asymmetric Public Key Algorithms
*
* Asymmetric public key algorithms solve the problem of establishing and
* sharing secret keys to en-/decrypt messages. The key in such an
* algorithm consists of two parts: a public key that may be distributed
* to others and a private key that needs to remain secret.
*
* Messages encrypted with a public key can only be encrypted by
* recipients that are in possession of the associated private key.
* Since public key algorithms are considerably slower than symmetric
* key algorithms (cf. OpenSSL::Cipher) they are often used to establish
* a symmetric key shared between two parties that are in possession of
* each other's public key.
*
* Asymmetric algorithms offer a lot of nice features that are used in a
* lot of different areas. A very common application is the creation and
* validation of digital signatures. To sign a document, the signatory
* generally uses a message digest algorithm (cf. OpenSSL::Digest) to
* compute a digest of the document that is then encrypted (i.e. signed)
* using the private key. Anyone in possession of the public key may then
* verify the signature by computing the message digest of the original
* document on their own, decrypting the signature using the signatory's
* public key and comparing the result to the message digest they
* previously computed. The signature is valid if and only if the
* decrypted signature is equal to this message digest.
*
* The PKey module offers support for three popular public/private key
* algorithms:
* * RSA (OpenSSL::PKey::RSA)
* * DSA (OpenSSL::PKey::DSA)
* * Elliptic Curve Cryptography (OpenSSL::PKey::EC)
* Each of these implementations is in fact a sub-class of the abstract
* PKey class which offers the interface for supporting digital signatures
* in the form of PKey#sign and PKey#verify.
*
* == Diffie-Hellman Key Exchange
*
* Finally PKey also features OpenSSL::PKey::DH, an implementation of
* the Diffie-Hellman key exchange protocol based on discrete logarithms
* in finite fields, the same basis that DSA is built on.
* The Diffie-Hellman protocol can be used to exchange (symmetric) keys
* over insecure channels without needing any prior joint knowledge
* between the participating parties. As the security of DH demands
* relatively long "public keys" (i.e. the part that is overtly
* transmitted between participants) DH tends to be quite slow. If
* security or speed is your primary concern, OpenSSL::PKey::EC offers
* another implementation of the Diffie-Hellman protocol.
*
*/
mPKey = rb_define_module_under(mOSSL, "PKey");
/* Document-class: OpenSSL::PKey::PKeyError
*
*Raised when errors occur during PKey#sign or PKey#verify.
*/
ePKeyError = rb_define_class_under(mPKey, "PKeyError", eOSSLError);
/* Document-class: OpenSSL::PKey::PKey
*
* An abstract class that bundles signature creation (PKey#sign) and
* validation (PKey#verify) that is common to all implementations except
* OpenSSL::PKey::DH
* * OpenSSL::PKey::RSA
* * OpenSSL::PKey::DSA
* * OpenSSL::PKey::EC
*/
cPKey = rb_define_class_under(mPKey, "PKey", rb_cObject);
rb_define_module_function(mPKey, "read", ossl_pkey_new_from_data, -1);
rb_define_alloc_func(cPKey, ossl_pkey_alloc);
rb_define_method(cPKey, "initialize", ossl_pkey_initialize, 0);
rb_define_method(cPKey, "sign", ossl_pkey_sign, 2);
rb_define_method(cPKey, "verify", ossl_pkey_verify, 3);
id_private_q = rb_intern("private?");
/*
* INIT rsa, dsa, dh, ec
*/
Init_ossl_rsa();
Init_ossl_dsa();
Init_ossl_dh();
Init_ossl_ec();
}