mirror of
https://github.com/ruby/ruby.git
synced 2025-08-15 13:39:04 +02:00

This patch optimizes forwarding callers and callees. It only optimizes methods that only take `...` as their parameter, and then pass `...` to other calls. Calls it optimizes look like this: ```ruby def bar(a) = a def foo(...) = bar(...) # optimized foo(123) ``` ```ruby def bar(a) = a def foo(...) = bar(1, 2, ...) # optimized foo(123) ``` ```ruby def bar(*a) = a def foo(...) list = [1, 2] bar(*list, ...) # optimized end foo(123) ``` All variants of the above but using `super` are also optimized, including a bare super like this: ```ruby def foo(...) super end ``` This patch eliminates intermediate allocations made when calling methods that accept `...`. We can observe allocation elimination like this: ```ruby def m x = GC.stat(:total_allocated_objects) yield GC.stat(:total_allocated_objects) - x end def bar(a) = a def foo(...) = bar(...) def test m { foo(123) } end test p test # allocates 1 object on master, but 0 objects with this patch ``` ```ruby def bar(a, b:) = a + b def foo(...) = bar(...) def test m { foo(1, b: 2) } end test p test # allocates 2 objects on master, but 0 objects with this patch ``` How does it work? ----------------- This patch works by using a dynamic stack size when passing forwarded parameters to callees. The caller's info object (known as the "CI") contains the stack size of the parameters, so we pass the CI object itself as a parameter to the callee. When forwarding parameters, the forwarding ISeq uses the caller's CI to determine how much stack to copy, then copies the caller's stack before calling the callee. The CI at the forwarded call site is adjusted using information from the caller's CI. I think this description is kind of confusing, so let's walk through an example with code. ```ruby def delegatee(a, b) = a + b def delegator(...) delegatee(...) # CI2 (FORWARDING) end def caller delegator(1, 2) # CI1 (argc: 2) end ``` Before we call the delegator method, the stack looks like this: ``` Executing Line | Code | Stack ---------------+---------------------------------------+-------- 1| def delegatee(a, b) = a + b | self 2| | 1 3| def delegator(...) | 2 4| # | 5| delegatee(...) # CI2 (FORWARDING) | 6| end | 7| | 8| def caller | -> 9| delegator(1, 2) # CI1 (argc: 2) | 10| end | ``` The ISeq for `delegator` is tagged as "forwardable", so when `caller` calls in to `delegator`, it writes `CI1` on to the stack as a local variable for the `delegator` method. The `delegator` method has a special local called `...` that holds the caller's CI object. Here is the ISeq disasm fo `delegator`: ``` == disasm: #<ISeq:delegator@-e:1 (1,0)-(1,39)> local table (size: 1, argc: 0 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] "..."@0 0000 putself ( 1)[LiCa] 0001 getlocal_WC_0 "..."@0 0003 send <calldata!mid:delegatee, argc:0, FCALL|FORWARDING>, nil 0006 leave [Re] ``` The local called `...` will contain the caller's CI: CI1. Here is the stack when we enter `delegator`: ``` Executing Line | Code | Stack ---------------+---------------------------------------+-------- 1| def delegatee(a, b) = a + b | self 2| | 1 3| def delegator(...) | 2 -> 4| # | CI1 (argc: 2) 5| delegatee(...) # CI2 (FORWARDING) | cref_or_me 6| end | specval 7| | type 8| def caller | 9| delegator(1, 2) # CI1 (argc: 2) | 10| end | ``` The CI at `delegatee` on line 5 is tagged as "FORWARDING", so it knows to memcopy the caller's stack before calling `delegatee`. In this case, it will memcopy self, 1, and 2 to the stack before calling `delegatee`. It knows how much memory to copy from the caller because `CI1` contains stack size information (argc: 2). Before executing the `send` instruction, we push `...` on the stack. The `send` instruction pops `...`, and because it is tagged with `FORWARDING`, it knows to memcopy (using the information in the CI it just popped): ``` == disasm: #<ISeq:delegator@-e:1 (1,0)-(1,39)> local table (size: 1, argc: 0 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] "..."@0 0000 putself ( 1)[LiCa] 0001 getlocal_WC_0 "..."@0 0003 send <calldata!mid:delegatee, argc:0, FCALL|FORWARDING>, nil 0006 leave [Re] ``` Instruction 001 puts the caller's CI on the stack. `send` is tagged with FORWARDING, so it reads the CI and _copies_ the callers stack to this stack: ``` Executing Line | Code | Stack ---------------+---------------------------------------+-------- 1| def delegatee(a, b) = a + b | self 2| | 1 3| def delegator(...) | 2 4| # | CI1 (argc: 2) -> 5| delegatee(...) # CI2 (FORWARDING) | cref_or_me 6| end | specval 7| | type 8| def caller | self 9| delegator(1, 2) # CI1 (argc: 2) | 1 10| end | 2 ``` The "FORWARDING" call site combines information from CI1 with CI2 in order to support passing other values in addition to the `...` value, as well as perfectly forward splat args, kwargs, etc. Since we're able to copy the stack from `caller` in to `delegator`'s stack, we can avoid allocating objects. I want to do this to eliminate object allocations for delegate methods. My long term goal is to implement `Class#new` in Ruby and it uses `...`. I was able to implement `Class#new` in Ruby [here](https://github.com/ruby/ruby/pull/9289). If we adopt the technique in this patch, then we can optimize allocating objects that take keyword parameters for `initialize`. For example, this code will allocate 2 objects: one for `SomeObject`, and one for the kwargs: ```ruby SomeObject.new(foo: 1) ``` If we combine this technique, plus implement `Class#new` in Ruby, then we can reduce allocations for this common operation. Co-Authored-By: John Hawthorn <john@hawthorn.email> Co-Authored-By: Alan Wu <XrXr@users.noreply.github.com>
624 lines
18 KiB
C
624 lines
18 KiB
C
#ifndef RUBY_VM_CALLINFO_H /*-*-C-*-vi:se ft=c:*/
|
|
#define RUBY_VM_CALLINFO_H
|
|
/**
|
|
* @author Ruby developers <ruby-core@ruby-lang.org>
|
|
* @copyright This file is a part of the programming language Ruby.
|
|
* Permission is hereby granted, to either redistribute and/or
|
|
* modify this file, provided that the conditions mentioned in the
|
|
* file COPYING are met. Consult the file for details.
|
|
*/
|
|
|
|
#include "debug_counter.h"
|
|
#include "internal/class.h"
|
|
#include "shape.h"
|
|
|
|
enum vm_call_flag_bits {
|
|
VM_CALL_ARGS_SPLAT_bit, // m(*args)
|
|
VM_CALL_ARGS_BLOCKARG_bit, // m(&block)
|
|
VM_CALL_FCALL_bit, // m(args) # receiver is self
|
|
VM_CALL_VCALL_bit, // m # method call that looks like a local variable
|
|
VM_CALL_ARGS_SIMPLE_bit, // (ci->flag & (SPLAT|BLOCKARG)) && blockiseq == NULL && ci->kw_arg == NULL
|
|
VM_CALL_KWARG_bit, // has kwarg
|
|
VM_CALL_KW_SPLAT_bit, // m(**opts)
|
|
VM_CALL_TAILCALL_bit, // located at tail position
|
|
VM_CALL_SUPER_bit, // super
|
|
VM_CALL_ZSUPER_bit, // zsuper
|
|
VM_CALL_OPT_SEND_bit, // internal flag
|
|
VM_CALL_KW_SPLAT_MUT_bit, // kw splat hash can be modified (to avoid allocating a new one)
|
|
VM_CALL_ARGS_SPLAT_MUT_bit, // args splat can be modified (to avoid allocating a new one)
|
|
VM_CALL_FORWARDING_bit, // m(...)
|
|
VM_CALL__END
|
|
};
|
|
|
|
#define VM_CALL_ARGS_SPLAT (0x01 << VM_CALL_ARGS_SPLAT_bit)
|
|
#define VM_CALL_ARGS_BLOCKARG (0x01 << VM_CALL_ARGS_BLOCKARG_bit)
|
|
#define VM_CALL_FCALL (0x01 << VM_CALL_FCALL_bit)
|
|
#define VM_CALL_VCALL (0x01 << VM_CALL_VCALL_bit)
|
|
#define VM_CALL_ARGS_SIMPLE (0x01 << VM_CALL_ARGS_SIMPLE_bit)
|
|
#define VM_CALL_KWARG (0x01 << VM_CALL_KWARG_bit)
|
|
#define VM_CALL_KW_SPLAT (0x01 << VM_CALL_KW_SPLAT_bit)
|
|
#define VM_CALL_TAILCALL (0x01 << VM_CALL_TAILCALL_bit)
|
|
#define VM_CALL_SUPER (0x01 << VM_CALL_SUPER_bit)
|
|
#define VM_CALL_ZSUPER (0x01 << VM_CALL_ZSUPER_bit)
|
|
#define VM_CALL_OPT_SEND (0x01 << VM_CALL_OPT_SEND_bit)
|
|
#define VM_CALL_KW_SPLAT_MUT (0x01 << VM_CALL_KW_SPLAT_MUT_bit)
|
|
#define VM_CALL_ARGS_SPLAT_MUT (0x01 << VM_CALL_ARGS_SPLAT_MUT_bit)
|
|
#define VM_CALL_FORWARDING (0x01 << VM_CALL_FORWARDING_bit)
|
|
|
|
struct rb_callinfo_kwarg {
|
|
int keyword_len;
|
|
int references;
|
|
VALUE keywords[];
|
|
};
|
|
|
|
static inline size_t
|
|
rb_callinfo_kwarg_bytes(int keyword_len)
|
|
{
|
|
return rb_size_mul_add_or_raise(
|
|
keyword_len,
|
|
sizeof(VALUE),
|
|
sizeof(struct rb_callinfo_kwarg),
|
|
rb_eRuntimeError);
|
|
}
|
|
|
|
// imemo_callinfo
|
|
struct rb_callinfo {
|
|
VALUE flags;
|
|
const struct rb_callinfo_kwarg *kwarg;
|
|
VALUE mid;
|
|
VALUE flag;
|
|
VALUE argc;
|
|
};
|
|
|
|
#if !defined(USE_EMBED_CI) || (USE_EMBED_CI+0)
|
|
#undef USE_EMBED_CI
|
|
#define USE_EMBED_CI 1
|
|
#else
|
|
#undef USE_EMBED_CI
|
|
#define USE_EMBED_CI 0
|
|
#endif
|
|
|
|
#if SIZEOF_VALUE == 8
|
|
#define CI_EMBED_TAG_bits 1
|
|
#define CI_EMBED_ARGC_bits 15
|
|
#define CI_EMBED_FLAG_bits 16
|
|
#define CI_EMBED_ID_bits 32
|
|
#elif SIZEOF_VALUE == 4
|
|
#define CI_EMBED_TAG_bits 1
|
|
#define CI_EMBED_ARGC_bits 3
|
|
#define CI_EMBED_FLAG_bits 13
|
|
#define CI_EMBED_ID_bits 15
|
|
#endif
|
|
|
|
#if (CI_EMBED_TAG_bits + CI_EMBED_ARGC_bits + CI_EMBED_FLAG_bits + CI_EMBED_ID_bits) != (SIZEOF_VALUE * 8)
|
|
#error
|
|
#endif
|
|
|
|
#define CI_EMBED_FLAG 0x01
|
|
#define CI_EMBED_ARGC_SHFT (CI_EMBED_TAG_bits)
|
|
#define CI_EMBED_ARGC_MASK ((((VALUE)1)<<CI_EMBED_ARGC_bits) - 1)
|
|
#define CI_EMBED_FLAG_SHFT (CI_EMBED_TAG_bits + CI_EMBED_ARGC_bits)
|
|
#define CI_EMBED_FLAG_MASK ((((VALUE)1)<<CI_EMBED_FLAG_bits) - 1)
|
|
#define CI_EMBED_ID_SHFT (CI_EMBED_TAG_bits + CI_EMBED_ARGC_bits + CI_EMBED_FLAG_bits)
|
|
#define CI_EMBED_ID_MASK ((((VALUE)1)<<CI_EMBED_ID_bits) - 1)
|
|
|
|
static inline bool
|
|
vm_ci_packed_p(const struct rb_callinfo *ci)
|
|
{
|
|
if (!USE_EMBED_CI) {
|
|
return 0;
|
|
}
|
|
if (LIKELY(((VALUE)ci) & 0x01)) {
|
|
return 1;
|
|
}
|
|
else {
|
|
VM_ASSERT(IMEMO_TYPE_P(ci, imemo_callinfo));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline bool
|
|
vm_ci_p(const struct rb_callinfo *ci)
|
|
{
|
|
if (vm_ci_packed_p(ci) || IMEMO_TYPE_P(ci, imemo_callinfo)) {
|
|
return 1;
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline ID
|
|
vm_ci_mid(const struct rb_callinfo *ci)
|
|
{
|
|
if (vm_ci_packed_p(ci)) {
|
|
return (((VALUE)ci) >> CI_EMBED_ID_SHFT) & CI_EMBED_ID_MASK;
|
|
}
|
|
else {
|
|
return (ID)ci->mid;
|
|
}
|
|
}
|
|
|
|
static inline unsigned int
|
|
vm_ci_flag(const struct rb_callinfo *ci)
|
|
{
|
|
if (vm_ci_packed_p(ci)) {
|
|
return (unsigned int)((((VALUE)ci) >> CI_EMBED_FLAG_SHFT) & CI_EMBED_FLAG_MASK);
|
|
}
|
|
else {
|
|
return (unsigned int)ci->flag;
|
|
}
|
|
}
|
|
|
|
static inline unsigned int
|
|
vm_ci_argc(const struct rb_callinfo *ci)
|
|
{
|
|
if (vm_ci_packed_p(ci)) {
|
|
return (unsigned int)((((VALUE)ci) >> CI_EMBED_ARGC_SHFT) & CI_EMBED_ARGC_MASK);
|
|
}
|
|
else {
|
|
return (unsigned int)ci->argc;
|
|
}
|
|
}
|
|
|
|
static inline const struct rb_callinfo_kwarg *
|
|
vm_ci_kwarg(const struct rb_callinfo *ci)
|
|
{
|
|
if (vm_ci_packed_p(ci)) {
|
|
return NULL;
|
|
}
|
|
else {
|
|
return ci->kwarg;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
vm_ci_dump(const struct rb_callinfo *ci)
|
|
{
|
|
if (vm_ci_packed_p(ci)) {
|
|
ruby_debug_printf("packed_ci ID:%s flag:%x argc:%u\n",
|
|
rb_id2name(vm_ci_mid(ci)), vm_ci_flag(ci), vm_ci_argc(ci));
|
|
}
|
|
else {
|
|
rp(ci);
|
|
}
|
|
}
|
|
|
|
#define vm_ci_new(mid, flag, argc, kwarg) vm_ci_new_(mid, flag, argc, kwarg, __FILE__, __LINE__)
|
|
#define vm_ci_new_runtime(mid, flag, argc, kwarg) vm_ci_new_runtime_(mid, flag, argc, kwarg, __FILE__, __LINE__)
|
|
|
|
/* This is passed to STATIC_ASSERT. Cannot be an inline function. */
|
|
#define VM_CI_EMBEDDABLE_P(mid, flag, argc, kwarg) \
|
|
(((mid ) & ~CI_EMBED_ID_MASK) ? false : \
|
|
((flag) & ~CI_EMBED_FLAG_MASK) ? false : \
|
|
((argc) & ~CI_EMBED_ARGC_MASK) ? false : \
|
|
(kwarg) ? false : true)
|
|
|
|
#define vm_ci_new_id(mid, flag, argc, must_zero) \
|
|
((const struct rb_callinfo *) \
|
|
((((VALUE)(mid )) << CI_EMBED_ID_SHFT) | \
|
|
(((VALUE)(flag)) << CI_EMBED_FLAG_SHFT) | \
|
|
(((VALUE)(argc)) << CI_EMBED_ARGC_SHFT) | \
|
|
RUBY_FIXNUM_FLAG))
|
|
|
|
// vm_method.c
|
|
const struct rb_callinfo *rb_vm_ci_lookup(ID mid, unsigned int flag, unsigned int argc, const struct rb_callinfo_kwarg *kwarg);
|
|
void rb_vm_ci_free(const struct rb_callinfo *);
|
|
|
|
static inline const struct rb_callinfo *
|
|
vm_ci_new_(ID mid, unsigned int flag, unsigned int argc, const struct rb_callinfo_kwarg *kwarg, const char *file, int line)
|
|
{
|
|
if (USE_EMBED_CI && VM_CI_EMBEDDABLE_P(mid, flag, argc, kwarg)) {
|
|
RB_DEBUG_COUNTER_INC(ci_packed);
|
|
return vm_ci_new_id(mid, flag, argc, kwarg);
|
|
}
|
|
|
|
const bool debug = 0;
|
|
if (debug) ruby_debug_printf("%s:%d ", file, line);
|
|
|
|
const struct rb_callinfo *ci = rb_vm_ci_lookup(mid, flag, argc, kwarg);
|
|
|
|
if (debug) rp(ci);
|
|
if (kwarg) {
|
|
RB_DEBUG_COUNTER_INC(ci_kw);
|
|
}
|
|
else {
|
|
RB_DEBUG_COUNTER_INC(ci_nokw);
|
|
}
|
|
|
|
VM_ASSERT(vm_ci_flag(ci) == flag);
|
|
VM_ASSERT(vm_ci_argc(ci) == argc);
|
|
|
|
return ci;
|
|
}
|
|
|
|
|
|
static inline const struct rb_callinfo *
|
|
vm_ci_new_runtime_(ID mid, unsigned int flag, unsigned int argc, const struct rb_callinfo_kwarg *kwarg, const char *file, int line)
|
|
{
|
|
RB_DEBUG_COUNTER_INC(ci_runtime);
|
|
return vm_ci_new_(mid, flag, argc, kwarg, file, line);
|
|
}
|
|
|
|
#define VM_CALLINFO_NOT_UNDER_GC IMEMO_FL_USER0
|
|
|
|
static inline bool
|
|
vm_ci_markable(const struct rb_callinfo *ci)
|
|
{
|
|
if (! ci) {
|
|
return false; /* or true? This is Qfalse... */
|
|
}
|
|
else if (vm_ci_packed_p(ci)) {
|
|
return true;
|
|
}
|
|
else {
|
|
VM_ASSERT(IMEMO_TYPE_P(ci, imemo_callinfo));
|
|
return ! FL_ANY_RAW((VALUE)ci, VM_CALLINFO_NOT_UNDER_GC);
|
|
}
|
|
}
|
|
|
|
#define VM_CI_ON_STACK(mid_, flags_, argc_, kwarg_) \
|
|
(struct rb_callinfo) { \
|
|
.flags = T_IMEMO | \
|
|
(imemo_callinfo << FL_USHIFT) | \
|
|
VM_CALLINFO_NOT_UNDER_GC, \
|
|
.mid = mid_, \
|
|
.flag = flags_, \
|
|
.argc = argc_, \
|
|
.kwarg = kwarg_, \
|
|
}
|
|
|
|
typedef VALUE (*vm_call_handler)(
|
|
struct rb_execution_context_struct *ec,
|
|
struct rb_control_frame_struct *cfp,
|
|
struct rb_calling_info *calling);
|
|
|
|
// imemo_callcache
|
|
|
|
struct rb_callcache {
|
|
const VALUE flags;
|
|
|
|
/* inline cache: key */
|
|
const VALUE klass; // should not mark it because klass can not be free'd
|
|
// because of this marking. When klass is collected,
|
|
// cc will be cleared (cc->klass = 0) at vm_ccs_free().
|
|
|
|
/* inline cache: values */
|
|
const struct rb_callable_method_entry_struct * const cme_;
|
|
const vm_call_handler call_;
|
|
|
|
union {
|
|
struct {
|
|
uintptr_t value; // Shape ID in upper bits, index in lower bits
|
|
} attr;
|
|
const enum method_missing_reason method_missing_reason; /* used by method_missing */
|
|
VALUE v;
|
|
const struct rb_builtin_function *bf;
|
|
} aux_;
|
|
};
|
|
|
|
#define VM_CALLCACHE_UNMARKABLE FL_FREEZE
|
|
#define VM_CALLCACHE_ON_STACK FL_EXIVAR
|
|
|
|
/* VM_CALLCACHE_IVAR used for IVAR/ATTRSET/STRUCT_AREF/STRUCT_ASET methods */
|
|
#define VM_CALLCACHE_IVAR IMEMO_FL_USER0
|
|
#define VM_CALLCACHE_BF IMEMO_FL_USER1
|
|
#define VM_CALLCACHE_SUPER IMEMO_FL_USER2
|
|
#define VM_CALLCACHE_REFINEMENT IMEMO_FL_USER3
|
|
|
|
enum vm_cc_type {
|
|
cc_type_normal, // chained from ccs
|
|
cc_type_super,
|
|
cc_type_refinement,
|
|
};
|
|
|
|
extern const struct rb_callcache *rb_vm_empty_cc(void);
|
|
extern const struct rb_callcache *rb_vm_empty_cc_for_super(void);
|
|
|
|
#define vm_cc_empty() rb_vm_empty_cc()
|
|
|
|
static inline void vm_cc_attr_index_set(const struct rb_callcache *cc, attr_index_t index, shape_id_t dest_shape_id);
|
|
|
|
static inline void
|
|
vm_cc_attr_index_initialize(const struct rb_callcache *cc, shape_id_t shape_id)
|
|
{
|
|
vm_cc_attr_index_set(cc, (attr_index_t)-1, shape_id);
|
|
}
|
|
|
|
static inline const struct rb_callcache *
|
|
vm_cc_new(VALUE klass,
|
|
const struct rb_callable_method_entry_struct *cme,
|
|
vm_call_handler call,
|
|
enum vm_cc_type type)
|
|
{
|
|
struct rb_callcache *cc = IMEMO_NEW(struct rb_callcache, imemo_callcache, klass);
|
|
*((struct rb_callable_method_entry_struct **)&cc->cme_) = (struct rb_callable_method_entry_struct *)cme;
|
|
*((vm_call_handler *)&cc->call_) = call;
|
|
|
|
VM_ASSERT(RB_TYPE_P(klass, T_CLASS) || RB_TYPE_P(klass, T_ICLASS));
|
|
|
|
switch (type) {
|
|
case cc_type_normal:
|
|
break;
|
|
case cc_type_super:
|
|
*(VALUE *)&cc->flags |= VM_CALLCACHE_SUPER;
|
|
break;
|
|
case cc_type_refinement:
|
|
*(VALUE *)&cc->flags |= VM_CALLCACHE_REFINEMENT;
|
|
break;
|
|
}
|
|
|
|
vm_cc_attr_index_initialize(cc, INVALID_SHAPE_ID);
|
|
RB_DEBUG_COUNTER_INC(cc_new);
|
|
return cc;
|
|
}
|
|
|
|
static inline bool
|
|
vm_cc_super_p(const struct rb_callcache *cc)
|
|
{
|
|
return (cc->flags & VM_CALLCACHE_SUPER) != 0;
|
|
}
|
|
|
|
static inline bool
|
|
vm_cc_refinement_p(const struct rb_callcache *cc)
|
|
{
|
|
return (cc->flags & VM_CALLCACHE_REFINEMENT) != 0;
|
|
}
|
|
|
|
#define VM_CC_ON_STACK(clazz, call, aux, cme) \
|
|
(struct rb_callcache) { \
|
|
.flags = T_IMEMO | \
|
|
(imemo_callcache << FL_USHIFT) | \
|
|
VM_CALLCACHE_UNMARKABLE | \
|
|
VM_CALLCACHE_ON_STACK, \
|
|
.klass = clazz, \
|
|
.cme_ = cme, \
|
|
.call_ = call, \
|
|
.aux_ = aux, \
|
|
}
|
|
|
|
static inline bool
|
|
vm_cc_class_check(const struct rb_callcache *cc, VALUE klass)
|
|
{
|
|
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
|
|
VM_ASSERT(cc->klass == 0 ||
|
|
RB_TYPE_P(cc->klass, T_CLASS) || RB_TYPE_P(cc->klass, T_ICLASS));
|
|
return cc->klass == klass;
|
|
}
|
|
|
|
static inline int
|
|
vm_cc_markable(const struct rb_callcache *cc)
|
|
{
|
|
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
|
|
return FL_TEST_RAW((VALUE)cc, VM_CALLCACHE_UNMARKABLE) == 0;
|
|
}
|
|
|
|
static inline const struct rb_callable_method_entry_struct *
|
|
vm_cc_cme(const struct rb_callcache *cc)
|
|
{
|
|
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
|
|
VM_ASSERT(cc->call_ == NULL || // not initialized yet
|
|
!vm_cc_markable(cc) ||
|
|
cc->cme_ != NULL);
|
|
|
|
return cc->cme_;
|
|
}
|
|
|
|
static inline vm_call_handler
|
|
vm_cc_call(const struct rb_callcache *cc)
|
|
{
|
|
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
|
|
VM_ASSERT(cc->call_ != NULL);
|
|
return cc->call_;
|
|
}
|
|
|
|
static inline attr_index_t
|
|
vm_cc_attr_index(const struct rb_callcache *cc)
|
|
{
|
|
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
|
|
return (attr_index_t)((cc->aux_.attr.value & SHAPE_FLAG_MASK) - 1);
|
|
}
|
|
|
|
static inline shape_id_t
|
|
vm_cc_attr_index_dest_shape_id(const struct rb_callcache *cc)
|
|
{
|
|
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
|
|
|
|
return cc->aux_.attr.value >> SHAPE_FLAG_SHIFT;
|
|
}
|
|
|
|
static inline void
|
|
vm_cc_atomic_shape_and_index(const struct rb_callcache *cc, shape_id_t * shape_id, attr_index_t * index)
|
|
{
|
|
uintptr_t cache_value = cc->aux_.attr.value; // Atomically read 64 bits
|
|
*shape_id = (shape_id_t)(cache_value >> SHAPE_FLAG_SHIFT);
|
|
*index = (attr_index_t)(cache_value & SHAPE_FLAG_MASK) - 1;
|
|
return;
|
|
}
|
|
|
|
static inline void
|
|
vm_ic_atomic_shape_and_index(const struct iseq_inline_iv_cache_entry *ic, shape_id_t * shape_id, attr_index_t * index)
|
|
{
|
|
uintptr_t cache_value = ic->value; // Atomically read 64 bits
|
|
*shape_id = (shape_id_t)(cache_value >> SHAPE_FLAG_SHIFT);
|
|
*index = (attr_index_t)(cache_value & SHAPE_FLAG_MASK) - 1;
|
|
return;
|
|
}
|
|
|
|
static inline shape_id_t
|
|
vm_ic_attr_index_dest_shape_id(const struct iseq_inline_iv_cache_entry *ic)
|
|
{
|
|
return (shape_id_t)(ic->value >> SHAPE_FLAG_SHIFT);
|
|
}
|
|
|
|
static inline unsigned int
|
|
vm_cc_cmethod_missing_reason(const struct rb_callcache *cc)
|
|
{
|
|
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
|
|
return cc->aux_.method_missing_reason;
|
|
}
|
|
|
|
static inline bool
|
|
vm_cc_invalidated_p(const struct rb_callcache *cc)
|
|
{
|
|
if (cc->klass && !METHOD_ENTRY_INVALIDATED(vm_cc_cme(cc))) {
|
|
return false;
|
|
}
|
|
else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// For RJIT. cc_cme is supposed to have inlined `vm_cc_cme(cc)`.
|
|
static inline bool
|
|
vm_cc_valid_p(const struct rb_callcache *cc, const rb_callable_method_entry_t *cc_cme, VALUE klass)
|
|
{
|
|
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
|
|
if (cc->klass == klass && !METHOD_ENTRY_INVALIDATED(cc_cme)) {
|
|
return 1;
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* callcache: mutate */
|
|
|
|
static inline void
|
|
vm_cc_call_set(const struct rb_callcache *cc, vm_call_handler call)
|
|
{
|
|
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
|
|
VM_ASSERT(cc != vm_cc_empty());
|
|
*(vm_call_handler *)&cc->call_ = call;
|
|
}
|
|
|
|
static inline void
|
|
set_vm_cc_ivar(const struct rb_callcache *cc)
|
|
{
|
|
*(VALUE *)&cc->flags |= VM_CALLCACHE_IVAR;
|
|
}
|
|
|
|
static inline void
|
|
vm_cc_attr_index_set(const struct rb_callcache *cc, attr_index_t index, shape_id_t dest_shape_id)
|
|
{
|
|
uintptr_t *attr_value = (uintptr_t *)&cc->aux_.attr.value;
|
|
if (!vm_cc_markable(cc)) {
|
|
*attr_value = (uintptr_t)INVALID_SHAPE_ID << SHAPE_FLAG_SHIFT;
|
|
return;
|
|
}
|
|
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
|
|
VM_ASSERT(cc != vm_cc_empty());
|
|
*attr_value = (attr_index_t)(index + 1) | ((uintptr_t)(dest_shape_id) << SHAPE_FLAG_SHIFT);
|
|
set_vm_cc_ivar(cc);
|
|
}
|
|
|
|
static inline bool
|
|
vm_cc_ivar_p(const struct rb_callcache *cc)
|
|
{
|
|
return (cc->flags & VM_CALLCACHE_IVAR) != 0;
|
|
}
|
|
|
|
static inline void
|
|
vm_ic_attr_index_set(const rb_iseq_t *iseq, const struct iseq_inline_iv_cache_entry *ic, attr_index_t index, shape_id_t dest_shape_id)
|
|
{
|
|
*(uintptr_t *)&ic->value = ((uintptr_t)dest_shape_id << SHAPE_FLAG_SHIFT) | (attr_index_t)(index + 1);
|
|
}
|
|
|
|
static inline void
|
|
vm_ic_attr_index_initialize(const struct iseq_inline_iv_cache_entry *ic, shape_id_t shape_id)
|
|
{
|
|
*(uintptr_t *)&ic->value = (uintptr_t)shape_id << SHAPE_FLAG_SHIFT;
|
|
}
|
|
|
|
static inline void
|
|
vm_cc_method_missing_reason_set(const struct rb_callcache *cc, enum method_missing_reason reason)
|
|
{
|
|
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
|
|
VM_ASSERT(cc != vm_cc_empty());
|
|
*(enum method_missing_reason *)&cc->aux_.method_missing_reason = reason;
|
|
}
|
|
|
|
static inline void
|
|
vm_cc_bf_set(const struct rb_callcache *cc, const struct rb_builtin_function *bf)
|
|
{
|
|
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
|
|
VM_ASSERT(cc != vm_cc_empty());
|
|
*(const struct rb_builtin_function **)&cc->aux_.bf = bf;
|
|
*(VALUE *)&cc->flags |= VM_CALLCACHE_BF;
|
|
}
|
|
|
|
static inline bool
|
|
vm_cc_bf_p(const struct rb_callcache *cc)
|
|
{
|
|
return (cc->flags & VM_CALLCACHE_BF) != 0;
|
|
}
|
|
|
|
static inline void
|
|
vm_cc_invalidate(const struct rb_callcache *cc)
|
|
{
|
|
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
|
|
VM_ASSERT(cc != vm_cc_empty());
|
|
VM_ASSERT(cc->klass != 0); // should be enable
|
|
|
|
*(VALUE *)&cc->klass = 0;
|
|
RB_DEBUG_COUNTER_INC(cc_ent_invalidate);
|
|
}
|
|
|
|
/* calldata */
|
|
|
|
struct rb_call_data {
|
|
const struct rb_callinfo *ci;
|
|
const struct rb_callcache *cc;
|
|
};
|
|
|
|
struct rb_class_cc_entries {
|
|
#if VM_CHECK_MODE > 0
|
|
VALUE debug_sig;
|
|
#endif
|
|
int capa;
|
|
int len;
|
|
const struct rb_callable_method_entry_struct *cme;
|
|
struct rb_class_cc_entries_entry {
|
|
unsigned int argc;
|
|
unsigned int flag;
|
|
const struct rb_callcache *cc;
|
|
} *entries;
|
|
};
|
|
|
|
#if VM_CHECK_MODE > 0
|
|
|
|
const rb_callable_method_entry_t *rb_vm_lookup_overloaded_cme(const rb_callable_method_entry_t *cme);
|
|
void rb_vm_dump_overloaded_cme_table(void);
|
|
|
|
static inline bool
|
|
vm_ccs_p(const struct rb_class_cc_entries *ccs)
|
|
{
|
|
return ccs->debug_sig == ~(VALUE)ccs;
|
|
}
|
|
|
|
static inline bool
|
|
vm_cc_check_cme(const struct rb_callcache *cc, const rb_callable_method_entry_t *cme)
|
|
{
|
|
if (vm_cc_cme(cc) == cme ||
|
|
(cme->def->iseq_overload && vm_cc_cme(cc) == rb_vm_lookup_overloaded_cme(cme))) {
|
|
return true;
|
|
}
|
|
else {
|
|
#if 1
|
|
// debug print
|
|
|
|
fprintf(stderr, "iseq_overload:%d\n", (int)cme->def->iseq_overload);
|
|
rp(cme);
|
|
rp(vm_cc_cme(cc));
|
|
rb_vm_lookup_overloaded_cme(cme);
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
// gc.c
|
|
void rb_vm_ccs_free(struct rb_class_cc_entries *ccs);
|
|
|
|
#endif /* RUBY_VM_CALLINFO_H */
|